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Abstract. In this paper, we present a method that enables solving in
parallel the Euler-Lagrange system associated with the optimal control
of a parabolic equation. Our approach is based on an iterative update
of a sequence of intermediate targets that gives rise to independent sub-
problems that can be solved in parallel. This method can be coupled
with the parareal in time algorithm. Numerical experiments show the
efficiency of our method.
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1. Introduction

In the last decade, parallelism across the time [3], based on the decomposition
of the time domain has been exploited to accelerate the simulation of systems
governed by time dependent partial differential equations [4]. Among others,
the parareal algorithm [5] or multi-shooting schemes [2] have shown excellent
results. In the framework of optimal control, this approach has been used to
control parabolic systems [7, 8].

In this paper, we introduce a new approach to tackle such problems.
The strategy we follow is based on the concept of target trajectory that
has been introduced in the case of hyperbolic systems in [6]. Because of the
irreversibility of parabolic equations, a new definition of this trajectory is
considered. It enables us to define at each end point of the time sub-domains
relevant initial conditions and intermediate targets, so that the initial problem
is split up into independent optimization problems.

The paper is organized as follows: the optimal control problem is intro-
duced in Section 2 and the parallelization setting is described in Section 3.

Part of this work was funded by by the ANR-06-CIS6-007-01 project PITAC.
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The properties of the cost functionals involved in the control problem are
studied in Section 4. The general structure of our algorithm is given in Sec-
tion 5 and its convergences is proven in Section 6. In Section 7, we propose a
fully parallelized version of our algorithm. Some numerical tests showing the
efficiency of our approach are presented in Section 8.

In the sequel, we consider the optimal control problem associated with
the heat equation on a compact set Ω and a time interval [0, T ], with T > 0.
We denote by ‖.‖Ω the space norm associated with L2(Ω), and by ‖.‖Ωc

the
L2-norm corresponding to a sub-domain Ωc ⊂ Ω. Also, we use the notations
‖.‖v (resp. ‖.‖vn

) and 〈., .〉v (resp. 〈., .〉vn
) to represent the norm and the

scalar product of the Hilbert space L2(0, T ; Ωc) (resp. L2(I ′; Ωc)), with I ′ a
sub-interval of [0, T ] ). Given a function y defined on the time interval [0, T ],
we denote by y|I′ the restriction of y to I ′.

2. Optimal control problem

Given α > 0, consider the optimal control problem defined by:

min
v∈L2([0,T ];L2(Ωc))

J(v),

with

J(v) =
1
2
‖y(T )− ytarget‖2Ω +

α

2

∫ T

0

‖v(t)‖2Ωc
dt,

where ytarget is a given state in L2(Ω). The state y evolves from y0 on [0, T ]
according to

∂ty − ν∆y = Bv.

In this equation, ∆ denotes the Laplace operator, v is the control term,
applied on Ωc and B is the natural injection from Ωc into Ω. We assume
Dirichlet conditions for y on the boundary of Ω.
The corresponding optimality system reads as{

∂ty − ν∆y = Bv on [0, T ]× Ω
y(0) = y0,

(2.1)

{
∂tp+ ν∆p = 0 on [0, T ]× Ω
p(T ) = y(T )− ytarget,

(2.2)

αv + B∗p = 0, (2.3)

where B∗ is the adjoint operator of B.

Note that for any α > 0, the functional J is continuous, α-convex in
L2(Ωc) and consequently the system (2.1–2.3) has a unique solution by v?.
We denote by y?, p? the associated state and adjoint state.
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3. Time parallelization setting

In this section, we describe the relevant setting for a time parallelized reso-
lution of the optimality system.
Consider N ≥ 1 and a subdivision of [0, T ] of the form:

[0, T ] = ∪N−1
n=0 In,

with In = [tn, tn+1], t0 = 0 < t1 < ... < tN−1 < tN = T . For the sake
on simplicity, we assume here that the subdivision is uniform, i.e. for n =
0, . . . , N −1 we assume that tn+1− tn = T/N ; we denote ∆T = T/N . Given
a control v and its corresponding state y and adjoint state p, we define the
target trajectory by:

χ = y − p on [0, T ]× Ω. (3.1)

The trajectory χ is not governed by a partial differential equation, but reaches
χ(T ) = ytarget at time T from (2.2b), hence its denomination.

