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Thermodynamic properties can be in principle derived from the partition function, which, in many-atom systems, is hard
to evaluate as it involves a sum on the accessible microscopic states. Recently, the partition function has been computed
via nested sampling, relying on Bayesian statistics, which is able to provide the density of states as a function of the
energy in a single run, independently of the temperature. This appealing property is lost whenever the potential energy
that appears in the partition function is temperature-dependent: for instance, mean-field effective potential energies or
the quantum partition function in the path-integral formalism. For these cases, the nested sampling must be carried
out at each temperature, which results in a massive increase of computational time. Here, we introduce and implement
a new method, that is based on an extended partition function where the temperature is considered as an additional
parameter to be sampled. The extended partition function can be evaluated by nested sampling in a single run, so
to restore this highly desirable property even for temperature-dependent effective potential energies. We apply this
original method to compute the quantum partition function for harmonic potentials and Lennard-Jones clusters at low
temperatures and show that it outperforms the straightforward application of nested sampling for each temperature
within several temperature ranges.

I. INTRODUCTION

The central quantity in statistical mechanics of many-atom
systems is the partition function, from which all the thermo-
dynamic properties can in principle be derived. For a sys-
tem of N classical particles, the partition function Z is usually
expressed as a multidimensional integral over 6N degrees of
freedom, corresponding to the position vector x and the asso-
ciated momenta p of the N particles:

Z(β ) ∝

∫
dx dp e−βH(x,p) (1)

with β the inverse temperature and H(x,p) the Hamiltonian.
Furthermore, via the statistical weight exp(−βH), Z is a func-
tion of the temperature. In practice, the computation of ther-
modynamic properties is very difficult as it implies sampling
the high dimensional configurational space, which is compu-
tationally very demanding except for some very simple sys-
tems, subject for instance to a harmonic potential.

There is therefore a need for efficient numerical methods
to tackle the problem of efficiently sampling the configura-
tional space of a multi-atomic system. In the past, a variety
of methods have been developed: parallel tempering1–3, sim-
ulated annealing4–6 and metadynamics7,8 among others. In
this work, we use the nested sampling algorithm9,10. This al-
gorithm, initially developed for data analysis applications, is
a very general method that can be used to minimize the dis-
tance between models and experimental data: the model’s pa-
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rameter space is explored with an increasing likelihood con-
straint while simultaneously estimating the volume of parame-
ter space in which the likelihood is above the constraint. This
allows to better compare the relevance of different models,
which standard least-square fit methods have difficulty doing.
Bayesian model selection based on nested sampling has been
applied in a variety of fields such as cosmology11, biology12,
microseismic events13 and many other fields, and its conver-
gence has formally been proven14,15.

In a different context, nested sampling can be used to ex-
plore the phase space of a physical system with a lowering
energy constraint while simultaneously estimating the density
of states (DOS), i.e., the number of states available at a given
energy: the partition function and its derivatives can therefore
be estimated in a very elegant manner. It has been applied
to study the Potts model16, Lennard-Jones cluster17,18, tran-
sition path sampling19, and the phase space of zirconium20

and water clusters21, among others. One of the advantage of
this algorithm is that, for temperature-independent potentials,
the thermodynamic quantities can be computed at all temper-
atures with only a single nested sampling exploration17, con-
trary to the methods mentioned above.

However, this advantage is lost when the potential depends
on the temperature, which is, for example, the case of mean-
field theories22,23 where a physical variable is replaced by
its temperature-dependent average23, the Debye model24 used
for computing the specific heat of solids25, or the path-integral
formalism26,27 which takes into account the quantum nature
of the nuclei. In this work, we consider and compare two
methods to use nested sampling on such potentials: the direct
method, used in Ref. 21, which consists in performing sev-
eral explorations in a pre-determined temperature range, one
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for each temperature that we wish to sample, and the extended
partition function method that allows to perform a single ex-
ploration in the case of a temperature-dependent potential and
thus restores the "all-at-once" character of nested sampling.

A particularly interesting field of application of these two
methods is the path-integral formalism which is used to take
into account nuclear quantum effects (NQEs) that can have a
significant impact on the structure and dynamics of systems
containing light element such as hydrogen27. The most direct
manifestation of NQEs are isotope effects: indeed, for a clas-
sical system described by Eq. (1), the thermodynamic proper-
ties do not depend on the nuclear mass. Actually, isotope sub-
stitution can affect the properties of common compounds such
as the melting temperature of water that increases by 4 K when
replacing hydrogen with deuterium28,29. In some cases, iso-
tope substitution is known to even suppress some phase tran-
sitions entirely as in some ferroelectric materials30,31. NQEs
are also often relevant to phase transitions in high-pressure
materials32–34. To account for these NQEs in simulations in
a numerically feasible manner, the path-integral formalism26

consists in replacing the quantum nuclei by classical polymers
made of P replicas to mimic the quantum delocalization. This
increases the numbers of degrees of freedom by a factor P,
where P is typically of the order of 10–100, making the com-
putation of the thermodynamic quantities, such as the DOS,
even more complex. In an effort to test new methods that can
overcome this bottleneck, we test the two approaches based
on nested sampling (the direct method and the extended parti-
tion function method) on two specific examples: the harmonic
potential, for which analytical values are known, and atoms
interacting via a Lennard-Jones potential. Another method
that can be used to study isotope effects is thermodynamic
integration35,36 where the derivative of the free energy is inte-
grated over the mass.

We first present the nested sampling algorithm in Section II
for the cases of temperature-independent and of temperature-
dependent potentials for which we compare the direct and ex-
tended partition function methods. Next, in Section III, we
recall the path-integral formalism. We then consider two ap-
plications: the quantum harmonic potential in Section IV and
Lennard-Jones clusters in Section V. Finally, we conclude and
give some perspectives for future work in Section VI.

II. NESTED SAMPLING AND THE PARTITION
FUNCTION

A. Temperature-independent potential - General equations

Let us consider a system composed of N nuclei interacting
via a potential V (x), which depends only on the positions of
the nuclei x and neither on their momenta nor on the temper-
ature. For this system, the partition function Z can be written
as

Z(β ) =
1

N! h3N

∫
dx dp exp

(
−β

(
1
2

3N

∑
i=1

p2
i

mi
+V (x)

))
(2)

where p = (p1, ..., p3N) is the vector of momenta,
(m1, ...,m3N) is the vector of masses, β = 1

kBT the in-
verse temperature and h the Planck constant. In this work, we
consider the case where mi = m for all 1 ≤ i ≤ 3N to simplify
the notations but the generalization to different masses is
straightforward. In this case, the partition function can be
broken-down into two terms: a momentum-dependent one
(kinetic contribution)

Zk(β ) =
1

N! h3N

∫
dp exp

(
−β

(
1
2

3N

∑
i=1

p2
i

m

))

=

(√
2πm

(N!)2βh2

)3N

(3)

and a position-dependent one (configurational contribution)37

Zc(β ) =
∫

dx e−βV (x) =
∫

dE ρ(E) e−βE , (4)

where ρ(E) is the density of states, that is the number of mi-
croscopic configurations with energies between E and E+dE:

ρ(E) =
∫

dx δ (E −V (x)), (5)

and δ (·) is the Dirac operator. The partition function Z be-
comes the product of two contributions

Z(β ) = Zk(β )×Zc(β ). (6)

The relevant thermodynamic properties of the system can
be deduced from Z(β ). As an example, the internal energy
can be computed as

U =−∂ log(Z)
∂β

=
3N
2

kBT +

∫
dE ρ(E) E e−βE

Zc
=Uk +Uc,

(7)
where Uk = 3NkBT/2 and Uc = (

∫
dE ρ(E) E e−βE)/Zc are

the momentum and position contributions, i.e., the average ki-
netic and potential energies, respectively. The heat capacity
can be computed as

Cv =
∂U
∂T

=
3N
2

kB +

(∫
dE ρ(E) E2 e−βE

kBT 2Zc
−
(∫

dE ρ(E) E e−βE
)2

kBT 2Z2
c

)
=Cv,k +Cv,c, (8)

where Cv,k = 3NkB/2 and

Cv,c =

∫
dE ρ(E) E2 e−βE

kBT 2Zc
−
(∫

dE ρ(E) E e−βE
)2

kBT 2Z2
c

(9)

are the momentum and position contributions respectively.
In general, the position-dependent term Zc does not have

an analytical form. Thermodynamic properties such as U and
Cv thus have to be estimated numerically, generally using im-
portance sampling of the phase space, for instance with some
flavor of the Monte-Carlo Metropolis algorithm38. Here, we
use nested sampling, a method that has its origins in Bayes’
theory of probabilities9.
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B. The nested sampling algorithm and estimation of the
partition function

Let us recall the main steps of the nested sampling
algorithm9,17 to sample the partition function:

1. A relevant sampling space for positions is defined and
K points, called live points, are uniformly sampled from
this space. The integrals in Eqs. (4) and (6) to (9) will
then be replaced by discrete sums over the sampling
points.

2. At each iteration ℓ, the point xold associated with
the highest energy is removed and replaced by a ran-
dom point xnew with an energy that is strictly lower:
V (xnew) < V (xold). The partition function can then be
estimated by the trapezoid rule10:

Zc(β )≈
ℓ

∑
i=1

wie−βEi , (10)

where Eℓ =V (xold) is the energy of the removed point
at iteration ℓ and

wℓ =
1
2

(
e−

ℓ−1
K − e−

ℓ+1
K

)
(11)

is an approximation of the DOS: wℓ ≈ ρ(E). Equation
(10) is therefore a sum over the points removed at all
previous iterations (Ei and wi are respectively the en-
ergy of the removed points and the approximation of
the DOS at iteration i, for i ≤ ℓ). More details are given
in Appendix A.

