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PARAOPT: A PARAREAL ALGORITHM FOR OPTIMALITY
SYSTEMS\ast 
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Abstract. The time parallel solution of optimality systems arising in PDE constrained opti-
mization could be achieved by simply applying any time parallel algorithm, such as Parareal, to solve
the forward and backward evolution problems arising in the optimization loop. We propose here a
different strategy by devising directly a new time parallel algorithm, which we call ParaOpt, for the
coupled forward and backward nonlinear partial differential equations. ParaOpt is inspired by the
Parareal algorithm for evolution equations and thus is automatically a two-level method. We provide
a detailed convergence analysis for the case of linear parabolic PDE constraints. We illustrate the
performance of ParaOpt with numerical experiments for both linear and nonlinear optimality systems.
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1. Introduction. Time parallel time integration has become an active research
area over the last decade; there is even an annual workshop now dedicated to this
topic called the PinT (Parallel in Time) workshop, which started with the first such
dedicated workshop at the USI in Lugano in June 2011. The main reason for this
interest is the advent of massively parallel computers [5] with so many computing cores
that spatial parallelization of an evolution problem saturates long before all cores have
been effectively used. There are four classes of such algorithms: methods based on
multiple shooting leading to the Parareal algorithm [45, 2, 30, 33, 20, 11, 18, 40],
methods based on waveform relaxation [32, 8, 19, 21, 13, 14, 31, 39, 1, 15], methods
based on multigrid [27, 34, 53, 28, 6, 17, 7, 41, 4], and direct time parallel methods
[42, 49, 50, 35, 10]; for a review of the development of PinT methods, see [9, 46] and
the references therein.

A natural area where this type of parallelization could be used effectively is in
PDE constrained optimization on bounded time intervals, when the constraint is a
time-dependent PDE. In these problems, calculating the descent direction within the
optimization loop requires solving both a forward and a backward evolution problem,
so one could directly apply time parallelization techniques to each of these solves
[23, 24, 25, 26]. Parareal can also be useful in one-shot methods where the precon-
ditioning operator requires the solution of initial value problems; see, e.g., [52]. An-
other method, which has been proposed in [36, 48] in the context of quantum control,
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consists of decomposing the time interval into subintervals and defining intermediate
states at subinterval boundaries; this allows one to construct a set of independent
optimization problems associated with each subinterval in time. Each iteration of
the method then requires the solution of these independent subproblems in parallel,
followed by a cheap update of the intermediate states. In this paper, we propose yet
another approach based on a fundamental understanding of the Parareal algorithm
invented in [33] as a specific approximation of a multiple shooting method [20]. We
construct a new time parallel method called ParaOpt for solving directly the coupled
forward and backward evolution problems arising in the optimal control context. Our
approach is related to the multiple shooting paradigm [43], where the time horizon is
decomposed into non-overlapping subintervals, and we solve for the unknown interface
state and adjoint variables using an inexact Newton method so that the trajectories
are continuous across subintervals. Additionally, a Parareal-like approximation is used
to obtain a cheap approximate Jacobian for the Newton solve. There are two poten-
tial benefits to our approach: first, it is known that for some control problems, long
time horizons lead to difficulties in convergence for the optimization loop. Therefore,
a multiple shooting approach allows us to deal with local subproblems on shorter
time horizons, where we obtain faster convergence. Such convergence enhancement
has also been observed in [3, 37, 38] and also more recently in [48]. Second, if we use
Parareal to parallelize the forward and backward sweeps, then the speedup ratio will
be bounded above by L/K, where L is the number of subintervals and K is the num-
ber of Parareal iterations required for convergence. For many problems, especially the
nondiffusive ones like the Lotka--Volterra problem we consider in section 4.2, this ratio
does not go above 4--5; this limits the potential speedup that can be obtained from
this classical approach. By decomposing the control problem directly and conserving
the globally coupled structure of the problem, we obtain higher speedup ratios, closer
to ones that are achievable for two-level methods for elliptic problems.

Our paper is organized as follows. In section 2, we present our PDE constrained
optimization model problem and present ParaOpt for its solution. In section 3 we give
a complete convergence analysis of ParaOpt for the case when the PDE constraint
is linear and of parabolic type. We then illustrate the performance of ParaOpt by
numerical experiments in section 4, for both linear and nonlinear problems. We
present our conclusions and an outlook on future work in section 5.

2. ParaOpt: A two-grid method for optimal control. Consider the optimal
control problem associated with the cost functional

J(c) =
1

2
\| y(T ) - ytarget\| 2 +

\alpha 

2

\int T

0

\| c(t)\| 2dt,

where \alpha > 0 is a fixed regularization parameter, ytarget is a target state, and the
evolution of the state function y: [0, T ] \rightarrow \BbbR n is described by the nonlinear equation

(2.1) \.y(t) = f(y(t)) + c(t),

with initial condition y(0) = yinit, where c(t) is the control, which is assumed to enter
linearly in the forcing term. The first-order optimality condition then reads

(2.2) \.y = f(y) - \lambda 

\alpha 
, \.\lambda =  - (f \prime (y))T\lambda ,

with the final condition \lambda (T ) = y(T ) - ytarget; see [16] for a detailed derivation.
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We now introduce a parallelization algorithm for solving the coupled problem
(2.1)--(2.2). The approach we propose follows the ideas of the Parareal algorithm,
combining a sequential coarse integration on [0, T ] and parallel fine integration on
subintervals.

Consider a subdivision of [0, T ] = \cup L - 1
\ell =0 [T\ell , T\ell +1] and two sets of intermediate

states (Y \ell )\ell =0,...,L and (\Lambda \ell )\ell =1,...,L corresponding to approximations of the state y
and the adjoint state \lambda at times T0, . . . , TL and T1, . . . , TL, respectively.

We denote by P and Q the nonlinear solution operators for the boundary value
problem (2.2) on the subinterval [T\ell , T\ell +1] with initial condition y(Tl) = Y l and final
condition \lambda (T\ell +1) = \Lambda \ell +1, defined so that P propagates the state y forward to T\ell +1

and Q propagates the adjoint backward to T\ell :

(2.3)

\biggl( 
y(T\ell +1)
\lambda (T\ell )

\biggr) 
=

\biggl( 
P (Y \ell ,\Lambda \ell +1)
Q(Y \ell ,\Lambda \ell +1)

\biggr) 
.

Using these solution operators, we can write the boundary value problem as a system
of subproblems, which have to satisfy the matching conditions

(2.4)

Y 0  - yinit = 0,

Y 1  - P (Y 0,\Lambda 1) = 0, \Lambda 1  - Q(Y 1,\Lambda 2) = 0,

Y 2  - P (Y 1,\Lambda 2) = 0, \Lambda 2  - Q(Y 2,\Lambda 3) = 0,

...
...

Y L  - P (Y L - 1,\Lambda L) = 0, \Lambda L  - Y L + ytarget = 0.

This nonlinear system of equations can be solved using Newton's method. Collecting
the unknowns in the vector (Y T ,\Lambda T ) := (Y T

0 , Y
T
1 , . . . , Y

T
L,\Lambda 

T
1 ,\Lambda 

T
2 , . . . ,\Lambda 

T
L), we obtain

the nonlinear system

\scrF 
\biggl( 

Y
\Lambda 

\biggr) 
:=

\left(                     

Y 0  - yinit
Y 1  - P (Y 0,\Lambda 1)

Y 2  - P (Y 1,\Lambda 2)

...

Y L  - P (Y L - 1,\Lambda L)

\Lambda 1  - Q(Y 1,\Lambda 2)

\Lambda 2  - Q(Y 2,\Lambda 3)

...

\Lambda L  - Y L + ytarget

\right)                     

= 0.

Using Newton's method to solve this system gives the iteration

(2.5) \scrF \prime 
\biggl( 

Y n

\Lambda n

\biggr) \biggl( 
Y n+1  - Y n

\Lambda n+1  - \Lambda n

\biggr) 
=  - \scrF 

\biggl( 
Y n

\Lambda n

\biggr) 
,

where the Jacobian matrix of \scrF is given by
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(2.6) \scrF \prime 
\biggl( 
Y
\Lambda 

\biggr) 

=

\left(           

I
 - Py(Y 0,\Lambda 1) I  - P\lambda (Y 0,\Lambda 1)

. . .
. . .