For n = 0, . . . , N − 1, consider the sub-problems

min
vn∈L2(In;L2(Ωc))

Jn(vn), (3.2)

with

Jn(vn) =
1
2
‖yn(tn+1)− χ(tn+1)‖2Ω +

α

2

∫
In

‖vn(t)‖2Ωc
dt, (3.3)

where the function yn is defined by{
∂tyn − ν∆yn = Bvn on In × Ω

yn(tn) = y(tn). (3.4)

Recall that this optimal control problem is parameterized by v (and y and
p) through the local target χ(tn+1), we note that this sub-problem has the
same structure as the original one, and is also strictly convex. The optimality
system associated with this optimization problem is given by (3.4) and the
equations {

∂tpn + ν∆pn = 0 on In × Ω
pn(tn+1) = y(tn+1)− χ(tn+1), (3.5)

αvn + B∗pn = 0, (3.6)

we denote by v?n its solution.

4. Some properties of J and Jn

The introduction of the target trajectory in the last section is motivated by
the following result.
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Lemma 1. Denote by χ? the target trajectory defined by (3.1) with y = y? and
p = p? and by y?n, p

?
n, v

?
n the solutions of (3.4–3.6) with y = y? and χ = χ?.

One has:
v?n = v?|In

.

Proof. Thanks to the uniqueness of the solution of the sub-problem, it is
enough to show that v?|In

satisfies the optimality system (3.4–3.6).
First, note that y?|In

obviously satisfies (3.4) with vn = v?|In
. It directly follows

from the definition of χ? (see (3.1)), that:

p?(tn+1) = y?(tn+1)− χ?(tn+1),

so that p?|In
satisfies (3.5). Finally, Equation (3.6) is a consequence of (2.3).

The result follows. �
Let HJ denote the hessian operator associated with J ; there exists a

strong connection between the hessian operators HJ and HJn of J and Jn,
as indicated in the next lemma.

Lemma 2. The hessian operator HJn coincides with the restriction of HJ to
controls whose time supports are included in [tN−1, T ].

Proof. First note that J is quadratic so that HJ is a constant operator. Given
an increase δv ∈ L2([0, T ];L2(Ωc)), we have:

〈HJ(δv), δv〉v = ‖δy(T )‖2Ω + α

∫ T

0

‖δv(t)‖2Ωc
dt,

where δy is the solution of{
∂tδy − ν∆δy = Bδv on [0, T ]× Ω

δy(0) = 0. (4.1)

Given 1 ≤ n ≤ N , consider now an increase δvn ∈ L2(In;L2(Ωc)). One finds
in the same way that:

〈HJn(δvn), δvn〉vn
= ‖δyn(tn+1)‖2Ω + α

∫ tn+1

tn

‖δvn(t)‖2Ωc
dt,

where δyn is the solution of{
∂tδyn − ν∆δyn = Bδvn on [tn, tn+1]× Ω

δyn(tn) = 0. (4.2)

Suppose now that δv = 0 on [0, tN−1], it is a simple matter to check that
δy ≡ 0 over [0, tN−1]. The restriction of δy on the interval [tN−1, T ] thus
satisfies δy(tN−1) = 0 and is consequently (up to a time translation) the
solution of (4.2). �

We end this section with an estimate on these hessian operators.

Lemma 3. Given δv ∈ L2([0, T ];L2(Ωc)), one has:

α

∫ T

0

‖δv(t)‖2Ωc
dt ≤ 〈HJ(δv), δv〉v ≤ β

∫ T

0

‖δv(t)‖2Ωc
dt, (4.3)

where β = α+C/
√

2, with C the Poincaré’s constant associated with L2(Ω).
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The proof of this result is standard and given in Appendix for the sake
of completeness. Because of Lemma 2, the hessian operator HJn also satis-
fies (4.3).