3. This procedure is repeated until the current con-
tribution is small compared to previous contribu-
tions: log(wℓe−βsEℓ) − log(cmax) < δ with cmax =

maxi≤ℓ(wie−βsEi) at an inverse temperature βs chosen
by the user. This temperature Ts = 1/(kBβs) needs to be
small to ensure a good exploration of the phase space:
it has to be inferior to the lowest temperature studied39.
Here, we use δ =−10, a value that satisfies our require-
ments.

At the end of the procedure, we thus have a collection of
(wi,Ei) values, i.e., the DOS estimate wi at the energy Ei, from
which we can compute an approximated partition function us-
ing Eq. (10) with ℓ= niter, the number of iterations. We there-
fore sum over all the states that have been removed during the
exploration, that is, until an energy minimum is reached. In
the following, for simplicity, we will omit the bounds of the
sum.

The advantage when using nested sampling on temperature-
independent potentials is that Z can be computed at all temper-
atures with only one exploration via nested sampling17 since
the series of sampled Ei does not depend on temperature but
on the distribution of states (that is, the DOS) which is inde-
pendent of β as the potential V (x) (see Eqs (4) and (5)). This
is also the case for the potential energy contribution to the

internal energy and the heat capacity (see Eqs. (7) and (8)),
which can be recovered as17

Uc(β ) =
∑i wiEie−βEi

Zc(β )
(12)

and

Cv,c(β ) =
∑i wiE2

i e−βEi

kBT 2Zc(β )
−
(
∑i wiEie−βEi

)2

kBT 2Zc(β )2 , (13)

respectively.
All along the present work, we use the nested_fit

program39–42 which can be used both for model comparison
in data analysis and for the estimation of partition functions
in materials science. Nested_fit has previously been used
to study systems in which the potential energy does not de-
pend on temperature, namely the harmonic potential39 and
Lennard-Jones clusters43. In both cases, the program was
able to recover the correct curves for the heat capacity. Here,
we aim at studying the more complex case of temperature-
dependent potentials, with a particular focus on quantum sys-
tems described within the path-integral framework.

C. Temperature-dependent potential

By temperature-dependent potential, we mean cases in
which the partition function is written

Z(β ) = Zk(β )×
∫

dx e−βV (x,β ), (14)

where Zk is the position-independent prefactor, that can be
computed separately, and V (x,β ) is the effective potential de-
pending on the positions x and inverse temperature β (but not
on the momenta). In analogy to Eq. (4), we define

Zc(β ) =
∫

dx e−βV (x,β ) (15)

the position-dependent part of the partition function. In par-
ticular, from Eq. (5), it follows that the DOS depends now on
T :

ρ(E,β ) =
∫

dx δ (E −V (x,β )). (16)

Similarly to Eqs. (7) and (8), the internal energy and heat
capacity can be recovered from the partition function. How-
ever, since the potential now depends on the temperature, the
derivatives with respect to β contain additional terms and the
expressions are more involved:

Uc =

∫
dx
(

V (x,β )+β
∂V (x,β )

∂β

)
e−βV (x,β )

Zc

=

〈
V (x,β )+β

∂V (x,β )

∂β

〉
, (17)
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Cv,c =

∫
dx
(

V (x,β )+β
∂V (x,β )

∂β

)2
e−βV (x,β )

kBT 2Zc

−

(∫
dx
(

V (x,β )+β
∂V (x,β )

∂β

)
e−βV (x,β )

)2

kBT 2Z2
c

−

∫
dx
(

2 ∂V (x,β )
∂β

+β
∂ 2V (x,β )

∂β 2

)
e−βV (x,β )

kBT 2Zc

=

〈(
V (x,β )+β

∂V (x,β )
∂β

)2
〉
−
〈

V (x,β )+β
∂V (x,β )

∂β

〉2

kBT 2

−

〈
2 ∂V (x,β )

∂β
+β

∂ 2V (x,β )
∂β 2

〉
kBT 2 , (18)

where ⟨·⟩ denotes the average on the position coordinate x
weighted by the probability distribution exp(−βV (x,β ))/Zc.
We see that the first and second derivatives of the potential V
with respect to β appear in the above expressions. Equations
(7) and (8) for temperature-independent potentials can be re-
covered by taking (∂V (x,β ))/(∂β ) = (∂ 2V (x,β ))/(∂β 2) =
0.

Here, it is not straightforward to compute Z at all tempera-
tures in a single exploration as the wi and Ei terms in Eq. (10)
depend on temperature. In the following sections, we specify
the direct and the extended partition function for this case.

1. Direct method

The direct method, introduced by Szekeres et al21, consists
in performing one exploration per temperature of interest, us-
ing the nested sampling algorithm. For each value of the in-
verse temperature β j, the temperature-independent potential
V (x,β j) is sampled according to the procedure presented in
Section II B. The partition function is thus recovered in the
same manner as Eq. (10), for each inverse temperature β j:

Zc(β j)≈ ∑
i

wie−β jEi(β j), (19)

where Ei(β j) are the energies sampled in the exploration per-
formed at fixed inverse temperature β j. The internal energy
and heat capacity are computed by discretizing Eqs. (17) and
(18) using the fact that the average of a function g depending
on x and β can be computed as〈

g(x,β j)
〉
≈ ∑i wi g(x(i),β j) e−β jEi(β j)

Zc(β j)
, (20)

where x(i) is the position vector at iteration i. The full expres-
sions of Uc and Cv,c are given in the supplementary material
(Section I A).

2. Extended partition function method

We now introduce a method allowing to obtain the same
information for all temperatures in one exploration, as in the

case of temperature-independent potential. The key idea of
the method is to distinguish between the temperature β at
which the partition function is computed and the tempera-
ture which appears in the potential V , denoted hereafter by
β̃ , which we probe as an auxiliary parameter. Therefore, we
sample both the positions x and the auxiliary temperature β̃ ,
instead of just the positions as in the direct method, to eventu-
ally converge to the same physical results.

We want to compute the partition function from Eq. (15).
To that end, we first define the extended partition function
Z̃c(β ) as

Z̃c(β ) =
∫ ∫

dx dβ̃ e−βV (x,β̃ ). (21)

In this formula, the temperature parameter β in Zc(β ) is split
in two parameters which play distinct roles: the physical tem-
perature β , at which the partition function is computed, and
the auxiliary temperature β̃ , which is a parameter used to sam-
ple the parameter space. The standard partition function Zc(β )

can be recovered from the extended partition function Z̃c(β )
via

Zc(β ) =
∫ ∫

dx dβ̃ δ (β − β̃ ) e−βV (x,β̃ ) (22)

=
〈

δ (β − β̃ )
〉

β̃

Z̃c(β ), (23)

where
〈

δ (β − β̃ )
〉

β̃

is the average, according to the proba-

bility distribution exp(−βV (x, β̃ ))/Z̃c(β ), of the Dirac delta-
function δ (β − β̃ ) in the extended (x, β̃ ) space. In the above
expression, Zc(β ) corresponds to the partition function at in-
verse temperature β of the potential V (x, β̃ ), from which the
delta-function only selects the cases where β = β̃ . As in
Z̃c(β ), the potential V does not depend on the inverse tem-
perature β but on the auxiliary inverse temperature β̃ : it is
therefore possible to compute Zc(β ) at all temperatures in a
single exploration, as in the classical case, but at the cost of
adding an extra parameter in the exploration, namely β̃ . This
method is thus referred to as the extended partition function
method or extended method in short.

Ideally, to compute Zc(β ) at temperature β , we would like
to use only the values of β̃ for which β̃ = β . However, in
practice, because of the use of discrete sampling, a true delta-
function is too restrictive: the probability to sample points for
which β̃ = β is null. We therefore use a function f (t;α),
depending on a parameter α , that approximates the delta
function44 in the α → ∞ limit, i.e., limα→∞ f (t;α) = δ (t).
As a result, instead of selecting the values where β̃ = β , we
choose the points sampled at a temperature β̃ where β̃ ≈ β : a
weight is given to each value of β̃ through the function f and
used to compute Zc(β ):

Zc(β ) =
〈

δ (β − β̃ )
〉

β̃

Z̃c(β )≈
〈

f (β − β̃ ;α)
〉

β̃

Z̃c(β ).

(24)
In the following, the double-brackets ⟨⟨·⟩⟩

α
will denote

⟨⟨g(x,β )⟩⟩
α
=
〈

f (β − β̃ ;α)g(x, β̃ )
〉

β̃

(25)
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the average of a function g according to the probability distri-
bution exp(−βV (x, β̃ ))/Z̃c(β ) using f as the delta-function
approximation with parameter α . The average also depends
on the choice of the prior on β̃ , which will be discussed in
more details in Section III B 1 for the path-integral formalism.
Equation (25) can be discretized using

⟨⟨g(x,β )⟩⟩
α
≈ ∑i wig(x(i), β̃i) f (β − β̃i;α)e−βEi

Z̃c(β )
(26)

with wi as in Eq. (11) and x(i) the position vector, β̃i and Ei
the inverse temperature and energy sampled at iteration i. The
term Ei = E(x(i), β̃i) is computed at inverse temperature β̃i

for the position vector x(i). Note that, in practice, increasing
the value of α , while providing a better approximation of
the delta function, results in a smaller window and therefore
to small amounts of sampling points being used to compute
the thermodynamic properties at each temperature. On the
contrary, small values of α use more sampling points but those
points are sampled on a wider temperature range. The impact
of the choice of α and therefore of f (β − β̃ ;α) in Eq. (25)
will be discussed in Sections IV (harmonic potentials) and V
(Lennard-Jones clusters).

Similarly, the internal energy and heat capacity are com-
puted as (see Eqs. (17) and (18))

Uc(β )≈
Z̃β

Zc(β )

〈〈
V (x,β )+β

∂V (x,β )

∂β

〉〉
α

(27)

and

Cv,c(β )≈
Z̃c(β )

kBT 2Zc(β )

〈〈(
V (x,β )+β

∂V (x,β )

∂β

)2
〉〉

α

− Z̃c(β )
2

kBT 2Zc(β )2

(〈〈(
V (x,β )+β

∂V (x,β )

∂β

)〉〉
α

)2

− Z̃(β )
kBT 2Zc(β )

〈〈(
2

∂V (x,β )

∂β
+β

∂ 2V (x,β )

∂β 2

)〉〉
α

,

(28)

respectively. The full expressions of Uc and Cv,c are given in
the supplementary material (Section I B).