. . .

 - Py(Y L - 1,\Lambda L) I  - P\lambda (Y L - 1,\Lambda L)
 - Qy(Y 1,\Lambda 2) I  - Q\lambda (Y 1,\Lambda 2)

. . .
. . .

. . .

 - Qy(Y L - 1,\Lambda L) I  - Q\lambda (Y L - 1,\Lambda L)
 - I I

\right)           
.

Using the explicit expression for the Jacobian gives us the componentwise linear sys-
tem we have to solve at each Newton iteration:

(2.7)
Y n+1

0 =yinit,

Y n+1
1 = - P (Y n

0 ,\Lambda 
n
1 ) + Py(Y

n
0 ,\Lambda 

n
1 )(Y

n+1
0  - Y n

0 ) + P\lambda (Y
n
0 ,\Lambda 

n
1 )(\Lambda 

n+1
1  - \Lambda n

1 ),

Y n+1
2 = - P (Y n

1 ,\Lambda 
n
2 ) + Py(Y

n
1 ,\Lambda 

n
2 )(Y

n+1
1  - Y n

1 ) + P\lambda (Y
n
1 ,\Lambda 

n
2 )(\Lambda 

n+1
2  - \Lambda n

2 ),

...

Y n+1
L = - P (Y n

L - 1,\Lambda 
n
L) + Py(Y

n
L - 1,\Lambda 

n
L)(Y

n+1
L - 1  - Y n

L - 1) + P\lambda (Y
n
L - 1,\Lambda 

n
L)(\Lambda 

n+1
L  - \Lambda n

L),

\Lambda n+1
1 =Q(Y n

1 ,\Lambda 
n
2 ) +Q\lambda (Y

n
1 ,\Lambda 

n
2 )(\Lambda 

n+1
2  - \Lambda n

2 ) +Qy(Y
n
1 ,\Lambda 

n
2 )(Y

n+1
1  - Y n

1 ),

\Lambda n+1
2 =Q(Y n

2 ,\Lambda 
n
3 ) +Q\lambda (Y

n
2 ,\Lambda 

n
3 )(\Lambda 

n+1
3  - \Lambda n

3 ) +Qy(Y
n
2 ,\Lambda 

n
3 )(Y

n+1
2  - Y n

2 ),

...

\Lambda n+1
L - 1=Q(Y n

L - 1,\Lambda 
n
L) +Q\lambda (Y

n
L - 1,\Lambda 

n
L)(\Lambda 

n+1
L  - \Lambda n

L) +Qy(Y
n
L - 1,\Lambda 

n
L)(Y

n+1
L - 1  - Y n

L - 1),

\Lambda n+1
L =Y n+1

L  - ytarget.

Note that this system is not triangular: the Y n+1
\ell are coupled to the \Lambda n+1

\ell and vice
versa, which is clearly visible in the Jacobian in (2.6). This is in contrast to the initial
value problem case, where the application of multiple shooting leads to a block lower
triangular system.

The Parareal approximation idea is to replace the derivative term by a difference
computed on a coarse grid in (2.7), i.e., to use the approximations

(2.8)

Py(Y
n
\ell  - 1,\Lambda 

n
\ell )(Y

n+1
\ell  - 1  - Y n

\ell  - 1) \approx PG(Y n+1
\ell  - 1 ,\Lambda 

n
\ell ) - PG(Y n

\ell  - 1,\Lambda 
n
\ell ),

P\lambda (Y
n
\ell  - 1,\Lambda 

n
\ell )(\Lambda 

n+1
\ell  - \Lambda n

\ell ) \approx PG(Y n
\ell  - 1,\Lambda 

n+1
\ell ) - PG(Y n

\ell  - 1,\Lambda 
n
\ell ),

Q\lambda (Y
n
\ell  - 1,\Lambda 

n
\ell )(\Lambda 

n+1
\ell  - \Lambda n

\ell ) \approx QG(Y n
\ell  - 1,\Lambda 

n+1
\ell ) - QG(Y n

\ell  - 1,\Lambda 
n
\ell ),

Qy(Y
n
\ell  - 1,\Lambda 

n
\ell )(Y

n+1
\ell  - 1  - Y n

\ell  - 1) \approx QG(Y n+1
\ell  - 1 ,\Lambda 

n
\ell ) - QG(Y n

\ell  - 1,\Lambda 
n
\ell ),

where PG and QG are propagators obtained from a coarse discretization of the subin-
terval problem (2.3), e.g., by using only one time step for the whole subinterval. This
is certainly cheaper than evaluating the derivative on the fine grid; the remaining
expensive fine grid operations P (Y n

\ell  - 1,\Lambda 
n
\ell ) and Q(Y n

\ell  - 1,\Lambda 
n
\ell ) in (2.7) can now all be

performed in parallel. However, since (2.7) does not have a block triangular struc-
ture, the resulting nonlinear system would need to be solved iteratively. Each of
these outer iterations is now very expensive, since one must evaluate the propagators
PG(Y n+1

\ell  - 1 ,\Lambda n
\ell ), etc., by solving a coupled nonlinear local control problem. This is

in contrast to initial value problems, where the additional cost of solving nonlinear
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local problems is justified, because the block lower triangular structure allows one to
solve the outer problem by forward substitution, without the need to iterate. In order
to reduce the cost of computing outer residuals, our idea is not to use the Parareal
approximation (2.8) but to use the so-called derivative Parareal variant, where we
approximate the derivative by effectively computing it for a coarse problem (see [12]),

(2.9)

Py(Y
n
\ell  - 1,\Lambda 

n
\ell )(Y

n+1
\ell  - 1  - Y n

\ell  - 1) \approx PG
y (Y n

\ell  - 1,\Lambda 
n
\ell )(Y

n+1
\ell  - 1  - Y n

\ell  - 1),

P\lambda (Y
n
\ell  - 1,\Lambda 

n
\ell )(\Lambda 

n+1
\ell  - \Lambda n

\ell ) \approx PG
\lambda (Y n

\ell  - 1,\Lambda 
n
\ell )(\Lambda 

n+1
\ell  - \Lambda n

\ell ),
Q\lambda (Y

n
\ell  - 1,\Lambda 

n
\ell )(\Lambda 

n+1
\ell  - \Lambda n

\ell ) \approx QG
\lambda (Y

n
\ell  - 1,\Lambda 

n
\ell )(\Lambda 

n+1
\ell  - \Lambda n

\ell ),
Qy(Y

n
\ell  - 1,\Lambda 

n
\ell )(Y

n+1
\ell  - 1  - Y n

\ell  - 1) \approx QG
y (Y

n
\ell  - 1,\Lambda 

n
\ell )(Y

n+1
\ell  - 1  - Y n

\ell  - 1).

The advantage of this approximation is that the computation of PG
y , PG

\lambda , etc., only
involves linear problems. Indeed, for a small perturbation \delta y in Y\ell  - 1, the quantities
PG
y (Y \ell  - 1,\Lambda \ell )\delta y and QG

y (Y\ell  - 1,\Lambda \ell )\delta y can be computed by discretizing and solving the
coupled differential equations obtained by differentiating (2.2). If (y, \lambda ) is the solution
of (2.2) with y(T\ell  - 1) = Y \ell  - 1 and \lambda (T\ell ) = \Lambda \ell , then solving the linear derivative system

\.z = f \prime (y)z + \mu /\alpha , \.\mu =  - f \prime (y)T\mu  - H(y, z)T\lambda ,(2.10)

z(T\ell  - 1) = \delta y, \mu (T\ell ) = 0

on a coarse time grid leads to

z(T\ell ) = PG
y (Y \ell  - 1,\Lambda \ell )\delta y, \mu (T\ell  - 1) = QG

y (Y \ell  - 1,\Lambda \ell )\delta y,

where H(y, z) = limr\rightarrow 0
1
r (f

\prime (y + rz) - f \prime (y)) is the Hessian of f multiplied by z and
is thus linear in z. Similarly, to compute PG

\lambda (Y\ell  - 1,\Lambda \ell )\delta \lambda and QG
\lambda (Y\ell  - 1,\Lambda \ell )\delta \lambda for a

perturbation \delta \lambda in \Lambda \ell , it suffices to solve the same ODE system as (2.10), except the
end-point conditions must be replaced by z(T\ell  - 1) = 0, \mu (T\ell ) = \delta \lambda . Therefore, if
GMRES is used to solve the Jacobian system (2.5), then each matrix-vector multi-
plication requires only the solution of coarse, linear subproblems in parallel, which is
much cheaper than solving coupled nonlinear subproblems in the standard Parareal
approximation (2.8).