5. Algorithm

We are now in a position to propose a time parallelized procedure to solve
(2.1–2.3). In what follows we describe the principal steps of a parallel al-
gorithm named “sitpoc” ( serial intermediate targets for parallel optimal
control).

Algorithm 4 (sitpoc). Consider an initial control v0 and suppose that, at
step k one knows vk. The computation of vk+1 is achieved as follows:

I. Compute yk, pk and the associated target trajectory χk according to
(2.1), (2.2) and (3.1) respectively.

II. Solve approximately the N sub-problems (3.2) in parallel. For n =
0, . . . , N − 1, denote by ṽk+1

n the corresponding solutions and by ṽk+1

the concatenation of (ṽk+1
n )n=0,...,N−1.

III. Define vk+1 by vk+1 = (1 − θk)vk + θkṽk+1, where θk is defined to
minimize J((1− θk)vk + θkṽk+1).

Note that we do not explain in detail here the optimization step (Step
II) and rather present a general structure of our algorithm. Because of the
strictly convex setting, some steps of, e.g., a gradient method or a small
number of conjugate gradient method step can be used.

6. Convergence

The convergence of Algorithm 4 can be guaranteed under some assumptions.
In what follows, we denote by ∇J the gradient of J .

Theorem 6.1. Suppose that the sequence (vk)k∈N defined in Algorithm 4 sat-
isfies, for all k ≥ 0:

J(vk) 6= J(v∞), (6.1)

〈∇J(vk), vk+1 − vk〉v ≤ 0, (6.2)

and
‖∇J(vk)‖v ≤ η‖vk+1 − vk‖v, (6.3)

for a given η > 0. Then (vk)k∈N converges linearly with a rate (1 − 2α2

η2 ) ∈
[0, 1) to the solution of (2.1–2.3)

Note that in the case (6.1) is not satisfied, there exists k0 ∈ N such that
vk0 = v∞ and the optimum is reached in a finite number of steps.
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Proof. Define the shifted functional

J̃(v) = J(v)− J(v?),

and note that because of the definition of v?, one has

J̃(v) =
1
2
〈HJ(v − v?), v − v?〉v ≤

β

2
‖v − v?‖2v. (6.4)

Since J is quadratic, for any v ∈ L2(Ωc)

∇J(v) = HJ(v − v?),

and consequently

〈∇J(v), v − v?〉v = 〈HJ(v − v?), v − v?〉v ≥ α‖v − v?‖2v,

so that
‖v − v?‖v ≤

1
α
‖∇J(v)‖v. (6.5)

Combining (6.4) and (6.5), one gets

∀v ∈ L2(Ωc),
√
J̃(v) ≤ γ‖∇J(v)‖v, (6.6)

with γ = 1
2
√
α

.
On the other hand, the variations in the functional between two iterations of
our algorithm reads as

J(vk)− J(vk+1) = 〈∇J(vk), vk − vk+1〉v +
1
2
〈HJ(vk − vk+1), vk − vk+1〉v

≥ 〈∇J(vk), vk − vk+1〉v +
α

2
‖vk − vk+1‖2v.

Combining this last inequality with (6.2), one finds that :

J(vk)− J(vk+1) ≥ α

2
‖vk − vk+1‖2v. (6.7)

Since J̃(vk)− J̃(vk+1) = J(vk)− J(vk+1) ≥ 0, we have:√
J̃(vk)−

√
J̃(vk+1) ≥ 1

2
√
J̃(vk)

(
J(vk)− J(vk+1)

)
≥ α

4
√
J̃(vk)

‖vk − vk+1‖2v (6.8)

≥ α

4γ‖∇J(v)‖v
‖vk − vk+1‖2v (6.9)

≥ α

4γη‖vk − vk+1‖v
‖vk − vk+1‖2v (6.10)

≥ c‖vk − vk+1‖v, (6.11)

where c = α
2γη = α

3
2

η . Indeed (6.8) follows from (6.7), (6.9) from (6.6) and

(6.10) from (6.3). It follows from the monotonic convergence of
√
J̃(vk) that

the sequence vk is Cauchy, thus its convergence.
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Let us now study the convergence rate. Define rk =
∑+∞
`=k ‖v`+1 − v`‖v.