From a computational point of view, with the extended
method, the series of (wi,Ei, β̃i) is sampled once to com-
pute the thermodynamic properties in a pre-determined tem-
perature range, in contrast with the direct method where the
sampling must be carried out separately for each tempera-
ture. While the sampling is more expensive for the extended
method, we anticipate that the total number of required sam-
ples is smaller than for the direct method.

In this work, we consider two choices for the function f
(both normalized to unity) among the many possible approxi-
mations of the Dirac delta-function:

• the rectangular function

fr(β − β̃ ;α) =

{
α/2 if |β − β̃ |< 1/α,

0 otherwise;
(29)

fr selects all sampled points for which β̃ is 1/α-close
to β giving them all the same weight.

• the Gaussian function

fG(β − β̃ ;α) =
α√
π

e−α2(β−β̃ )2
; (30)

fG gives a normal weight to all sampled points: points
for which β̃ is distant from β of more than 3 1√

2α
(three

standard deviations) will have a very small weight and
participate little to ZP

c (β ).

In both case, α has the dimension of an energy.

III. THE QUANTUM PARTITION FUNCTION IN THE
PATH-INTEGRAL FORMALISM

A. General equations

In this section, we present the specific form of the partition
function for the particular case of a temperature-dependent
potential resulting from the treatment of NQEs via Feynman’s
path-integral formalism45. The quantum nuclei are repre-
sented by classical closed polymers composed of P replicas.
When P → ∞, the probability distribution for the replicas con-
verges toward the exact quantum distribution. The partition
function ZP of this new system for N atoms in three dimen-
sions and P replicas is21,46

ZP(β ) =

(
Pm

2πβ h̄2

)3NP/2 ∫
· · ·
∫

dx1 ... dxPe−βVP (31)

with the potential

VP(x1, ...,xP,β ) =
mP

2h̄2
β 2

P

∑
i=1

(xi −xi+1)
2

︸ ︷︷ ︸
Q(x,β )

+
1
P

P

∑
i=1

V (xi)︸ ︷︷ ︸
V̄ (x)

(32)
The term V̄ is the interaction potential V of the quantum nuclei
averaged over all replicas and Q is a term that derives from
the quantum kinetic operator and corresponds to an harmonic
interaction between the replicas. We denote

xi = (xi,1,yi,1,zi,1, ...,xi,N ,yi,N ,zi,N) (33)

the position vector of the i-th replica of the system and x =
(x1, ...,xP) the full position vector. In that case, we have

∂VP(x,β )

∂β
=− 2

β
Q(x,β ) (34)

and

∂ 2VP(x,β )

∂β 2 =
6

β 2 Q(x,β ). (35)

When T → ∞, the polymer collapses onto itself and resem-
bles a classical particle. For this limiting case, a single replica
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can then be used again. On the contrary, when T → 0, the
spring interaction between replicas decreases and the polymer
spreads over: the number of replicas needed also increases in
order better to represent the quantum positional uncertainty46.

By analogy with the classical case (Eq. (6)), we denote by
ZP

k the prefactor in Eq. (31):

ZP
k (β ) =

(
Pm

2πβ h̄2

)3NP/2

. (36)

The corresponding contributions to the internal energy and to
the heat capacity are21 UP

k (β ) =
3NP
2β

and CP
v,k(β ) =

3NPkB
2 .

The position-dependent term is thus written

ZP
c (β ) =

∫
· · ·
∫

dx1 ... dxP e−βVP , (37)

where VP is defined in Eq. (32). In general, Zc does not have
an analytical expression. We therefore use the nested sam-
pling algorithm to compute it, either with the direct or with
the extended method. Note that there are two distinct conver-
gence parameters: the number of live points K, as in the clas-
sical case, and the number of replicas P that has to be large
enough to correctly represent the NQEs.

In Sections II C 1 and II C 2, we have seen that, due to the
temperature dependence of the potential, the discrete expres-
sions to recover the internal energy and the heat capacity are
more complex than those from Eqs. (12) and (13), as they
include new terms appearing whenever the effective potential
depends on β . In Appendix B, we explicitly provide those ex-
pressions, in both direct and extended methods, in the particu-
lar case of the path-integral potential VP(x,β ) (Eq. (32)). Im-
plementing the direct method is straightforward: nested sam-
pling explorations are performed at the temperatures of inter-
est and the thermodynamic properties are computed for each
exploration. However, the implementation of the extended
method is more complex and is discussed in the next section.

B. Extended path-integral algorithm implementation

1. Choice of variables to explore the extended space

Before using the extended method in practice, we present
how to sample points using this method. Indeed, simply turn-
ing the auxiliary temperature β̃ = 1/(kBT̃ ) into an additional
parameter to explore in the nested sampling procedure with a
uniform prior would result in an imbalanced sampling due to
the particular form of the potential Q in Eq. (32). This would
cause the low auxiliary temperatures T̃ to be overrepresented
in the sampling with respect to high T̃ . This affects the effi-
ciency of the method and would require extremely large num-
bers K of live points to converge. An example is provided in
Figure 1 (a) for the harmonic potential. We see that the sam-
pling of the temperature is imbalanced, with low temperatures
being more sampled than high temperatures.

In order to overcome this problem, we change variable to
obtain a more balanced sampling between low and high aux-
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FIG. 1. Sampling frequency for the harmonic potential with N = 1
and P = 2 (a) before the change of variables using β̃ as the explored
parameter, (b) after the change of variables using 1/β̃ as the explored
parameter and (c) after the change of variables using β̃ as the ex-
plored parameter. We have T̃ = 1/(kBβ̃ ). The prior is indicated by
the black curve.

iliary temperatures. We denote

ỹi =
xi − x̄

λP(β̃ )
1 ≤ i ≤ P, (38)
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with x̄= 1
P ∑

P
i=1xi the centroid of the replicas and

λ
2
P(β̃ ) =

h̄2
β̃ 2

mP
. (39)

The variable ỹi is the position of the i-th replica with respect
to the centroid, normalized by the factor λP, used to remove
the temperature dependence of the harmonic interaction be-
tween replicas, as can be seen in the resulting expression for
the potential

VP(x1, ...,xP, β̃ ) =VP(x̄, ỹ1, ..., ỹP, β̃ ) (40)

=
1
2

P

∑
i=1

(ỹi − ỹi+1)
2 +

1
P

P

∑
i=1

V (x̄+λP(β̃ )ỹi).

(41)

In this case, the position parameters are the position of the
centroid x̄ and of the first P−1 replicas {ỹi}1≤i<P. The P-th
replica can be determined from the others as ỹP =−∑

P−1
i=1 ỹi.

The auxiliary temperature dependence has been moved from
the interaction between replicas Q to the potential energy term
V . Figure 1 (b)–(c) shows the sampling distribution after
the transformation using β̃ and 1/β̃ as the extra parameters
with uniform prior. We see that the change of variable in the
prior distribution results in a more balanced sampling. Fur-
thermore, the sampling frequency approaches the prior very
closely when sampling with the uniform prior on 1/β̃ (Fig-
ure 1 (c)). This shows that the choice of the function of β̃

to explore with uniform prior is also important. It is impor-
tant to note that this change of variables and the choice of the
parameter with uniform prior does not affect the fully con-
verged results that would be obtained in the limit of an infinite
number of live points K. However, an appropriate choice of
variables can greatly reduce the number of live points needed
in practice to converge and therefore the computational cost
of the exploration.

2. Choice of the upper and lower bounds of the parameters

With the change of variables presented above, the temper-
ature β̃ affects the distance between the replicas and the cen-
troid. Nested_fit requires that we fix a pre-determined in-
terval in which the parameters evolve: for high β̃ (low tem-
peratures), the replicas can go further from the centroid than
for low β̃ (high temperatures). Hence, choosing the lower and
upper bounds of the parameters is not as straightforward as for
the direct method. Indeed, without transformation, we simply
take all replicas to be in an identical box of fixed size. With
the transformation, the centroid is also placed in a box of fixed
size. The difficulty arises when choosing the bounds for the
ỹi, that is, the position of the replicas relative to the centroid.
Indeed, if ỹi is in a cubic box of side a centered in 0, then the
corresponding replica xi is in a cubic box of size aλP(β̃ ) cen-
tered in x̄: the volume of space that is sampled by the repli-
cas therefore depends on the temperature. The impact of the
parameter transformation on the selection of the box size is
represented in Figure 2. We will indicate how to choose these

Change of variables

Before the 
transformation

After the 
transformation

FIG. 2. Representation of the parameter transformation given by Eqs
39–41 (for P = 5). Before the transformation, the polymer is in a
box of fixed size (the same for all temperatures). In that case, the
extension of the polymer depends on the temperature: the polymer
contracts with increasing temperature. After the transformation, the
extension of the polymer is the same for all temperatures (see first
term of Eq. 41), however the size of the box is then proportional to
λP, hence to the temperature.

bounds in practice for the two examples studied in this work:
the quantum harmonic potential and Lennard-Jones clusters.

IV. HARMONIC SYSTEMS

For the quantum harmonic potential, the exact expres-
sions for the internal energy and the heat capacity are known
analytically46,47 (see Section IV A), which makes it a good
test for the implementation of nested sampling for studying
NQEs.