To summarize, our new ParaOpt method consists of solving for n = 0, 1, 2, . . . the
system

(2.11) \scrJ G

\biggl( 
Y n

\Lambda n

\biggr) \biggl( 
Y n+1  - Y n

\Lambda n+1  - \Lambda n

\biggr) 
=  - \scrF 

\biggl( 
Y n

\Lambda n

\biggr) 
for Y n+1 and \Lambda n+1, where

(2.12) \scrJ G

\biggl( 
Y
\Lambda 

\biggr) 

=

\left(            

I
 - PG

y (Y 0,\Lambda 1) I  - PG
\lambda (Y 0,\Lambda 1)

. . .
. . .

. . .

 - PG
y (Y L - 1,\Lambda L) I  - PG

\lambda (Y L - 1,\Lambda L)

 - QG
y (Y 1,\Lambda 2) I  - QG

\lambda (Y 1,\Lambda 2)

. . .
. . .

. . .

 - QG
y (Y L - 1,\Lambda L) I  - QG

\lambda (Y L - 1,\Lambda L)
 - I I

\right)            D
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is an approximation of the true Jacobian in (2.6). If the system (2.11) is solved using
a matrix-free method, the action of the subblocks PG

y , PG
\lambda , etc., can be obtained by

solving coarse linear subproblems of the type (2.10). Note that the calculation of \scrJ G

times a vector (without preconditioning) is embarrassingly parallel, since it requires
only the solution of local subproblems of the type (2.10), with no additional coupling
to other subintervals. Global communication is required in only two places: within
the Krylov method itself (e.g., when calculating inner products) and possibly within
the preconditioner. The design of an effective preconditioner is an important and
technical topic that will be the subject of a future paper. Of course, for problems
with small state spaces (e.g., for ODE control problems), direct methods may also be
used, once the coefficients of \scrJ G are calculated by solving (2.10) for suitable choices
of \delta y and \delta \lambda .

Regardless of how (2.11) is solved, since we use an approximation of the Jacobian,
the resulting inexact Newton method will no longer converge quadratically but only
linearly; this is true even in the case where the differential equation is linear. In the
next section, we will analyze in detail the convergence of the method for the case of
a diffusive linear problem.

3. Implicit Euler for the diffusive linear case. We now consider the method
in a linear and discrete setting. More precisely, we focus on a control problem

(3.1) \.y(t) = Ay(t) + c(t),

where A is a real, symmetric matrix with negative eigenvalues. The matrix A can,
for example, be a finite difference discretization of a diffusion operator in space. We
will consider a discretize-then-optimize strategy, so the analysis that follows is done
in a discrete setting.

3.1. Discrete formulation. To fix ideas, we choose the implicit Euler1 method
for the time discretization; other discretizations will be studied in a future paper. Let
M \in \BbbN , and \delta t = T/M . Then the implicit Euler method gives2

(3.2) yn+1 = yn + \delta t(Ayn+1 + cn+1),

or, equivalently,
yn+1 = (I  - \delta tA) - 1(yn + \delta tcn+1).

We minimize the cost functional

J\delta t(c) =
1

2
\| yM  - ytarget\| 2 +

\alpha 

2
\delta t

M - 1\sum 
n=0

\| cn+1\| 2.

For the sake of simplicity, we keep the notation y, \lambda , and c for the discrete vari-
ables, that is, y = (yn)n=0,...,M , \lambda = (\lambda n)n=0,...,M , and c = (cn)n=0,...,M . Introducing
the Lagrangian (see [29, 16] and also [22, 51, 47] for details)

\scrL \delta t(y, \lambda , c) = J\delta t(c) - 
M - 1\sum 
n=0

\bigl\langle 
\lambda n+1, yn+1  - (I  - \delta tA) - 1(yn + \delta tcn+1)

\bigr\rangle 
,

1We use the term ``implicit Euler"" instead of ``backward Euler"" because the method is applied
forward and backward in time.

2If the ODE system contains mass matrices arising from a finite element discretization, e.g.,
\scrM yn+1 = \scrM yn + \delta t(Ayn+1 + \scrM cn+1), then one can analyze ParaOpt by introducing the change
of variables \=yn := \scrM 1/2yn, \=cn := \scrM 1/2cn, so as to obtain \=yn+1 = \=yn + \delta t( \=A\=yn+1 + \=cn+1), with
\=A := \scrM  - 1/2A\scrM  - 1/2. Since \=A is symmetric positive definite whenever A is, the analysis is identical
to that for (3.2), even though one would never calculate \scrM 1/2 and \=A in actual computations.
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the optimality systems reads

y0 = yinit,(3.3)

yn+1 = (I  - \delta tA) - 1(yn + \delta tcn+1), n = 0, 1, . . . ,M  - 1,(3.4)

\lambda M = yM  - ytarget,(3.5)

\lambda n = (I  - \delta tA) - 1\lambda n+1, n = 0, 1, . . . ,M  - 1,(3.6)

\alpha cn+1 =  - (I  - \delta tA) - 1\lambda n+1, n = 0, 1, . . . ,M  - 1,(3.7)

where we used the fact that A is symmetric. If A = V DV T is the eigenvalue decom-
position of A, then the transformation yn \mapsto \rightarrow V T yn, \lambda n \mapsto \rightarrow V T\lambda n, cn \mapsto \rightarrow V T cn allows
us to diagonalize (3.3)--(3.7) and obtain a family of decoupled optimality systems of
the form

y0 = yinit,(3.8)

yn+1 = (I  - \sigma \delta t) - 1(yn + \delta tcn+1), n = 0, 1, . . . ,M  - 1,(3.9)

\lambda M = yM  - ytarget,(3.10)

\lambda n = (I  - \sigma \delta t) - 1\lambda n+1, n = 0, 1, . . . ,M  - 1,(3.11)

\alpha cn+1 =  - (I  - \sigma \delta t) - 1\lambda n+1, n = 0, 1, . . . ,M  - 1,(3.12)

where the yn, \lambda n, and cn are now scalars, and \sigma < 0 is an eigenvalue of A. This
motivates us to study the scalar Dahlquist problem

\.y(t) = \sigma y(t) + c(t),

where \sigma is a real, negative number. For the remainder of this section, we will study
the ParaOpt algorithm applied to the scalar variant (3.8)--(3.12), particularly its con-
vergence properties as a function of \sigma .

Let us now write the linear ParaOpt algorithm for (3.8)--(3.12) in matrix form. For
the sake of simplicity, we assume that the subdivision is uniform, that is, T\ell = \ell \Delta T ,
where N satisfies \Delta T = N\delta t and M = NL; see Figure 1. We start by eliminating
interior unknowns, i.e., ones that are not located at the time points T0, T1, . . . TL. For
0 \leq n1 \leq n2 \leq M , (3.9) and (3.12) together imply

yn2
= (1 - \sigma \delta t)n1 - n2yn1

 - \delta t

n2 - n1 - 1\sum 
j=0

(1 - \sigma \delta t)n1 - n2+jcn1+j+1

= (1 - \sigma \delta t)n1 - n2yn1  - 
\delta t

\alpha 

n2 - n1 - 1\sum 
j=0

(1 - \sigma \delta t)n1 - n2+j - 1\lambda n1+j+1.(3.13)

On the other hand, (3.11) implies

(3.14) \lambda n1+j = (1 - \sigma \delta t)n1 - n2+j\lambda n2
.