Summing (6.11) between k and +∞, we obtain:√
J̃(vk) ≥ crk.

Using again (6.6) and (6.3), one finds that:

ηγ(rk − rk+1) ≥ crk. (6.12)

Note that this inequality implies that 1− c
ηγ ≥ 0. Define C := 2α2

η2 = c
ηγ , we

have 0 < C ≤ 1. Because of (6.12):

(1− C)−krk ≥ (1− C)−(k+1)rk+1,

and the result follows. �

We now give an example where hypothesis (6.2–6.3) are satisfied.
Corollary 6.2. Assume that Step II of Algorithm 4 is achieved using only
one step of a locally optimal step gradient method and that at step k, the
algorithm is initialized with vkn := vk|In

, then (6.2–6.3) are satisfied hence the
algorithm converges to the solution of (2.1–2.3).

Proof. Because of the assumptions, the optimization step (Step. II) reads:

ṽk+1
n = vkn − ρkn∇Jn(vkn).

Since the functionals Jn are quadratic, one has:

ρkn =
‖∇Jn(vkn)‖2vn

〈HJn(∇Jn(vkn)),∇Jn(vkn)〉vn

,

A first consequence of these equalities is that:

〈∇Jn(vkn), ṽk+1
n − vkn〉vn

= −ρkn‖∇Jn(vkn)‖2vn
≤ 0. (6.13)

Moreover Lemmas 2 and 3 imply:
1
β
≤ ρkn ≤

1
α
. (6.14)

One can also obtain similar estimates of θk. In this view, note first that since
the only iteration which is considered uses as directions of descent ∇Jn(vkn) =
∇J(vk)|In

. Then:

θk = − 〈∇J(vk), ṽk+1 − vk〉v
〈HJ(ṽk+1 − vk), ṽk+1 − vk〉v

,

= − 1
〈HJ(ṽk+1 − vk), ṽk+1 − vk〉v

N∑
n=1

1
ρkn
‖ṽk+1
n − vkn‖2vn

.

Using (6.14), one deduces:
α

β
≤ θk ≤ β

α
. (6.15)
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This preliminary results will now be used to prove the theorem. The proof
of (6.2), follows from (6.13):

〈∇J(vk), vk+1 − vk〉v = θk〈∇J(vk), ṽk+1 − vk〉v,

= θk
N∑
n=1

〈∇Jn(vkn), ṽk+1
n − vkn〉vn

≤ 0.

This last estimate is a consequence of (6.13). It remains to prove (6.3). We
have:

‖vk+1 − vk‖v = θk‖ṽk+1 − vk‖v

= θk

√√√√ N∑
n=1

‖ṽk+1
n − vkn‖2vn

= θk

√√√√ N∑
n=1

(ρkn)2 ‖∇Jn(vkn)‖2vn

≤ α

β

√√√√ N∑
n=1

1
β2
‖∇Jn(vkn)‖2vn

=
α

β2
‖∇J(vk)‖v,

and the result follows.
�

7. Parareal acceleration

The method we have presented with algorithm 4 requires in Step I two se-
quential resolutions of the evolution Equation (2.1) on the whole interval
[0, T ], which does not fit with the parallel setting. In this section, we make
use of the parareal algorithm to parallelize the corresponding computations.

7.1. Setting

Let us first recall the main features of the parareal algorithm. We consider the
example of Equation (2.1). In order to solve in parallel an evolution equation,
for the parareal scheme [4] we introduce intermediate initial conditions at
times (tn)n=0,...,N−1 that are updated iteratively. Suppose that these values
(λkn) are known at step k. Denote by Gn(λn) and Fn(λn) coarse and fine
solutions of (3.4) at time tn+1 with λn as initial value. The update is done
according to the following iteration:

λk+1
n+1 = Gn(λk+1

n ) + Fn(λkn)− Gn(λkn).