A. Exact equations

As a first application of the path-integral nested sampling
method, we consider the following harmonic potential for one
particle (N = 1):

V (x) =
mω2

2
(x2 + y2 + z2), (42)

with x = (x,y,z) the position vector of the particle. Conse-
quently, the expression of VP in Eq. (32) gives

VP(x1, ...,xP,β ) =
mP

2h̄2
β 2

P

∑
i=1

(xi −xi+1)
2

+
1
P

P

∑
i=1

mω2

2
(x2

i + y2
i + z2

i ), (43)

where m is the particle mass, ω the frequency and xi =
(xi,yi,zi) is the three-dimensional position vector of the i-th
replica. In practice, we use reduced units, i.e., we take m and
ω to be the units of mass and frequency. Hence, in reduced
units, we have m = 1 and ω = 1. We also take h̄ = 1. Fur-
thermore, we use the reduced temperature θ = kBT/(h̄ω) and
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reduced dimensionless length units by normalizing positions
by the factor

√
h̄/(mω). For the harmonic potential, the val-

ues of the lower and upper bounds of the parameters are not
important as long as the sampling space is big enough not to
be affected by finite size effects at the temperatures we are
sampling (see Ref. 39 for the study in the classical case). This
is not the case for all potentials, as we will see when study-
ing Lennard-Jones clusters: indeed, the harmonic potential is
a confining potential, contrary to the Lennard-Jones potential
which is null at infinite interparticle distance. Therefore, for
the direct method, all replicas are placed in a finite box of size
L = 30 in reduced units; for the extended method, the centroid
and the ỹi (1 ≤ i ≤ P− 1) are also confined in a box of side
L = 30 in reduced units.

In one dimension, the system can take the energy values46

En = (n+1/2) for n = 0,1,2, ..., corresponding to the eigen-
values of the Hamiltonian H. In the quantum setting, the par-
tition function is given by46 Z(β ) = Tr(exp(−βH)), hence

Z(β ) =
∞

∑
n=0

e−βEn =
1

2sinh
( 1

2θ

) . (44)

Consequently, we can compute the exact internal energy
and heat capacity: for a three-dimensional system with one
particle, the internal energy and heat capacity of the one-
dimensional particle are multiplied by 3, giving46,47

U(β ) =
3
2

coth
(

1
2θ

)
(45)

and

Cv(β ) =
3

4θ 2 sinh2 ( 1
2θ

)kB, (46)

respectively.
Furthermore, for the harmonic potential, we can compute

analytically the exact values of the heat capacity for a finite
value of P in particular,

CP=2
v (β ) = 3kB

(
2−

4θ 4 + 3
4 θ 2

(2θ 2 + 1
8 )

2

)
(47)

and

CP=4
v (β ) = 3kB

(
4−2

θ 4 + 3
32 θ 2

(θ 2 + 1
32 )

2
−

4θ 4 + 3
16 θ 2

(2θ 2 + 1
32 )

2

)
(48)

for P = 2 and P = 4, respectively. The derivation of these
expressions is given in Appendix C.

In contrast with the classical case, the quantum heat ca-
pacity in Eq. (46) goes to zero in the low temperature limit.
However, for finite numbers of replicas, the expressions (47)
and (48) still tend to finite value for T → 0, with CP=2

v → 6kB
for P = 2 and CP=4

v → 12kB for P = 4 for one particle in three
dimensions. This corresponds to the classical heat capacity
for a system with 6P degrees of freedom.

Before using nested_fit with both the direct and ex-
tended methods on the harmonic system, we first provide a
theoretical test of the effect of the use of a smeared delta-
function f (β − β̃ ;α) in the extended method.

0 1 2 3
T (kBT/( ))

10 2

10 1

100

Z
(

)

Z
=1
=10
=100

0 1 2 3
T (kBT/( ))

10 2

10 1

100

Z
(

)

Z
=1
=10
=100

(a)

(b)

FIG. 3. Comparison between Z and the smeared-delta function ap-
proximation for (a) the Gaussian function (Eq. (50)) and (b) the rect-
angular function (Eq. (51)). The curves corresponding to Z, α = 10
and α = 100 almost coincide at the graph scale.

B. Theoretical test of smearing functions

In this section, we compute analytical results on the effect
of the two smeared delta-functions f (β − β̃ ;α) previously in-
troduced. For that purpose, we use the quantum harmonic
potential: for simplicity, we consider the one-dimensional
case instead of the three-dimensional one. The exact parti-
tion function46 is given in Eq. (44) and can be rewritten as an
integral over β̃ as in Section II C 2:

Z(β ) =
∫

∞

0
dβ̃ δ (β − β̃ )Z(β̃ ). (49)

Replacing the delta-function by the Gaussian window gives
the approximation

Z(α)(β ) =
∫

∞

0
dβ̃

√
α

π
e−α(β−β̃ )2

Z(β̃ ), (50)

which depends on parameter α . Replacing it by the rectangu-
lar window gives

Z(α)(β ) =
∫

β+1/α

max(0,β−1/α)
dβ̃

α

2
Z(β̃ ). (51)
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In the case of Eq. (50), we compute Z numerically. In the
case of the rectangular window (Eq. (51)), the integral yields

Z(α)(β ) =
α

2h̄ω

[
log
(

tanh
(

h̄ω(β +1/α)

4

))
− log

(
tanh

(
h̄ω max(0,β −1/α)

4

))]
. (52)

In order to compare the exact and the extended method re-
sults for the Gaussian window, we represent the curves for
different values of α in Figure 3 (a). We take values of
kBT = 1/β between 0.2h̄ω (β = 5) and 3.5h̄ω (β = 0.28)
which is the range of temperature studied in Section IV C. In
Figure 3, we see that if we take α large enough (α ≳ 10),
Z is correctly recovered for the range of temperature studied.
For smaller values of α , the curve is not correctly recovered
for high temperatures. This is likely due to the fact that, for
these combinations of α and β , the delta-function approxi-
mation gives significant weight to small values of β̃ where
the integrand diverges. However, at high temperature a classi-
cal treatment of the system is possible (in that case at around
∼ 2.5kBT/(h̄ω), see Figure 4), so that the behavior of Z can
be obtained by the simpler, classical version of the algorithm.

In Figure 3 (b), we represent the curves for different values
of α for the same system, using the rectangular function. In
that case, since log(tanh(x)) is not defined in 0, we replace
max(0,β −1/α) by max(10−5,β −1/α) in Eq. (52) to avoid
numerical problems. This approximation can be done as, in
practice, we sample between finite values of T̃ (β̃ > 0). We
observe a similar behavior with increasing α than what was
observed for the Gaussian window. In that case too, we have
a good recovery of Z for α ≳ 10.

C. Direct method - comparison of nested_fit with the
exact cases

Figure 4 presents the results obtained for the heat capacity
for P = 1,2,4,8 with nested_fit using the direct method
(the exploration parameters are given in Appendix D, as will
be the case for all applications in this work). The exact quan-
tum, classical (P = 1), P = 2 and P = 4 curves are also repre-
sented. As check, we perform one exploration per temperature
for the P = 1 curve with nested_fit, even though this case
is equivalent to the classical case and only one exploration
can be performed for all temperatures. We can see that nested
sampling is able to recover the exact curves. We also see that
when P increases, the exact quantum curve is recovered down
to lower temperatures, which is the expected behavior as the
system is, so to say, "more quantum" at lower temperatures
and thus requires more replicas to converge. Moreover, we
see that at low temperatures, the curves for P = 2 and P = 4
(both exact and obtained via nested_fit) start increasing,
with the minimum of the curve being reached at a lower tem-
perature for P = 4 than for P = 2. The unphysical increase
in the heat capacity is the manifestation of the classical na-
ture of the system for a finite number of replicas, whereas the
limit P→∞ would be needed to simulate the quantum systems

1 2 3
T (kBT/( ))

1

2

3

C v
 (k

B
)

Quantum
Classic
Exact P=2
Exact P=4

nf P=1
nf P=2
nf P=4
nf P=8

FIG. 4. Heat capacity for the quantum harmonic potential with the
direct method. The analytical results for the classical and quantum
cases are plotted as full lines, as well as the formulas for two (Eq.
(47)) and four (Eq. (48)) replicas (P = 2 and P = 4, respectively).
Also shown are the numerical results obtained with nested_fit (nf
in the legend). The points correspond to the temperatures at which
the heat capacities were computed. Taking ν = ω/(2π) = 100cm−1,
which is a typical vibration frequency in solids, the temperature
range considered here would correspond to [290K,5000K]. The error
bars were computed from four runs: for P = 1,2,4, they are smaller
than the symbols for most temperatures.

down to T = 0. Therefore, for a finite number of replicas P,
there is a threshold temperature T ∗

P such that ∂Cv/∂T < 0 for
T < T ∗

P . Note that T ∗
P → 0 as P → ∞. Finally, we observe that

the nested sampling results fluctuate more and have a bigger
statistical uncertainty for higher P, which is again expected
as a higher value of P means more degrees of freedom to ex-
plore. To reduce fluctuations, a larger number of live points
K is required (here, K = 1000 for all P). The impact of K
on the recovery of the heat capacity will be studied in Section
V for the more complex partition function of Lennard-Jones
clusters, which has multiple minima.

D. Extended partition function method

1. Choosing the smeared delta function

We now perform simulations with nested_fit using the
extended method. For that, we use the path-integral harmonic
potential with P = 2. The computational details are given in
Appendix D.

For both approximations of the delta-function, we test dif-
ferent values of the parameter α , corresponding to the size
of the window where the inverse temperature β̃ is sampled.
In order to quantify the computational accuracy, we adopt the
Mean Absolute Percentage Error (MAPE)48:

MAPE =
1
n

n

∑
i=1

100
|Si −Ei|

Ei
, (53)

with n the number of temperatures sampled, Ei the expected
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FIG. 5. MAPE as a function of α for different values of K with the
Gaussian (full lines) and rectangular (dashed lines) windows.

results — here the exact P = 2 Cv curve — and Si the sam-
pled points — here the computed Cv curve. In Figure 5, we
present the MAPE curves as a function of α for different val-
ues of K for both Gaussian and rectangular windows. The α

value for which the MAPE is the smallest changes with the
window and number of live points K: for the Gaussian win-
dow, the smallest value of MAPE is obtained for α = 4.5 for
K = 25000,50000 and α = 10 for K = 100000 while for the
rectangular window, the smallest MAPE value is obtained for
α ≈ 2 for all K. In the following, we refer to this value of α

as the "optimal" value, which is valid for a specific example
and number of live points K. We point out that nested sam-
pling provides a set of sampled points. These points are then
post-processed by using distinct g(β − β̃ ;α) windows: they
are therefore issued from the same statistical set.