T0 T1 TL = TTL - 1T\ell 

Y0 = yinit Y1 = yN YL = yLNY\ell = y\ell N YL - 1 = y(L - 1)N

\Lambda 1 = \lambda N \Lambda L = \lambda LN\Lambda L - 1 = \lambda (L - 1)N\Lambda \ell = \lambda \ell N

Fig. 1. Notation associated with the parallelization setting.
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Combining (3.13) and (3.14) then leads to

(3.15) yn2
= (1 - \sigma \delta t)n1 - n2yn1

 - \delta t

\alpha 

\left[  n2 - n1 - 1\sum 
j=0

(1 - \sigma \delta t)2(n1 - n2+j)

\right]  \lambda n2
.

Setting n1 = (\ell  - 1)N and n2 = \ell N , and using the notation Y\ell = y\ell N , \Lambda \ell = \lambda \ell N (see
Figure 1), we obtain from (3.14) and (3.15) the equations

Y0 = yinit,

 - \beta \delta tY\ell  - 1 + Y\ell +
\gamma \delta t
\alpha 

\Lambda \ell = 0, 1 \leq \ell \leq M,

\Lambda \ell  - 1  - \beta \delta t\Lambda \ell = 0, 0 \leq \ell \leq M  - 1,

Y\ell + \Lambda \ell = ytarget,

where

\beta \delta t := (1 - \sigma \delta t) - \Delta T/\delta t,(3.16)

\gamma \delta t := \delta t

N - 1\sum 
j=0

(1 - \sigma \delta t)2(j - N) =
\beta 2
\delta t  - 1

\sigma (2 - \sigma \delta t)
.(3.17)

In matrix form, this can be written as\left(                

1 0

 - \beta \delta t
. . . \gamma \delta t/\alpha 

. . .

. . .
. . .

. . . 0
 - \beta \delta t 1 \gamma \delta t/\alpha 

1  - \beta \delta t

. . .
. . .

. . .  - \beta \delta t

 - 1 1

\right)                

\left(                

Y0

...

...
YL

\Lambda 1

...

...
\Lambda L

\right)                
=

\left(               

yinit
0

...

0
 - ytarget

\right)               
or, in a more compact form,

(3.18) A\delta tX = b.

Note that this matrix has the same structure as the Jacobian matrix \scrF in (2.6), except
that Q\lambda = 0 for the linear case. In order to solve (3.18) numerically, we consider a
second time step \Delta t such that \delta t \leq \Delta t \leq \Delta T . In other words, for each subinterval
of length \Delta T , the derivatives of the propagators Py, Qy, P\lambda , Q\lambda are approximated
using a coarser time discretization with time step \Delta t \leq \Delta T . The optimality system
for this coarser time discretization has the form

A\Delta t
\^X = b,

where A\Delta t has the same form as above, except that \beta \delta t and \gamma \delta t are replaced by
\beta \Delta t and \gamma \Delta t, i.e., the values obtained from the formulas (3.16) and (3.17) when one
replaces \delta t by \Delta t. Then the ParaOpt algorithm (2.11)--(2.12) for the linear Dahlquist
problem can be written as

A\Delta t(X
k+1  - Xk) =  - \scrF (Xk) =  - (A\delta tX

k  - b)
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or, equivalently,

(3.19) Xk+1 =
\bigl( 
I  - A - 1

\Delta tA\delta t

\bigr) 
Xk +A - 1

\Delta tb.

Note that using this iteration, only a coarse matrix needs to be inverted.

3.2. Eigenvalue problem. In order to study the convergence of the iteration
(3.19), we study the eigenvalues of the matrix I  - A - 1

\Delta tA\delta t, which are given by the
generalized eigenvalue problem

(3.20) (A\Delta t  - A\delta t)x = \mu A\Delta tx,

with x = (v0, v1, . . . , vL, w1, . . . , wL)
T being the eigenvector associated with the ei-

genvalue \mu . Since A\Delta t  - A\delta t has two zero rows, the eigenvalue \mu = 0 must have
multiplicity at least two. Now let \mu \not = 0 be a nonzero eigenvalue. (If no such eigen-
value exists, then the preconditioning matrix is nilpotent and the iteration converges
in a finite number of steps.) Writing (3.20) componentwise yields

v0 = 0,(3.21)

\mu (v\ell  - \beta v\ell  - 1 + \gamma w\ell /\alpha ) =  - \delta \beta v\ell  - 1 + \delta \gamma w\ell /\alpha ,(3.22)

\mu (w\ell  - \beta w\ell +1) =  - \delta \beta w\ell +1,(3.23)

\mu (wL  - vL) = 0,(3.24)

where we have introduced the simplified notation

(3.25) \beta = \beta \Delta t, \gamma = \gamma \Delta t, \delta \beta = \beta \Delta t  - \beta \delta t, \delta \gamma = \gamma \Delta t  - \gamma \delta t.

The recurrences (3.22) and (3.23) are of the form

(3.26) v\ell = av\ell  - 1 + bw\ell , w\ell = aw\ell +1,

where

a = \beta  - \mu  - 1\delta \beta , b =
 - \gamma + \mu  - 1\delta \gamma 

\alpha 
.

Solving the recurrence (3.26) in v together with the initial condition (3.21) leads to

(3.27) vL =

L\sum 
\ell =1

aL - \ell bw\ell ,

whereas the recurrence (3.26) in w simply gives

(3.28) w\ell = aL - \ell wL.

Combining (3.27) and (3.28), we obtain

vL =

\Biggl( 
L\sum 

\ell =1

a2(L - \ell )b

\Biggr) 
wL,

so that (3.24) gives rise to P (\mu )wL = 0, with

(3.29) P (\mu ) = \alpha \mu 2L - 1 + (\mu \gamma  - \delta \gamma )

L - 1\sum 
\ell =0

\mu 2(L - \ell  - 1)(\mu \beta  - \delta \beta )2\ell .

Since we seek a nontrivial solution, we can assume wL \not = 0. Therefore, the eigenvalues
of I  - A - 1

\Delta tA\delta t consist of the number zero (with multiplicity two), together with the
2L  - 1 roots of P (\mu ), which are all nonzero. In the next subsection, we will give a
precise characterization of the roots of P (\mu ), which depend on \alpha , as well as on \sigma via
the parameters \beta , \delta \beta , \gamma , and \delta \gamma .
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A2782 MARTIN J. GANDER, FELIX KWOK, AND JULIEN SALOMON

3.3. Characterization of eigenvalues. In the next two results, we describe
the location of the roots of P (\mu ) from the last section or, equivalently, the nonzero
eigenvalues of the iteration matrix I  - A - 1

\Delta tA\delta t. We first establish the sign of a few
parameters in the case \sigma < 0, which is true for diffusive problems.

Lemma 3.1. Let \sigma < 0. Then we have 0 < \beta < 1, 0 < \delta \beta < \beta , \gamma > 0, and
\delta \gamma < 0.

Proof. By the definitions (3.16) and (3.25), we see that

\beta = \beta \Delta t = (1 - \sigma \Delta t) - \Delta T/\Delta t,

which is between 0 and 1, since 1 - \sigma \Delta t > 1 for \sigma < 0. Moreover, \beta \Delta t is an increasing
function of \Delta t by direct calculation, so that

\delta \beta = \beta \Delta t  - \beta \delta t > 0,

which shows that 0 < \delta \beta < \beta . Next, we have by definition

\gamma =
\beta 2  - 1

\sigma (2 - \sigma \Delta t)
.

Since \beta < 1 and \sigma < 0, both the numerator and the denominator are negative, so
\gamma > 0. Finally, we have

\delta \gamma =
1

| \sigma | 

\biggl( 
1 - \beta 2

\Delta t

2 + | \sigma | \Delta t
 - 1 - \beta 2

\delta t

2 + | \sigma | \delta t

\biggr) 
< 0

since 1  - \beta 2
\Delta t < 1  - \beta 2

\delta t and 2 + | \sigma | \Delta t > 2 + | \sigma | \delta t, so the first quotient inside the
parentheses is necessarily smaller than the second quotient.

We are now ready to prove a first estimate for the eigenvalues of the matrix
I  - A - 1

\Delta tA\delta t.

Theorem 3.2. Let P be the polynomial defined in (3.29). For \sigma < 0, the roots
of P are contained in the set D\sigma \cup \{ \mu \ast \} , where

(3.30) D\sigma = \{ \mu \in \BbbC : | \mu  - \mu 0| < \delta \beta /(1 - \beta 2)\} ,

where \mu 0 =  - \beta \delta \beta /(1 - \beta 2), and \mu \ast < 0 is a real negative number.