We use this procedure in Step I of Algorithm 4. The idea we follow consists in
merging the two procedures, i.e. doing one parareal iteration at each iteration
of our algorithm.
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7.2. Algorithm

We now give details on the resulting procedure. Since the evolution equa-
tions depend on the control, we replace the notations Gn(λn) and Fn(λn) by
Gn(λn, vn) and Fn(λn, vn) respectively. As we need backward solvers to com-
pute p, see (2.2), we also introduce G̃n(µn+1) and F̃n(µn+1) to denote coarse
and fine solutions of (3.5) at time tn with µn+1 as “initial” value (given at
time tn+1). Note that these bakward solvers F̃n (resp: G̃n) do not depend on
the control.

We describe in the following the principal steps of an enhanced ver-
sion of the sitpoc algorithm which we give the name “pitpoc” as parareal
intermediate targets for optimal control.

Algorithm 5 (pitpoc). Denote by vkn = vk|In
. Consider a control (v0

n)n=0,...,N−1,
initial values (λ0

n)n=0,...,N (through forward scheme λ0
n+1 = Gn(λ0

n, v
0
n)), final

values (µ0
n)n=1,...,N (through backward scheme µ0

n = G̃n(µ0
n+1).

Suppose that, at step k one knows vk, (λkn)n=0,...,N and (µkn)n=1,...,N . The
computation of vk+1, (λk+1

n )n=0,...,N and (µk+1
n )n=1,...,N is achieved as fol-

lows:
I. Build the target trajectory (χkn)n=1,...,N according to a definition similar

to (3.1):
χkn = λkn − µkn.

II. Solve approximately the N sub-problems (3.2) in parallel. For n =
0, . . . , N − 1, denote by ṽk+1

n the corresponding solutions.
III. Define ṽk+1 as the concatenation of the sequence (ṽk+1

n )n=0,...,N−1.
IV. Compute (λ̃k+1

n )n=0,...,N , (µk+1
n )n=1,...,N by:

λ̃k+1
n+1 = Gn(λ̃k+1

n , ṽk+1
n ) + Fn(λkn, ṽ

k+1
n )− Gn(λkn, v

k
n),

µk+1
n = G̃n(µk+1

n+1) + F̃n(µkn+1)− G̃n(µkn+1),

V. Define vk+1 and (λk+1
n )n=0,...,N

vk+1 = (1− θk)vk + θkṽk+1,

λk+1
n = (1− θk)λkn + θkλ̃k+1

n

where θk is defined to minimize
1
2
‖(1− θk)λkN + θkλ̃k+1

N − ytarget‖2Ω +
α

2

∫ T

0

‖(1− θk)vk(t) + θkṽk+1(t)‖2Ωc
dt.

VI. k = k + 1 and return to I.

8. Numerical Results

In this section, we test the efficiency of our method and show how robust the
approach is. We consider two independent parts describing numerical results
of the selected algorithm.
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8.1. Setting

We consider a 2D example, where Ω = [0, 1]× [0, 1] and Ωc = [1
3 ,

2
3 ]× [ 1

3 ,
2
3 ].

The parameters related to our control problem are T = 6.4, α = 10−2 and
ν = 10−2. The time interval is discretized using a uniform step δt = 10−2,
and an Implicit-Euler solver is used to approximate the solution of Equa-
tions (2.1–2.2). For the space discretization, we use P1 finite elements. Our
implementation makes use of the freeware FreeFem [9] and the parallelization
is achieved thanks to the Message Passing Interface library. The independent
optimization procedures required in Step II are simply carried out using one
step of an optimal gradient method.