In Figure 6, we present the results obtained for the Gaussian
and rectangular windows for α = 3.2,4.5,7.1 and α = 1,2,5
respectively, at K = 50000, for which the smallest MAPE
value is obtained. Again, all curves were obtained from the
same exploration. In both cases, taking a small value (below
their optimal one) of α does not correctly recover the heat
capacity. Indeed, small values of α correspond to large tem-
perature windows, which gives rise to a bias. For large α in-
stead, we only select points that have an inverse temperature β̃

very close to β . Since the number of selected points decreases
when α increases, large values of α result in a poor statistical
sampling and large fluctuations (without bias). We see that the
rectangular function fluctuates more than the Gaussian func-
tion. A possible reason for this behavior is that it either selects
or rejects the sampled points, with the selected points all hav-
ing equal weights. The rectangular window function there-
fore does not discriminate between different inverse tempera-
tures β̃ depending on their distance from the target β , which
is the case of the Gaussian function. Hence, from now on, we
choose the Gaussian window for comparing the extended and
direct methods.

In Figure 7, we represent the auxiliary temperature against
the energy of the sampled configurations, colored according

to the weight given by the Gaussian approximation. We see
that only a small proportion of points contribute significantly
to the computation of the thermodynamic properties at a given
temperature: this explains why we need such a huge number
of live points to compute the thermodynamic properties at all
temperatures with the extended method. Note that we have
only represented the points for T̃ ≤ 1.5(kBT̃ )/(h̄ω) but we
have sampled up to T̃ = 4(kBT̃ )/(h̄ω).

2. Comparing with the direct method

We now look at the performance of the extended method
on the harmonic potential and compare our results with that
obtained with the direct method (Figure 4). We again look at
the curves obtained with nested_fit for P = 2,4,8 as well
as for P= 16. We put a uniform prior on T̃ for P= 2,8,16 and
a uniform prior on β̃ for P = 4. For the latter, the minimum of
the P= 4 exact curve (around 0.3kBT/(h̄ω)) was not correctly
recovered when using a uniform prior on T̃ . This shows that
the choice of the prior, which, contrary to α , has to be chosen
before the exploration, has a noticeable impact on the result-
ing curves as was illustrated in Section III B 1. The results are
presented in Figure 8. We see that, with the extended method,
nested_fit is able to recover the exact curves very well for
P = 2,4; for P = 8,16 (for which we do not have reference
curves), nested sampling converges to the exact quantum re-
sults (as expected for P → ∞). The corresponding sampling
frequency are given in the supplementary material (Figure 1).

Finally, we compare the computational performance of the
extended and direct methods on the P= 2 case. We present the
results in Figure 9 using K = 25000 live points for the direct
method (one exploration per temperature) and K = 50000 for
the extended one (one exploration for all temperatures) with
α = 7.1. Those choices result in similar MAPE values: 0.30%
for the direct method and 0.29% for the extended method.
Both methods correctly recover the exact curve and have error
of the same order at high temperatures. At lower temperatures
(T <= 0.6(kBT )/(h̄ω)), the extended method has larger error
than the direct method by around a factor 10: we have less
samples at those temperatures (see supplementary material,
Figure 1 (a)). To obtain the heat capacity curves for 34 temper-
atures ranging from kBT = 0.2 kBT

h̄ω
to kBT = 3.5 kBT

h̄ω
, the direct

method requires 2.9 × 109 energy evaluations (i.e., approx-
imately 8× 107 energy evaluations per exploration) and the
extended method requires 1.8× 108 energy evaluations. The
extended method is thus approximately eight times faster than
the direct method. We observe that, even though we use more
live points, the extended method requires much less evalua-
tions — by around a factor ten — than the direct one. Indeed,
in the former case, we only need a single exploration to com-
pute the heat capacity at all temperatures while we need multi-
ple explorations in the latter case. Furthermore, if we want to
add a point to the curve within the studied temperature range,
a new exploration must be done for the latter while for the
former the heat capacity for the new temperature can be com-
puted from the previously sampled points as the choice of a
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FIG. 6. Comparison of the heat capacity obtained for the harmonic potential with the extended method for different values of α (a) for the
Gaussian window and (b) the rectangular window. In each case only three values are represented for the readability of the graph.
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FIG. 7. Plot of the auxiliary temperature T̃ against the energy of
the sampled configurations for the P = 2 and K = 50000 case. The
points are colored according to the weight given by the Gaussian
approximation with α = 5 and T = 0.5(kBT )/(h̄ω).

specific temperature window is a post-processing step. Note
that the two energy functions are slightly different as, in the
extended case, there is a change of variables which is not used
with the direct method. This change of variables results in a
small increase in computational cost for the function, that be-
comes negligible when the number of parameters increases or
the potential is more complex than the harmonic potential.

In conclusion, in this section, we have tested the extended
partition function method on the harmonic potential. Mainly,
we have looked at the impact of the choice of the smeared
delta-function and of the corresponding parameter α: we have
seen that the Gaussian window leads to reduced fluctuations
with respect to the rectangular one and that the optimal value
of α depends on the number of live points used and the system
studied. Furthermore, comparing with the direct method, we
have seen that the extended method requires less energy eval-
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FIG. 8. Heat capacity for the quantum harmonic potential obtained
using nested_fit (nf) with the extended method with α = 4.5 for
P= 2 and α = 7.1 for P= 4,8,16. We used K = 50000, K = 100000,
K = 100000 and K = 200000 for P = 2, P = 4, P = 8 and P = 16,
respectively.

uations, roughly by an order of magnitude. Finally, we have
seen that the choice of the window and α is a post-processing
step, contrary to the choice of the prior and number of live
points K. This means that different α can be tested on one
exploration but that a new exploration must be performed to
test a new prior (more details on the choice of the prior will
be given in Section V D). In the next section, we study the
impact of K on the recovery of the curves with both the di-
rect and extended methods on the Lennard-Jones clusters that
display a very large number of local energy minima.
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spond to the temperatures at which the heat capacities were com-
puted with the direct method. The dotted red lines correspond to the
first standard deviation for the extended run. The statistical uncer-
tainties were computed from four runs.

V. LENNARD-JONES CLUSTERS

A. The potential model

Lennard-Jones clusters are formed by N particles interact-
ing via

V (xi) = ∑
1≤k< j≤N

ri,k j<rc

[
VLJ(ri,k j)−VLJ(rc)

]
(54)

with rc the cutoff radius, which removes interaction at infinite
range, ri,k j the distance between the i-th replica of the k-th and
j-th atoms and

VLJ(r) = 4ε

(( r0

r

)12
−
( r0

r

)6
)
. (55)

We have that r0 and ε are the parameters of the potential that
depend on the considered atomic species. We take rc = 3r0.
Furthermore, we use periodic boundary conditions in a large
cubic simulation box of size L ≫ r0.

We adopt reduced units: the temperature is in units of kBT
ε

with ε = 1. To fix the size of the box, we consider the value of
the density ρ̃ in unit of r−3

0 : ρ̃ = N
(L/r0)3 r−3

0 . We take L= 6 and
use r0 to tune the density to a given desired value. The density
thus characterizes the size of the space the particles evolve in,
relative to the number of atoms N, which is fixed. In this work,
L is chosen so that the minimum image convention applies.

In the classical case, all Lennard-Jones systems are equiva-
lent up to a rescaling of energies and distances, thus the results
in reduced units are valid for all atomic species43 by inserting
the actual value for ε and r0. This is no longer true for the
quantum case as changing the atomic species (and in partic-
ular the nuclei mass) changes the importance of the NQEs.
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FIG. 10. Heat capacity for the 7-atom Krypton cluster with the direct
method. The points correspond to the temperatures at which the P =
2 heat capacity was computed.

This can be captured by the de Boer parameter49,50:

Λ =
λB

r0
. (56)

The parameter Λ is the ratio between an effective the Broglie
wavelength49,51 λB = h√

mε
, for particles of mass m and typical

energy ε , and a characteristic length r0 (of the order of the
interparticle distance). Hence, a high value of parameter Λ

(Λ ≳ 1) indicates that the quantum effects are important while
a small value (Λ ≪ 1) indicates that they are less important
and that a classical treatment of the system may be suitable.
As we can see from Eq. (56), the de Boer parameter depends
on the mass. Therefore, in the following, for each example,
we will fix h̄ = 1 (h = 2π) as well as the values of ε and r0
and change the mass to have the de Boer parameter of the
studied atomic species.

B. 7-atom Krypton cluster Kr7

We first consider a 7-atom Krypton cluster, which has a de
Boer parameter of52 Λ = 0.10. In that case, we take ε = 1,
r0 = 0.659 — this corresponds to the classical case studied in
Ref. 43 — and a box of size L = 6 (≈ 9.1r0) for all repli-
cas. From Eq. (56), this fixes m = h2/(Λ2r2

0ε) ≈ 9091 in
reduced units. In Figure 10, we represent the classical and
path-integral heat capacities as obtained with two replicas in
the direct method. We see that the two curves almost coin-
cide, within the statistical error. Hence, in this case, the clas-
sical treatment of the atoms is possible as using two replicas
gives sensibly the same results as using one. This behavior is
in accordance with the small de Boer parameter of Krypton.