Proof. Since zero is not a root of P (\mu ), we can divide P (\mu ) by \mu 2L - 1 and see that
P (\mu ) has the same roots as the function

\^P (\mu ) = \alpha + (\gamma  - \mu  - 1\delta \gamma )

L - 1\sum 
\ell =0

(\beta  - \mu  - 1\delta \beta )2\ell .

Recall the change of variables

a = \beta  - \mu  - 1\delta \beta \Leftarrow \Rightarrow \mu =
\delta \beta 

\beta  - a
;

substituting a into \^P (\mu ) and multiplying the result by \delta \beta /| \delta \gamma | shows that P (\mu ) = 0
is equivalent to

Q(a) :=
\alpha \delta \beta 

| \delta \gamma | 
+ (C  - a)

L - 1\sum 
\ell =0

a2\ell = 0,
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with

(3.31) C := \beta + \gamma \delta \beta /| \delta \gamma | > 0.

We will now show that Q(a) has at most one root inside the unit disc | a| \leq 1; since
the transformation from \mu to a maps circles to circles, this would be equivalent to
proving that P (\mu ) has at most one root outside the discD\sigma . We now use the argument
principle from complex analysis, which states that the difference between the number
of zeros and poles of Q inside a closed contour \scrC is equal to the winding number of
the contour Q(\scrC ) around the origin. Since Q is a polynomial and has no poles, this
would allow us to count the number of zeros of Q inside the unit disc. Therefore, we
consider the winding number of the contour \Gamma = \{ f(ei\theta ) : 0 \leq \theta \leq 2\pi \} with

f(a) = (C  - a)

L - 1\sum 
\ell =0

a2\ell 

around the point  - \alpha \delta \beta /| \delta \gamma | , which is a real negative number. If we can show that \Gamma 
intersects the negative real axis at at most one point, then it follows that the winding
number around any negative real number cannot be greater than 1.

We now concentrate on finding values of \theta such that arg(f(ei\theta )) = \pi (mod 2\pi ).
Since f(a) = f(a), it suffices to consider the range 0 \leq \theta \leq \pi , and the other half of
the range will follow by conjugation. Since f is a product, we deduce that

arg(f(ei\theta )) = arg(C  - ei\theta ) + arg
\Bigl( 
1 + e2i\theta + \cdot \cdot \cdot + e2(L - 1)i\theta 

\Bigr) 
.

We consider the two terms on the right separately.
\bullet For the first term, we have for all 0 < \theta < \pi 

\theta  - \pi < arg( - ei\theta ) < arg(C  - ei\theta ) < 0,

since C is real and positive. For \theta = \pi , we obviously have arg(C  - ei\theta ) = 0,
whereas for \theta = 0, we have arg(C  - ei\theta ) =  - \pi if C < 1, and arg(C  - ei\theta ) = 0
otherwise.

\bullet For the second term, observe that for 0 < \theta < \pi , we have

1 + e2i\theta + \cdot \cdot \cdot + e2(L - 1)i\theta =
1 - e2iL\theta 

1 - e2i\theta 
= e(L - 1)i\theta \cdot sin(L\theta )

sin(\theta )
.

Therefore, the second term is piecewise linear with slope L - 1, with a jump
of size \pi whenever sin(L\theta ) changes sign, i.e., at \theta = k\pi /L, k = 1, . . . , L  - 1.
Put within the range ( - \pi , \pi ), we can write

arg

\biggl( 
1 - e2iL\theta 

1 - e2i\theta 

\biggr) 
= (L - 1)\theta  - 

\biggl\lfloor 
L\theta 

\pi 

\biggr\rfloor 
\pi =: g(\theta ), 0 < \theta < \pi .

We also have g(0) = g(\pi ) = 0 by direct calculation. The function g satisfies
the property  - \theta \leq g(\theta ) \leq \pi  - \theta ; see Figure 2.

From the above, we deduce that arg(f(ei\theta )) < \pi for all 0 \leq \theta \leq \pi . Moreover,

arg(f(ei\theta )) =

\left\{         
0 if \theta = 0 and C > 1,

 - \pi if \theta = 0 and C < 1,

arg(C  - ei\theta ) + g(\theta ) >  - \pi if 0 < \theta < \pi ,

0 if \theta = \pi .
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Fig. 2. Plot of g(\theta ) = arg(
\sum L - 1

\ell =0 e2i\ell \theta ) for L = 7.

Thus, the winding number around the point  - \alpha \delta \beta /| \delta \gamma | cannot exceed one, so at most
one of the roots of Q can lie inside the unit disc. If there is indeed such a root a\ast , it
must be real, since the conjugate of any root of Q is also a root. Moreover, it must
satisfy a\ast > C, since Q(a) > 0 for any a \leq C. This implies

(3.32) \beta  - a\ast < \beta  - C =  - \gamma \delta \beta 

| \delta \gamma | 
< 0,

so the corresponding \mu \ast = \delta \beta /(\beta  - a\ast ) must also be negative.

We have seen that the existence of \mu \ast depends on whether the constant C is larger
than 1. The following lemma shows that we indeed have C < 1.

Lemma 3.3. Let \sigma < 0. Then the constant C = \beta + \gamma \delta \beta /| \delta \gamma | , defined in (3.31),
satisfies C < 1.

Proof. We first transform the relation C < 1 into a sequence of equivalent in-
equalities. Starting with the definition of C, we have

C = \beta \Delta t +
\gamma \Delta t(\beta \Delta t  - \beta \delta t)

\gamma \delta t  - \gamma \Delta t
< 1 \Leftarrow \Rightarrow \beta \Delta t(\gamma \delta t  - \gamma \Delta t) + \gamma \Delta t(\beta \Delta t  - \beta \delta t) < \gamma \delta t  - \gamma \Delta t

\Leftarrow \Rightarrow \gamma \Delta t(1 - \beta \delta t) < \gamma \delta t(1 - \beta \Delta t)

\Leftarrow \Rightarrow (1 - \beta 2
\Delta t)(1 - \beta \delta t)

| \sigma | (2 + | \sigma | \Delta t)
<

(1 - \beta 2
\delta t)(1 - \beta \Delta t)

| \sigma | (2 + | \sigma | \delta t)

\Leftarrow \Rightarrow 1 + \beta \Delta t

2 + | \sigma | \Delta t
<

1 + \beta \delta t

2 + | \sigma | \delta t
,

where the last equivalence is obtained by multiplying both sides of the penultimate
inequality by | \sigma | and then dividing it by (1 - \beta \Delta t)(1 - \beta \delta t). By the definition of \beta \Delta t

and \beta \delta t, the last inequality can be written as f(| \sigma | \Delta t) < f(| \sigma | \delta t), where

f(x) :=
1 + (1 + x) - k/x

2 + x
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with k = | \sigma | \Delta T > 0. Therefore, it suffices to show that f(x) is decreasing for
0 < x \leq k. In other words, we need to show that

f \prime (x) =
(1 + x) - k/x

2 + x

\biggl[ 
k ln(1 + x)

x2
 - k

x(1 + x)

\biggr] 
 - 1 + (1 + x) - k/x

(2 + x)2
< 0.

This is equivalent to showing

(3.33) (2 + x)

\biggl[ 
k ln(1 + x)

x2
 - k

x(1 + x)

\biggr] 
 - 1 < (1 + x)k/x.

Using the fact that ln(1 + x) \leq x, we see that the left-hand side is bounded above by

(2 + x)

\biggl[ 
k ln(1 + x)

x2
 - k

x(1 + x)

\biggr] 
 - 1 \leq (2 + x)

\biggl[ 
kx

x2
 - k

x(1 + x)

\biggr] 
 - 1

= k

\biggl( 
2 + x

1 + x

\biggr) 
 - 1.

But for every k > 0 and 0 < x < k we have

(3.34) (1 + x)k/x > k

\biggl( 
2 + x

1 + x

\biggr) 
 - 1;

see the proof in the appendix. Therefore, (3.33) is satisfied by all k > 0 and 0 < x < k,
so f is in fact decreasing. It follows that C < 1, as required.