8.2. Influence of the number of sub-intervals

In this section, Step II of Algorithm 4 and Algorithm 5 are achieved by using
one step of an optimal step gradient method. We first test our algorithm
by varying the number of sub-intervals. The evolution of the cost functional
values are plotted with respect to the number of iteration (Figure 1), the
number of matrix multiplication (Figure 2) and the number of wall-clock time
of computation (Figure 3). We first note that Algorithm 4 actually acts as

Figure 1. Decaying cost functional values according to the
iterations count with respect to sitpoc algorithm (left) and
pitpoc algorithm (right).

a preconditioner, since it improves the convergence rate of the optimization
process. The introduceion of the intermediates targets allows to accelerate
the decrease of the functional values, as shown in Figure 2 (left). Note that
this property holds mostly for small numbers of sub-intervals, and disapears
when dealing with large subdivisions. This feature is lost when considering
Algorithm 5, whose convergence does not significantly depend on the number
of sub-intervals that is considered, see Figure 2 (right).
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Figure 2. Decaying cost functional values according to the
multiplication operations count with respect to sitpoc al-
gorithm (left) and pitpoc algorithm (right).

On the contrary, Algorithm 5 achieves a good acceleration when con-
sidering the number of mutliplications involved in the computations. The
corresponding results are shown in Figure 2, where the parallel operations
have been counted only once. We see that Algorithm is close to the full effi-
ciency, since the number of multiplications required to obtain a given value
for the cost functional is roughly proportional to 1

N .
We finally consider the wall-clock time required to carry out our al-

gorithms. As the main part of the operations involved in the computation
consists in matrix multiplications, the results we present in Figure 3 are close
to the ones of Figure 2.

8.3. Influence of the number of steps in the optimization method

We now vary the number of steps of the gradient method used in Step II of
our algorithm. The results are presented in Figure 4. Subdivisions of N = 4
and N = 16 intervals are considered. In both cases, we see that an increase
in the number of gradient steps improves the preconditionning feature of our
algorithm. However, we also observe that this strategy saturates for large
numbers of gradient steps which probably reveals that the sub-problems con-
sidered in Step II are practically solved after 5 sub-iterations.

More results can be found in [10].

Appendix

For the sake of completeness, we recall here the proof of Lemma 3.
Because of (4.1) and thanks to Young’s inequality, one has for all t ∈ [0, T ]
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Figure 3. Decaying cost functional values according to
elapsed real time with respect to sitpoc algorithm (left)
and pitpoc algorithm (right).

Figure 4. sitpoc algorithm with 4 subdivisions (left)
and 16 subdivision (right): variation of the number of
(lower/local)inner-iterations `max.

and all ε > 0:

1
2
d

dt
‖δy(t)‖2Ω + ν‖∇xδy(t)‖2Ω =

∫
Ω

δy(t)Bδv(t)dt

≤ 1
2

(
ε‖δy(t)‖2Ω +

1
ε
‖Bδv(t)‖2v

)
, (8.1)
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where ∇x denotes the gradient with respect to the space variable. As δy is
supposed to satisfies Dirichlet conditions, one can apply Poincaré’s inequality
to obtain:

‖δy(t)‖Ω ≤ C‖∇xδy(t)‖Ω,
for a given C > 0. Combining this last estimate with (8.1), one gets:

1
2
d

dt
‖δy(t)‖2Ω ≤

(ε
2
− ν

C2

)
‖δy(t)‖2Ω +

1
2ε
‖Bδv(t)‖2v.

Now, setting ε = 2ν
C2 gives:

d

dt
‖δy(t)‖2Ω ≤

1
ε
‖Bδv(t)‖2v.

Since ‖δy(0)‖2Ω = 0, the result follows with the fact that ‖B‖2 ≤ 1.
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Submitted in december 06, 2011.

Yvon Maday
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,
France, and Division of Applied Mathematics, Brown University, Providence, RI,
USA.
e-mail: maday@ann.jussieu.fr



14 Y. Maday, M.-K. Riahi and J. Salomon

Mohamed-Kamel Riahi
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris,
France.
e-mail: riahi@ann.jussieu.fr

Julien Salomon
CEREMADE, Université Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-
75016, Paris, France.
e-mail: salomon@ceremade.dauphine.fr