The main peak in the graph at T ∼ 50K corresponds to the
vapor-liquid transition, while the shoulder at T ∼ 25K can be
associated to a liquid-like to solid-like state17. The fact that Cv
starts to increase again at low T for the path-integral curve is
related to the finite value of P, as noted ahead in the harmonic
oscillator case.
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C. 3-atom Neon cluster Ne3

We then consider the case of a 3-atom Neon cluster, for
which the de Boer parameter is52 Λ = 0.59. We take ε =
1, r0 = 1 and a box of size L = 6r0 for all replicas. Since
Λ = 0.59, we take m = 113. This system is used to study the
convergence of the heat capacity with the number of replicas
and with the number of live points, first with the direct method
and then with the extended method.

1. Direct method

First, for each P, we study the convergence with the number
of live points K, starting by53 K > 3NP (3NP is the number
of degrees of freedom). We then double this value until we
obtain two consecutive heat capacity curves that look similar,
that is, between which the MAPE (using the explorations with
higher K as reference) is less than 1.25% for P = 2, 1.5% for
P = 4 and 3% for P = 8. The highest K value considered is
K = 8000 for P = 2, K = 16000 for P = 4 and K = 32000 for
P = 8. Because for this system the exact analytical result is
unknown, we consider the curve with the most live points and
compare it to the curves obtained for smaller K. Again, we
use the MAPE, with the curve obtained with the highest K as
reference. We set a threshold of 5% for considering a curve
to be converged. The MAPE is represented in Figure 11 as a
function of K and for each value of P.

We can see that, for the same value of K, the error is higher
for higher P, as expected, as higher P results in a higher num-
ber of degrees of freedom. In each case, we take as the first
converged results the first point that is below the 5% thresh-
old (dashed line): K = 64 for P = 2, K = 1024 for P = 4 and
K = 16000 for P = 8. We denote by K5 the number of live
points needed for reducing the MAPE below the 5% thresh-
old for P replicas. The curves obtained for various K values
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FIG. 11. MAPE error for the 3-atom Neon cluster with P = 2,4,8
with the direct method. The black dashed line represents an error of
5%. The full lines are the linear log-log fits for each value of P. The
slopes are −0.377, −0.441 and −0.561 for P = 2, P = 4 and P = 8,
respectively.
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FIG. 12. Heat capacity for the 3-atoms Neon cluster. The explo-
rations with K = 8000, K = 16000, K = 32000 and K = 64000 are
represented for P = 2, P = 4, P = 8 and P = 16, respectively.

for P = 2,4,8 are given in the supplementary material (Fig-
ure 2). Finally, we expect the statistical uncertainty to scale
as 1/

√
(K) 15,54 and we indeed see that the MAPE decreases

with the value of K with a slope of ∼−0.5 in log-log scale.

The converged heat capacities for each P are represented in
Figure 12. For P = 2,4,8, we take the curves obtained with
the highest K. For P = 16, we use a large value of K such that
the curve coincides with the curve for P = 8 at high temper-
atures. We observe a shift of the transition peak, correspond-
ing to sublimation17, towards lower temperatures when using
P > 1 replicas: it goes from being at around 10K for P = 1 to
around 7K for P > 1. An analogous shift towards lower tem-
peratures is due to NQEs and has been observed in Ref. 55 for
the 13-atom Neon cluster. Furthermore, as for the harmonic
potential, we see that when increasing P, the curves tend to
coincide at a lower temperature for two consecutive values of
the number of replicas. As for the harmonic oscillator, there is
an increase of the heat capacity at very low T (we suspect that
this increase is caused by using a finite value of P). Indeed,
this behavior appears at lower temperature for increasing P,
as was the case for the harmonic potential.

To summarize, a system for which NQEs are more impor-
tant — high de Boer parameter, low temperature — requires a
larger number of replicas to recover the heat capacity curves.
We have also seen that the increase of the number of replicas
P leads to an increase of the number of live points K result-
ing in an increase of the computational cost of the exploration.
As this procedure must be repeated at each temperature within
the direct method, the total amount of computer time can be
considerable. In the next section, we will show how it could
be reduced by sampling the extended partition function in a
single exploration for all temperatures.
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FIG. 13. MAPE error for the 3-atoms Neon cluster with P = 2 for
different values of α . The black dashed line represents an error of
5%. The full lines are the linear log-log fits for each value of P. We
only show the fits obtained from the points for readability. The slopes
are −0.388, −0.416, −0.445, −0.453 and −0.454 for α = 0.7, α =
1, α = 1.4, α = 2.2 and α = 3.2, respectively.

2. Extended method

The curves obtained for the highest number of live points
(K = 8000 for P = 2, K = 16000 for P = 4 and K = 32000 for
P = 8) with the direct method are considered as a reference
for the heat capacity as obtained with the extended method.
Here, we do not consider the two lowest temperatures stud-
ied using the direct method as they exhibit this increase of
the heat capacity (likely due to using a finite value of P) and
are not converged (in terms of P). Moreover, we only adopt
the Gaussian window and not the rectangular one as we have
seen that the latter leads to larger fluctuations than the former.
Furthermore, we use the change of variables presented in Sec-
tion III B. In that case, choosing the bounds of the parameters
is more complex. For Lennard-Jones clusters, the size of the
box affects the density and hence the heat capacity curves: the
choice of the bounds is discussed in detail in Appendix E.

For the harmonic potential, the optimal value of α depends
on the example studied and number of live points K. There-
fore, first we look at the evolution of the MAPE with K for
different values of α for P = 2 (Figure 13), starting with the
same number of live points considered for the direct method,
which we then double in order to check the convergence. We
find that, for this range of K values, α = 0.7,1,1.4 give similar
errors, which are smaller than for higher values of α . Similar
curves for P = 4,8 are provided in the supplementary mate-
rial (Figure 3) Therefore, in the following, we use α = 1 for
P = 2,4 and α = 1.4 for P ≥ 8.

Secondly, we look at the MAPE for P = 2,4,8 to find the
minimum number of live points required for convergence. We
represent the error in Figure 14 for P = 2,4,8 to compare the
results obtained when using the direct and extended methods.
First, we can see that, with the extended method, we need
a larger K to go below the 5% error threshold, which is ex-
pected as we sample all temperatures at once. We therefore
need more points to sample the energy surface at all temper-
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FIG. 14. MAPE error for the 3-atoms Neon cluster with P = 2,4,8
with the direct and extended methods. The black dashed line repre-
sents an error of 5%. The full lines are the linear log-log fits. We
have α = 1 for P = 2,4 and α = 1.4 for P = 8. For the extended
method, the slopes of the fits are −0.416, −0.267 and −0.468 for
P = 2, P = 4 and P = 8, respectively. For the direct method, the
slopes are indicated in Figure 11.

atures. For the converged value of K, we again take the first
point below the 5% line, that is, K = 512 for P = 2, K = 8000
for P = 4 and K = 65536 for P = 8. We can see that we need
4 to 8 times more live points than with the direct method (for
which the values were K = 64, K = 1000 and K = 16000, re-
spectively). In Figure 15, we see that the extended method
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FIG. 15. Comparison of the heat capacity for the 3-atoms Neon clus-
ter between the direct method (DM) and the extended method (EM)
for P = 2. We have α = 1.

0 5 10 15 20
T (K)

0.00050

0.00075

0.00100

0.00125

0.00150

C v
 (e

V/
K)

Classical
P=2
P=4
P=8

FIG. 16. Heat capacity for the 3-atoms Neon cluster using the ex-
tended method. The explorations with K = 64000, K = 64000 and
K = 131072 are represented for P = 2, P = 4 and P = 8, respectively.

is able to recover the heat capacity curve, as found with the
direct method. More details are given in the supplementary
material (Figure 4). The two methods therefore converge to-
wards the same result. In Figure 16, the converged heat capac-
ities for each P are represented as obtained with the extended
method using the highest number of live points, similarly to
Figure 12 for the direct method. Furthermore, we see that, as
for the direct method, the MAPE decreases with the value of
K with a slope of ∼−0.5 in log-log scale, as expected.

Finally, we look at the number of energy evaluations made
in the direct and extended methods for P = 2,4,8 for the con-
verged explorations. The results are shown in Table I. We can
see that to obtain a converged curve, the extended method re-
quires fewer energy evaluations, which is expected as only one
exploration is needed. Furthermore, with the direct method,
we only access the sampled temperature while the extended

TABLE I. Total number of energy evaluations made by nested_fit
for the 3-atom Neon cluster for both methods in the converged cases
(according to MAPE with a threshold of 5%). In the direct case, 13
explorations were performed for P = 2,4 and 9 for P = 8. Twenty
cores were used for P = 2,4 and 64 for P = 8 (see main text).

Number of replicas Direct method Extended method
P = 2 2.6×107 1.4×107

P = 4 1.7×109 7.7×108

P = 8 5.8×1010 3.8×1010

method provides the thermodynamic properties for all tem-
perature within the studied range. Hence, if we want to com-
pute the thermodynamic properties at a new temperature, it is
simply a post-processing step for the extended method while
a new exploration must be performed for the direct method.

On this example, we have seen that the extended method
requires more live points than the direct method. We have
also seen that the optimal value of α depends on the example
studied.

D. 13-atom Neon cluster Ne13

We now turn to the 13-atom Neon cluster Ne13. This ex-
ample was previously studied in other works such as Refs.
55–57 using different sampling schemes (Gaussian wave-
packet Monte Carlo55, path-integral Monte-Carlo56 and the
use of effective potentials and the harmonic superposition
approximation57). We therefore compare our results using
nested sampling with those obtained by Refs. 55 and 56: in-
deed, both use the same implementation of the Lennard-Jones
potential.