Theorem 3.4. Let \sigma < 0 be fixed, and let

(3.35) L0 :=
C  - \beta 

\gamma (1 - C)
.

Then the spectrum of I - A - 1
\Delta tA\delta t has an eigenvalue \mu \ast outside the disc D\sigma defined in

(3.30) if and only if the number of subintervals L satisfies L > \alpha L0, where \alpha is the
regularization parameter.

Proof. The isolated eigenvalue exists if and only if the winding number of Q(ei\theta )
about the origin is nonzero. Since Q(ei\theta ) only intersects the negative real axis at most
once, we see that the winding number is nonzero when Q( - 1) < 0, i.e., when

\alpha \delta \beta 

| \delta \gamma | 
+ (C  - 1)L < 0.

Using the definition of C, this leads to

\alpha (C  - \beta )

\gamma 
+ (C  - 1)L < 0 \Leftarrow \Rightarrow L >

\alpha (C  - \beta )

\gamma (1 - C)
,

hence the result.

3.4. Spectral radius estimates. The next theorem now gives a more precise
estimate on the isolated eigenvalue \mu \ast .

Theorem 3.5. Suppose that the number of intervals L satisfies L > \alpha L0, with L0

defined in (3.35). Then the real negative eigenvalue \mu \ast outside the disc D\sigma is bounded
below by

\mu \ast >  - | \delta \gamma | + \alpha \delta \beta (1 + \beta )

\gamma + \alpha (1 - \beta 2)
.
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Proof. Suppose a\ast = \beta  - \delta \beta /\mu \ast is a real root of Q(a) inside the unit disc. We
have seen at the end of the proof of Theorem 3.2 (immediately before (3.32)) that
a\ast > C; moreover, since a\ast is assumed to be inside the unit circle, we must have
a\ast < 1. Therefore, a\ast satisfies C < a\ast < 1. This implies

\alpha \delta \beta 

| \delta \gamma | 
+

C  - a\ast 

1 - (a\ast )2
=

(C  - a\ast )(a\ast )2L

1 - (a\ast )2
< 0.

Therefore, a\ast satisfies

(1 - (a\ast )2)\alpha \delta \beta + | \delta \gamma | (C  - a\ast ) < 0,

which means

a\ast >
 - | \delta \gamma | +

\sqrt{} 
| \delta \gamma | 2 + 4\alpha \delta \beta (\alpha \delta \beta + C| \delta \gamma | )

2\alpha \delta \beta 

=
 - | \delta \gamma | +

\sqrt{} 
(| \delta \gamma | 2 + 2\alpha \delta \beta )2  - 4(1 - C)\alpha \delta \beta | \delta \gamma | 

2\alpha \delta \beta 
.

Therefore,

\mu \ast =
\delta \beta 

\beta  - a\ast 

>
2\alpha \delta \beta 2

(2\alpha \beta \delta \beta + | \delta \gamma | ) - 
\sqrt{} 
(| \delta \gamma | + 2\alpha \delta \beta )2  - 4(1 - C)\alpha \delta \beta | \delta \gamma | 

=
2\alpha \delta \beta 2

\Bigl[ 
(2\alpha \beta \delta \beta + | \delta \gamma | ) +

\sqrt{} 
(| \delta \gamma | + 2\alpha \delta \beta )2  - 4(1 - C)\alpha \delta \beta | \delta \gamma | 

\Bigr] 
(2\alpha \beta \delta \beta + | \delta \gamma | )2  - (| \delta \gamma | + 2\alpha \delta \beta )2 + 4(1 - C)\alpha \delta \beta | \delta \gamma | 

=
\delta \beta 
\Bigl[ 
(2\alpha \beta \delta \beta + | \delta \gamma | ) +

\sqrt{} 
(| \delta \gamma | + 2\alpha \delta \beta )2  - 4(1 - C)\alpha \delta \beta | \delta \gamma | 

\Bigr] 
2(\beta  - C)| \delta \gamma | + 2\alpha \delta \beta (\beta 2  - 1)

=  - 
(2\alpha \beta \delta \beta + | \delta \gamma | ) +

\sqrt{} 
(| \delta \gamma | + 2\alpha \delta \beta )2  - 4(1 - C)\alpha \delta \beta | \delta \gamma | 

2\gamma + 2\alpha (1 - \beta 2)

>  - | \delta \gamma | + \alpha \delta \beta (1 + \beta )

\gamma + \alpha (1 - \beta 2)
,

where the last inequality is obtained by dropping the term containing (1 - C) inside
the square root, which makes the square root larger since C < 1.

To illustrate the above theorems, we show in Figures 3 and 4 the spectrum of the
iteration matrix I  - A - 1

\Delta tA\delta t for different values of \sigma and for \alpha = 1 and 1000. Here,
the time interval [0, T ] is subdivided into L = 30 subintervals, and each subinterval
contains 50 coarse time steps and 5000 fine time steps. Table 1 shows the values of the
relevant parameters. For \alpha = 1, we see that there is always one isolated eigenvalue on
the negative real axis, since L > L0 in all cases, and its location is predicted rather
accurately by the formula (3.36). The rest of the eigenvalues all lie within the disc
D\sigma defined in (3.30). For \alpha = 1000, the bounding disc is identical to the previous
case; however, since we have L < \alpha L0 for all cases except for \sigma =  - 16, we observe no
eigenvalue outside the disc, except for the very last case. In that very last case, we
have | \delta \gamma | = 0.0107, so (3.36) gives the lower bound \mu \ast >  - 1.07 \times 10 - 5, which again
is quite accurate when compared with the bottom right panel of Figure 4.
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Fig. 3. Spectrum of the iteration matrix for T = 100, L = 30, \Delta T/\Delta t = 50, \Delta t/\delta t = 100,
\alpha = 1 and for \sigma =  - 1/8, - 1/4, - 1/2, - 1, - 2, - 16, from top left to bottom right.

Corollary 3.6. Let T , \Delta T , \Delta t, \delta t, \alpha , and \sigma be fixed. Then the spectral radius
\rho of the matrix I  - A - 1

\Delta tA\delta t satisfies

(3.36) \rho \leq | \delta \gamma | + \alpha \delta \beta (1 + \beta )

\gamma + \alpha (1 - \beta 2)
.

Note that the inequality (3.36) is valid for all L > 0, i.e., regardless of whether
the isolated eigenvalue \mu \ast exists.

Proof. When the number of subintervals L satisfies L > \alpha L0, the spectral radius
is determined by the isolated eigenvalue, which according to Theorem 3.5 is estimated
by

| \mu \ast | < | \delta \gamma | + \alpha \delta \beta (1 + \beta )

\gamma + \alpha (1 - \beta 2)
.
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Fig. 4. Spectrum of the iteration matrix for T = 100, L = 30, \Delta T/\Delta t = 50, \Delta t/\delta t = 100,
\alpha = 1000 and for \sigma =  - 1/8, - 1/4, - 1/2, - 1, - 2, - 16, from top left to bottom right.

Table 1
Parameter values for T = 100, L = 30, \Delta T/\Delta t = 50, \Delta t/\delta t = 100.

\sigma \beta \gamma C L0 Radius of D\sigma \mu \ast bound (\alpha = 1)

 - 1/8 0.6604 2.2462 0.8268 0.4280 2.00\times 10 - 3  - 6.08\times 10 - 3

 - 1/4 0.4376 1.6037 0.6960 0.5300 3.67\times 10 - 3  - 9.34\times 10 - 3

 - 1/2 0.1941 0.9466 0.4713 0.5539 5.35\times 10 - 3  - 1.24\times 10 - 2

 - 1 0.0397 0.4831 0.1588 0.2930 3.97\times 10 - 3  - 1.36\times 10 - 2

 - 2 0.0019 0.2344 0.0116 0.0417 6.36\times 10 - 4  - 1.30\times 10 - 2

 - 16 1.72\times 10 - 16 0.0204 5\times 10 - 16 1.61\times 10 - 14 1.72\times 10 - 16  - 1.05\times 10 - 2

Otherwise, when L \leq \alpha L0, all the eigenvalues lie within the bounding disc D\sigma , so no
eigenvalue can be farther away from the origin than

Radius(D\sigma ) + | Center(D\sigma )| =
\delta \beta 

1 - \beta 2
+

\beta \delta \beta 

1 - \beta 2
=

\delta \beta 

1 - \beta 
.
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A straightforward calculation shows that

| \delta \gamma | + \alpha \delta \beta (1 + \beta )

\gamma + \alpha (1 - \beta 2)
>

\delta \beta 

1 - \beta 
if and only if \beta +

\gamma \delta \beta 

| \delta \gamma | 
< 1,

which is true by Lemma 3.3. Thus, the inequality (3.36) holds in both cases.

The above corollary is of interest when we apply our ParaOpt method to a large
system of ODEs (arising from the spatial discretization of a PDE, for example), where
the eigenvalues lie in the range \sigma \in [ - \sigma max, - \sigma min], with \sigma max \rightarrow \infty when the spatial
grid is refined. As we can see from Figure 5, the upper bound follows the actual
spectral radius rather closely for most values of \sigma , and its maximum occurs roughly

100 105
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100 105
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Fig. 5. Behavior of \mu max as a function of \sigma for \alpha = 0.001, 1, 1000 (top to bottom). Left: 150
subintervals, 1 coarse step per subinterval. Right: 3 subintervals, 50 coarse steps per subinterval.
All examples use T = 100, \Delta t = 2/3, and \Delta t/\delta t = 104.
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at the same value of \sigma as the one that maximizes the spectral radius. In the next two
results, we will use the estimate (3.36) of the spectral radius of I  - A - 1

\Delta tA\delta t to derive
a criterion for the convergence of the method.

Lemma 3.7. Let T , \Delta T , \Delta t, \delta t be fixed. Then for all \sigma < 0, we have

(3.37)
| \delta \gamma | 
\gamma 

\leq 1.58| \sigma | (\Delta t - \delta t),
\delta \beta 

1 - \beta 
\leq 0.3.

Proof. To bound | \delta \gamma | /\gamma , we start by bounding a scaled version of the quantity.
We first use the definition of \gamma and \gamma \delta t (cf. (3.17)) to obtain

| \delta \gamma | 
\gamma 

\cdot 1

| \sigma | (\Delta t - \delta t)
=

\gamma \delta t  - \gamma 

\gamma | \sigma | (\Delta t - \delta t)

=
2 + | \sigma | \Delta t

(1 - \beta 2)| \sigma | (\Delta t - \delta t)

\biggl( 
1 - \beta 2

\delta t

2 + | \sigma | \delta t
 - 1 - \beta 2

2 + | \sigma | \Delta t

\biggr) 
=

1 - \beta 2
\delta t

(2 + \sigma \delta t)(1 - \beta 2)
+

\beta 2  - \beta 2
\delta t

| \sigma | (\Delta t - \delta t)(1 - \beta 2)
=: A+B.

To estimate the terms A and B above, we define the mapping

h\Delta T (\tau ) := (1 + | \sigma | \tau ) - \Delta T/\tau ,

so that \beta = h\Delta T (\Delta t), \beta \delta t = h\Delta T (\delta t). Using the fact that ln(1 + x) > x
1+x for x > 0

(see Lemma A.2 in Appendix A), we see that

h\prime 
\Delta T (\tau ) = h\Delta T (\tau )

\biggl[ 
\Delta T

\tau 2
ln(1 + | \sigma | \tau ) - | \sigma | \Delta T

\tau (1 + | \sigma | \tau )

\biggr] 
> 0,

so h\Delta T is increasing. Therefore, we have

(3.38) lim
\tau \rightarrow 0

h\Delta T (\tau ) = e - | \sigma | \Delta T \leq \beta \delta t \leq \beta \leq 1

1 + | \sigma | \Delta T
= h\Delta T (\Delta T ).

It then follows that

A :=
1 - \beta 2

\delta t

(2 + \sigma \delta t)(1 - \beta 2)
\leq 1 - e - 2| \sigma | \Delta T

(2 + \sigma \delta t)(1 - (1 + | \sigma | \Delta T ) - 2)
\leq (1 - e - 2| \sigma | \Delta T )(1 + | \sigma | \Delta T )2

2| \sigma | \Delta T (2 + | \sigma | \Delta T )
.

The last quotient is a function in | \sigma | \Delta T only, whose maximum over all | \sigma | \Delta T > 0 is
approximately 0.5773 < 0.58; therefore, we have

A \leq 0.58.

For the second term, we use the mean value theorem and the fact that \beta 2 = h2\Delta T (\Delta t),
\beta 2
\delta t = h2\Delta T (\delta t) to obtain

\beta 2  - \beta 2
\delta t = (\Delta t - \delta t)h\prime 

2\Delta T (\tau 
\ast )

for some \delta t < \tau \ast < \Delta t, with

h\prime 
2\Delta T (\tau ) = h2\Delta T (\tau )

\biggl[ 
2\Delta T

\tau 2
ln(1 + | \sigma | \tau ) - 2| \sigma | \Delta T

\tau (1 + | \sigma | \tau )

\biggr] 
.
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Using the fact that ln(1 + x) \leq x for all x \geq 0, we deduce that

h\prime 
2\Delta T (\tau 

\ast ) \leq h2\Delta T (\tau 
\ast )

2| \sigma | 2\Delta T

1 + | \sigma | \tau \ast 
\leq 2\beta 2| \sigma | 2\Delta T

1 + | \sigma | \delta t
,

so that

B :=
\beta 2  - \beta 2

\delta t

| \sigma | (\Delta t - \delta t)(1 - \beta 2)
\leq 2| \sigma | \Delta T

(1 + | \sigma | \Delta T )2
\cdot (1 + | \sigma | \Delta T )2

| \sigma | \Delta T (2 + | \sigma | \Delta T )
\leq 1.

Combining the estimates for A and B and multiplying by | \sigma | (\Delta t - \delta t) gives the first
inequality in (3.37). For the second inequality, we use (3.38) to obtain

\beta  - \beta \delta t

1 - \beta 
\leq (1 + | \sigma | \Delta T ) - 1  - e - | \sigma | \Delta T

1 - (1 + | \sigma | \Delta T ) - 1
=

1 - (1 + | \sigma | \Delta T )e - | \sigma | \Delta T

| \sigma | \Delta T
.

This is again a function in a single variable | \sigma | \Delta T , whose maximum over all | \sigma | \Delta T > 0
is approximately 0.2984 < 0.3.

Theorem 3.8. Let \Delta T , \Delta t, \delta t, and \alpha be fixed. Then for all \sigma < 0, the spectral
radius of I  - A - 1

\Delta tA\delta t satisfies

(3.39) max
\sigma <0

\rho (\sigma ) \leq 0.79\Delta t

\alpha +
\surd 
\alpha \Delta t

+ 0.3.

Thus, if \alpha > 0.4544\Delta t, then the linear ParaOpt algorithm (3.19) converges.

Proof. Starting with the spectral radius estimate (3.36), we divide the numerator
and denominator by \gamma , then substitute its definition in (3.17) to obtain

\rho (\sigma ) <
| \delta \gamma | + \alpha \delta \beta (1 + \beta )

\gamma + \alpha (1 - \beta 2)
=

| \delta \gamma | 
\gamma + \delta \beta 

1 - \beta \alpha | \sigma | (2 + | \sigma | \Delta t)

1 + \alpha | \sigma | (2 + | \sigma | \Delta t)

\leq | \delta \gamma | 
\gamma (1 + \alpha | \sigma | (2 + | \sigma | \Delta t))

+
\delta \beta 

1 - \beta 
.

Now, by Lemma 3.7, the first term is bounded above by

f(\sigma ) :=
1.58| \sigma | \Delta t

1 + \alpha | \sigma | (2 + | \sigma | \Delta t)
,

whose maximum occurs at \sigma \ast =  - 1/
\surd 
\alpha \Delta t with

f(\sigma \ast ) =
0.79\Delta t\surd 
\alpha \Delta t+ \alpha 

.

Together with the estimate on \delta \beta /(1 - \beta ) in Lemma 3.7, this proves (3.39). Thus, a
sufficient condition for the method (3.19) to converge can be obtained by solving the
inequality

0.79\Delta t

\alpha +
\surd 
\alpha \Delta t

+ 0.3 < 1.