In this case, the potential V in VP (Eq. (32)) is the potential
presented in Ref. 56, also used in Ref. 55:

V (x) =VLJ(x)+
N

∑
i=1

Vc(xi), (57)

where VLJ is the full Lennard-Jones potential from Eq. (55),
x the position vector of all N atoms, xi the position vector of
atom i and Vc a confining potential which has the following
form

Vc(xi) = ε

(
|xi −xc|

2r0

)20

(58)

with r0 and ε the Lennard-Jones parameters and xc =
1
N ∑

N
i=1xi the center of mass of the cluster. The confining po-

tential is used to prevent the atoms from leaving the cluster56

(in Ref. 55, the confining potential is replaced by the con-
straint that the initial positions have to be within a distance of
2r0 from the center of mass). We sample the extended parti-
tion function with α = 1. In that case, it is easier to choose
the bounds of the parameters than for Lennard-Jones clus-
ters without confining potential: we simply need the sampling
space to be large enough so that the confining potential pre-
vents the atoms from leaving the space. Hence, we take x̄ and



16

8 9 10
T (K)

60

80

100
C v

 (k
B
)

(1) quantum
(1) classical
P=2 extended
P=2 direct
P=4
P=8

7 8 9 10 11
T (K)

0

0.05

0.1

0.15

Sa
m

pl
in

g 
fre

qu
en

cy

0

10

20

30

40

Pr
io

r

42.5 40.0 37.5 35.0
Energy ( )

7

8

9

10

11

T 
(K

)
0.25

0.50

0.75

1.00

1.25

W
ei

gh
t

(1) Frantsuzov et al, The Journal of Chemical Physics, 2004

(a)

(b) (c)

FIG. 17. (a) Heat capacity for the 13-atoms Neon cluster. Comparison with the curve FC-VGW-MC in Ref. 55 using β̃ 8 as an extra parameter.
The curves for P = 2 and P = 4 are converged in K. The dashed red lines correspond to the first standard deviation for the P = 2 extended
run. For the direct runs, the error bars are smaller than the symbols. The statistical uncertainties were computed from four runs. (b) Sampling
frequency of the temperature for the 13-atom Neon cluster as yielded by the extended method using β̃ 8 as an extra parameter for P = 4. We
have T̃ = 1/(kBβ̃ ). The prior ∝ T̃−9 is indicated by the black curve. (c) Plot of the auxiliary temperature T̃ against the energy of the sampled
configurations for the P = 2 case using β̃ 8 as an extra parameter. The points are colored according to the weight given by the Gaussian
approximation with α = 5 and T = 9 K.

ỹi for i = 1, ..,P−1 in a box of side 6r0 centered in 0: we can
therefore have |xi−xc|= 6r0 which gives Vc(xi)≈ 3×109ε .
The classical curve, both from nested_fit and Ref. 56 are
given in the supplementary material (Figure 5)

We compare our results with the FC-VGW-MC (fully cou-
pled variational Gaussian wave-packet Monte Carlo) method
in Ref. 55 that was close to the results found in Ref. 56 —
in both cases, the error on the curve is around 1–2kB. In this
case, we put a uniform prior on β̃ 8. As discussed in Section
III B 1, the choice of the prior for β̃ has an impact on the sam-
pling distribution of the temperature. There we tested uniform
priors on β̃ 2s. For s < 4, low temperatures are poorly sampled
(we show the sampling distribution and resulting heat capac-
ity for s = 0.5 in Figure 6 in the supplementary material). For
s ≥ 4, low temperatures are sufficiently sampled and no ap-
parent bias appears in the statistical quantities (Figure 17 (b)).
In Figure 17 (c), we see that, when computing the thermody-
namic properties at 9 K, there is only a small area of signifi-

cant Gaussian weight with no sampled points (corresponding
to points with very low energies and low temperatures). This
is an improvement to the sampling obtained using a uniform
prior on β̃ where we have few points with an auxiliary tem-
perature below 8.5 K at low energies (supplementary material,
Figure 6 (c)). Looking to the heat capacity curves (Figure 17
(a)), we see that, with increasing P, the curves are closer to
the quantum one and farther from the classical one. However,
the curve of Ref. 55 is not fully recovered by the extended
method, even with P = 8. Higher values of P are therefore
needed. When P increases, the sampling frequency becomes
more unbalanced towards high temperatures. Possibly, a uni-
form prior over β̃ 2s (s > 4) will be necessary to sample the
space correctly for higher P. Finally, the statistical uncertain-
ties obtained for the direct and extended methods are of the
same order (the extended method uses double the number of
live points compared to the direct method).

With this example, we have seen that the prior we give to
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the auxiliary temperature greatly impacts the recovery of the
expected curve as the distribution of the sampled temperatures
depends on it. One therefore wants to choose this prior so that
the resulting distribution is flat or samples more the lower tem-
peratures, for which the NQEs are more important. Here, we
have tried different priors to obtain a satisfying distribution
but this can be quite computationally expensive as multiple
runs with different priors are needed. Note that to test differ-
ent priors, a small number of live points K can be used as we
expect that the sampling frequency of the auxiliary distribu-
tion should be similar than with a higher value of K.

Overall, this trial-and-error methodology has been used
throughout this paper to choose the parameters of the extended
method: prior, sampling window f and its parameter α . This
increases the computational cost of the analysis, as multiple
choices are studied. This is especially true for the choice of
the prior as a new exploration has to be performed for each
prior considered. Changing the window or α only requires to
repeat the post-processing step, which is much less computa-
tionally costly. In future works, to avoid this extra cost, a more
systematic procedure to fine tune these parameters should be
developed via an in-depth analysis of their influence on the
extended partition function method in other systems.

VI. CONCLUSION

In this work, we have applied the nested sampling algorithm
to evaluate the partition function with temperature-dependent
effective potentials. Due to the explicit dependence on the
temperature, the straightforward use of nested sampling im-
plies to run distinct simulations for each temperature, which
we refer to as the direct method. We have then proposed a
method that allows to perform only one exploration for all
temperatures, as in the classical case by focusing on the ex-
tended partition function. For this method, the partition func-
tion is computed over the configurational space as well as over
an auxiliary temperature, corresponding to the temperature
appearing in the potential. Hence, there is an extra parame-
ter to sample compared to the direct method. However, even
if one exploration of the extended partition function is more
expensive than the exploration of the original partition func-
tion at a single temperature, the former requires less energy
evaluations than the latter to compute the different thermody-
namic properties.

Specifically to this work, we considered temperature-
dependent potentials resulting from the use of the path-
integral formalism. The two methods have been compared
on two systems: the harmonic potential and Lennard-Jones
clusters. The direct method was first tested on the harmonic
potential, for which nested_fit was able to recover the ex-
pected analytical results. Moreover, it was used to study two
types of Lennard-Jones clusters: Kr7, which is almost classi-
cal, and Ne3 and Ne13, for which the nuclear quantum effects
are important. For the latters, we have studied the convergence
of the heat capacity with the number of live points K and the
number of replicas P. The number of live points K increases
swiftly with the number of replicas P.

We have seen that the extended method requires more live
points than the direct method to reach convergence but has
a smaller computational time, mostly due to only one explo-
ration being done instead of several. Furthermore, we have
seen that the extended method has additional parameters, such
as the size of the regularized Dirac function α and the choice
of the parameter (with uniform prior) to sample, that need to
be finely tuned to each case studied. Among these additional
parameters, some need only be chosen at the post-processing
step (α) while others need to be chosen before the nested sam-
pling exploration. In the former case, the same exploration
can be used for various values of the parameter. For the latter,
a quick exploration can be performed with a reduced number
of sampling points to select the optimal values.

In the future, the extended method with nested sampling
could be applied to realistic systems as it has the advantage of
requiring a single exploration to compute the thermodynamic
properties. Furthermore, we envisage strategies for the fine
tuning of the parameters of the extended method, which have
a non-negligible impact on the recovery of the curves such
as the prior distribution of the auxiliary temperature. Indeed,
for the moment, we have used a trial-and-error methodology
to choose the values of the parameters. Ideally, an automatic
tuning of the parameters could be done. To achieve this, a
more in-depth analysis of the method (both using exact results
on test systems and recursive strategies) is likely needed in the
future.

SUPPLEMENTARY MATERIAL

The supplementary material includes the discrete ex-
pressions of the internal energy and heat capacity for a
temperature-dependent potential for both the direct and ex-
tended methods; the sampling distribution of the temperature
T̃ for the explorations used in Figure 8; the heat capacity
curves obtained for different value of K for the Ne3 case for
both the direct and extended methods; the evolution of the
MAPE with K for different values of α for P = 4 and P = 8
for the Ne3 case; the classical heat capacity for Ne13, and a
study of the Ne13 case using the extended method with a uni-
form prior on β̃ .
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Appendix A: Nested sampling algorithm

1. Approaching the density of states

As presented in Section II B, at each iteration of the nested
sampling algorithm, we replace the point xold by the point
xnew verifying V (xnew) < V (xold). Therefore, at each iter-
ation ℓ, we want to uniformly sample the region of space
given by the energy constraint V (x) < V (xold). We denote
ρℓ the cumulative DOS of this region. Since the points are
uniformly distributed in the available space, their cumulative
densities of states are uniformly distributed over [0,1]10,58.
Therefore, ρℓ/ρℓ−1 follows a Beta(K,1) distribution — which
corresponds to the distribution of the outermost value of a
set of K samples following a Uniform([0,1]) distribution.
We thus estimate ρℓ/ρℓ−1 by its geometric mean9,10,59, i.e.,
ρℓ/ρℓ−1 ≈ e−1/K . Therefore

ρℓ ≈ e−ℓ/K . (A1)

We therefore have that wℓ, which approximates the DOS, is
written

wℓ =
1
2
(ρℓ−1 −ρℓ+1) =

1
2

(
e−

ℓ−1
K − e−

ℓ+1
K

)
. (A2)

2. Searching new points

V( )

V( ) ≤ V( )

V( ) > V( )

FIG. 18. Representation of slice sampling in 1D. The potential V is
represented in gray and the constraint given by V (xold) by the red
line. The point xnew is found by taking one of the live points (blue
point) and building an interval around it (blue interval). A new point
verifying the constraint is then sampled (green point).

Nested_fit, which is the program used here, uses the
slice sampling algorithm60,61 to find the new point xnew. This
method consists in uniformly choosing new exploration points
on a slice of the volume defined by the constraint V (x) <
V (xold). In the one-dimensional case, represented in Figure
18, one of the live points (blue point in Figure 18) is randomly
chosen and an interval, called slice, is built by randomly plac-
ing an interval of size κ around it and then extending this in-
terval on both sides — by intervals of size κ — until its limits
have an energy higher than xold or are out of the sampling
space (blue line in Figure 18). A point is then sampled from
within the slice and accepted if it satisfies the constraint (green
point in Figure 18) and rejected otherwise. In that case, an-
other point is sampled until an acceptable point is found. In a
multidimensional setting, a change of coordinates is first per-
formed to efficiently explore all the parameter space, even in
presence of strong correlation. This transformation is done
via the Cholesky transformation of the covariance matrix of
the live points of the considered step to transform the points
coordinates into new coordinates with dimensions ∼ O(1) in
all directions61. The one-dimensional algorithm is then ap-
plied recursively to the vectors of nbases randomly generated
orthonormal bases39. Hence, nbases ×3N steps are performed.
The steps can be performed in the transformed space (Slice
Sampling Transformed) or in the real space (Slice Sampling
Real)43. In this work, we take κ = 1 as it satisfies our require-
ments.
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Appendix B: Discrete expressions for the path-integral
internal energy and heat capacity

1. Direct method

We denote Ei(β j) =VP(x
(i),β j), Vi = V̄ (x(i)) and Qi(β j) =

Q(x(i),β j), i.e. Ei(β j) = Vi +Qi(β j), x(i) the position vector
at iteration i and β j = 1/(kBTj) the inverse temperature we
are considering. From Eqs. (17), (18), (20), (34) and (35), we
obtain the following expressions for the internal energy and
the heat capacity:

UP
c (β j) =

∑i wi(Vi −Qi(β j))e−β jEi(β j)

ZP
c (β j)

, (B1)

and

CP
v,c(β j) =

∑i wi(Vi −Qi(β j))
2e−β jEi(β j)

kBT 2
j ZP

c (β j)

−

(
∑i wi(Vi −Qi(β j))e−β jEi(β j)

)2

kBT 2
j ZP

c (β j)2

−2
∑i wiQi(β j)e−β jEi(β j)

TjZP
c (β j)

(B2)

for an exploration performed at given inverse temperature β j.

2. Extended partition function method

Within the extended partition function method, from Eqs.
(27), (28), (26), (34) and (35), the contribution of VP to the
internal energy and the heat capacity, respectively, read:

UP
c (β )≈

∑i wi(Vi −Qi) f (β − β̃i;α)e−βEi

ZP
c (β )

(B3)

and

CP
v,c(β ) ≈ −

(
∑i wi(Vi −Qi) f (β − β̃i;α)e−βEi

)2

kBT 2ZP
c (β )

2

+
∑i wi(Vi −Qi)

2 f (β − β̃i;α)e−βEi

kBT 2ZP
c (β )

−2
∑i wiQi f (β − β̃i;α)e−βEi

T ZP
c (β )

, (B4)

with wi as in Eq. (11) and β̃i and Ei = Vi +Qi the inverse
temperature and energy sampled at iteration i. The terms
Ei = E(x(i), β̃i) and Qi = Q(x(i), β̃i) are computed at inverse
temperature β̃i for the position vector x(i).

Appendix C: Derivation of the exact expressions for the
path-integral harmonic potential

In this appendix, we derive the exact expressions for the
heat capacity of the path-integral harmonic potential with P =

2 and P = 4. Since all dimensions are separable in Eq. (43),
we compute the expressions for one particle in one dimension
and multiply the results by 3. We do not use reduced units in
this section.

1. Exact case with P = 2 replicas

Making the change of variables y1 =x1−x2 and y2 =x1+
x2, we have that

V2(x1,x2,β ) =
2m

h̄2
β 2

(x1 −x2)
2 +

mω2

4
(x2

1 +x2
2) (C1)

=

(
2m

h̄2
β 2

+
mω2

8

)
y2

1 +
mω2

8
y2

2 (C2)

=V2(y1,y2,β ). (C3)

Therefore, the contribution of V2 to the partition function
(Eq. (37)) is:

ZP=2
c (β )

=
∫∫

R2
dx1dx2e−βV2(x1,x2,β ) (C4)

=
1
2

∫∫
R2

dy1dy2 exp
(
−β

((
2m

h̄2
β 2

+
mω2

8

)
y2

1 +
mω2

8
y2

2

))
(C5)

=
1
2

√√√√ π

β

(
2m

h̄2
β 2 +

mω2

8

)√ 8π

βmω2 . (C6)

Consequently, we have

CP=2
v,c (β ) = kB −

4 (kBT )4

h̄4 + 3
4
(kBT )2ω2

h̄2(
(kBT )2
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8

)2 kB (C7)

and

CP=2
v (β ) = 2kB −

4 (kBT )4

(h̄ω)4 + 3
4
(kBT )2

(h̄ω)2(
2 (kBT )2

(h̄ω)2 + 1
8

)2 kB. (C8)

2. Exact case with P = 4 replicas

With the change of variables y1 = x1 −x2 −x3 +x4, y2 =
x1 +x2 −x3 −x4, y3 = x1 −x2 +x3 −x4 and y4 = x1 +
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x2 +x3 +x4, we have that

V4(x1,x2,x3,x4,β )
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=V4(y1,y2,y3,y4,β ). (C11)

Hence
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where C′ is a constant that is independent of β . Furthermore,
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and
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Appendix D: Computational details

The parameters used for the different applications presented
in this work are given in Tables II for the harmonic potential
with the direct method, III for the harmonic potential with
the extended method, IV for Lennard-Jones clusters with the
direct method and V for Lennard-Jones clusters with the ex-
tended method.

Appendix E: Choice of the box size

When presenting the change of variables in Section III B,
we mentioned that it makes the choice of the boundaries given
to the replicas (ỹi, 1 ≤ i ≤ P−1) in nested_fit more com-
plex. There are multiple ways to choose those boundaries,
noting a the size of the interval:

TABLE II. Computational parameters for the quantum harmonic po-
tential with the direct method.

K nbases 1/(kBβs) (kBT/(h̄ω))
Evolution 1000 1 0.01with P
Comparison 25000 2 0.01with extended method

TABLE III. Computational parameters for the quantum harmonic po-
tential with the extended method.

K nbases
1/(kBβs) Smeared-delta Explored

(kBT/(h̄ω)) function + α parameter
Choosing See 2 0.01 See

1/β̃
α and f text text
Evolution See 2 0.01 Gaussian See
with P text α → see text text
Comparison

50000 2 0.01 Gaussian
1/β̃with direct

α = 7.1method

TABLE IV. Computational parameters for the quantum Lennard-
Jones clusters with the direct method.

K nbases 1/(kBβs) (kBT/ε)
Ne3 See text 5 0.01
Kr7 2000 (P = 1), 5000 (P = 2) 4 0.01
Ne13 16000 3 0.01

TABLE V. Computational parameters for the quantum Lennard-
Jones clusters with the extended method.

K nbases
1/(kBβs) Smeared-delta Explored
(kBT/ε) function + α parameter

Ne3 See text 2 0.01
Gaussian

β̃α = 1 (P = 2,4)
α = 1.4 (P = 8,16)

Ne3 See text 5 0.01 / β̃(Table I)

Ne13 See text 3 0.01 Gaussian
β̃ 8

α = 1

1. Choosing a so that it corresponds to the size of the box
in real space, i.e., aλP = L.

2. In a similar way, choosing a so that aλth = L where

λth =

√
2π h̄2

β

m
(E1)

is the de Broglie thermal wavelength which gives infor-
mation about the delocalization of the particle62.

3. If we look at the transformed potential, we have that the
contribution to the partition function of the interaction
between replicas is exp

(
−β

2 (ỹi − ỹi+1)
2
)

which is a
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Gaussian function with standard deviation

σ =

√
1
β
. (E2)

Hence, we choose L to be between 3σ to 5σ .

In the three cases, the parameters depend on the temper-
ature. In the first two cases, the box is bigger for low tem-
peratures and smaller for high temperatures at constant a: we
choose a at the lowest temperature, so that the replicas al-
ways stay in the box at any temperature. For the last case, on
the contrary, the box is bigger for high temperatures than for
low temperatures; we thus take the box corresponding to the
highest temperatures. Figure 19 presents the curves obtained
for the P = 8 case using λth (Eq. (E1)) and λP (Eq. (39)) with
T = 0.01kBT/ε , and 3 and 5 times the Gaussian standard devi-
ation with T = 0.35kBT/ε . We clearly see that, when we take
the lowest temperature with λP and λth, the heat capacity is not
correctly recovered for the higher range of temperatures, the
volume explored in that case probably not correctly represent-
ing the energy surface. This effect is less visible for lower P
as the parameter space is smaller. Choosing the Gaussian with
3σ or 5σ recovers the reference curve quite well. The lowest
temperature point is of little interest as it is at a non-converged
temperature (in terms of P). Hence, we use a box of size 3σ

or 5σ . For P = 2 and P = 4, we use λth with T = 0.01kBT/ε ,
as this choice only becomes visibly inadequate for P ≥ 8, for
which we use a 3σ box.

0.1 0.2 0.3
Temperature (kBT/ )

5

10

15

20

C v
 (k

B
)

Direct method
th, T=0.01
P, T=0.01

3 , T=0.35
5 , T=0.35

FIG. 19. Heat capacity for the 3-atoms Neon cluster with P= 8 repli-
cas and K = 32768 live points. Comparison of the different choices
for the size of the box. The reference curve in dashed blue was ob-
tained with the direct method with the highest K. We do not consider
temperature below 0.075 kBT

ε
as they are not converged with P. The

quantities λth, λP and σ are defined in Eqs. (E1), (39) and (E2), re-
spectively.
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