This is a quadratic equation in
\surd 
\alpha ; solving it leads to \alpha > 0.4544\Delta t, as required.

In Figure 6, we show the maximum spectral radius of I - A - 1
\Delta tA\delta t over all negative

\sigma for different values of \alpha for a model decomposition with T = 100, 30 subintervals,
one coarse time step per subinterval, and a refinement ratio of 104 between the coarse
and the fine grid. We see in this case that the estimate (3.39) is indeed quite accurate.
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( )

0.5(  t/ )1/2

C -1/(2L-1)

Estimate (3.39)

Fig. 6. Behavior of max\sigma <0 \rho (\sigma ) as a function of \alpha , T = 100, L = 30, \Delta T = \Delta t, \Delta t/\delta t = 10 - 4.
The data for \mu max(\alpha ) has been generated by solving the generalized eigenvalue problem (3.20) using
eig in MATLAB.

Remarks.
1. (Dependence on \alpha ) Theorem 3.8 states that in order to guarantee convergence, one

should make sure that the coarse time step \Delta t is sufficiently small relative to \alpha .
In that case, the method converges.

2. (Weak scalability) Note that the estimate (3.39) depends on the coarse time step
\Delta t but not explicitly on the number of subintervals L. One may then consider
weak scalability, i.e., cases where the problem size per processor is fixed,3 un-
der two different regimes: (i) keeping the subinterval length \Delta T and refinement
ratios \Delta T/\Delta t, \Delta t/\delta t fixed, such that adding subintervals increases the overall
time horizon T = L\Delta T ; and (ii) keeping the time horizon T fixed and refinement
ratios \Delta T/\Delta t, \Delta t/\delta t fixed, such that adding subintervals decreases their length
\Delta T = T/L. In the first case, \Delta t remains fixed, so the bound (3.39) remains
bounded as L \rightarrow \infty . In the second case, \Delta t \rightarrow 0 as L \rightarrow \infty , so in fact (3.39)
decreases to 0.3 as L \rightarrow \infty . Therefore, the method is weakly scalable under both
regimes.

3. (Contraction rate for high and low frequencies) Let \alpha > 0 be fixed, and let \rho (\sigma )
be the spectral radius of I  - A - 1

\Delta tA\delta t as a function of \sigma given by (3.36). Then for
\Delta t/\delta t \geq 2, an asymptotic expansion shows that we have

\rho (\sigma ) =

\left\{     
| \sigma | (\Delta t - \delta t) +O(| \sigma | 2) as | \sigma | \rightarrow 0,

1
| \sigma | \Delta t +O(| \sigma |  - 2) as | \sigma | \rightarrow \infty if \Delta T = \Delta t,
1

\alpha \delta t | \sigma | 
 - 2 +O(| \sigma |  - 3) as | \sigma | \rightarrow \infty if \Delta T/\Delta t \geq 2.

In other words, the method reduces high and low frequency error modes very
quickly, and the overall contraction rate is dominated by mid frequencies (where

3On the contrary, strong scalability deals with cases where the total problem size is fixed.
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``mid"" depends on \alpha , \Delta t, etc.). This is also visible in Figure 5, where \rho attains its
maximum at | \sigma | = O(1/

\surd 
\alpha ) and decays quickly for both large and small | \sigma | .

Finally, we note that for the linear problem, it is possible to use Krylov acceler-
ation to solve for the fixed point of (3.19), even when the spectral radius is greater
than 1. However, the goal of this linear analysis is to use it as a tool for studying
the asymptotic behavior of the nonlinear method (2.11); since a contractive fixed
point map must have a Jacobian with spectral radius less than 1 at the fixed point,
Theorem 3.8 shows which conditions are sufficient to ensure asymptotic convergence
of the nonlinear ParaOpt method.

4. Numerical results. In the previous section, we have presented numerical
examples related to the efficiency of our bounds with respect to \sigma and \alpha . We now study
in more detail the quality of our bounds with respect to the discretization parameters.
We complete these experiments with a nonlinear example and a PDE example.

4.1. Linear scalar ODE: Sensitivity with respect to the discretization
parameters. In this part, we consider the case where \alpha = 1, \sigma =  - 16, and T = 1
and investigate the dependence of the spectral radius of I  - A - 1

\Delta tA\delta t when L, \Delta t, \delta t
vary.

We start with variations in \Delta t and \delta t and a fixed number of subintervals L = 10.
In this way, we compute the spectral radius of I  - A - 1

\Delta tA\delta t for three cases: first with
a fixed \Delta t = 10 - 4 and \delta t = \Delta t

2k
, k = 1, . . ., 15; then with a fixed \delta t = 10 - 2 \cdot 2 - 20

and \Delta t = 2 - k, k = 0, . . ., 20; and finally with a fixed ratio \delta t
\Delta t = 10 - 2 with \Delta t = 2k,

k = 1, . . ., 15. The results are shown in Figure 7.

Fig. 7. Spectral radius of the preconditioned matrix. Top left: varying \delta t (with fixed \Delta t); top
right: varying \Delta t (with fixed \delta t); bottom: varying \Delta t (with fixed \delta t

\Delta t
).
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Fig. 8. Spectral radius of the preconditioned matrix as a function of L. Left: fixed value of T
(with T = 1); right: T = L\Delta T .

In all cases, we observe a very good agreement between the estimate obtained
in (3.36) and the true spectral radius. Note that the largest possible \Delta t for this
problem is when \Delta t equals the length of the subinterval, i.e., when \Delta t = \Delta T = 0.1.
For this \Delta t, the estimates (3.36) and (3.39) are very close to each other, because (3.39)
is obtained from (3.36) by making \Delta t as large as possible, i.e., by letting \Delta t = \Delta T .

We next study the scalability properties of ParaOpt. More precisely, we examine
the behavior of the spectral radius of the preconditioned matrix when the number of
subintervals L varies. In order to fit with the paradigm of numerical efficiency, we
set \Delta T = \Delta t which corresponds somehow to a coarsening limit. We consider two
cases: the first case uses a fixed value of T , namely T = 1, and the second case uses
T = L\Delta T for the fixed value of \Delta T = 1. The results are shown in Figure 8.

In both cases, we observe perfect scalability of ParaOpt, in the sense that the
spectral radius is uniformly bounded with respect to the number of subintervals con-
sidered in the time parallelization.

4.2. A nonlinear example. We now consider a control problem associated
with a nonlinear vectorial dynamics, namely the Lotka--Volterra system. The problem
consists of minimizing the cost functional

J(c) =
1

2
| y(T ) - ytarget| 2 +

\alpha 

2

\int T

0

| c(t)| 2 dt

with ytarget = (100, 20)T , subject to the Lotka--Volterra equations

(4.1)
\.y1 = g(y) := a1y1  - b1y1y2 + c1,

\.y2 = \widetilde g(y) := a2y1y2  - b2y2 + c2

with a1 = b2 = 10, b1 = a2 = 0.2 and initial conditions y(0) = (20, 10)T . In this
nonlinear setting, the computation of each component of \scrF (Y,\Lambda ) for given Y and \Lambda 
requires a series of independent iterative inner loops. In our test, these computations
are carried out using a Newton method. As in section 3, the time discretization
of (2.2) is performed with an implicit Euler scheme.

In a first test, we set T = 1/3 and \alpha = 5\times 10 - 2 and fix the fine time discretization
step to \delta t = T

N0
, with N0 = 12 \cdot 10 - 5. In Figure 9, we show the rate of convergence of

ParaOpt for L = 10 and various values of the ratio r = \delta t
\Delta t . Here, the error is defined

as the maximum difference between the interface state and adjoint values obtained
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Fig. 9. L\infty error as a function of the number of exact (r = 1) or inexact (r < 1) Newton
iterations, for various values of the ratio r = \delta t

\Delta t
.

from a converged fine grid solution, and the interface values obtained at each inexact
Newton iteration by ParaOpt.

As can be expected when using a Newton method, we observe that quadratic
convergence is obtained in the case r = 1. When r becomes smaller, the precondi-
tioning becomes a coarser approximation of the exact Jacobian, and thus convergence
becomes a bit slower.

In our experiments, we observed that the initial guess plays a significant role
in the convergence of the method. This follows from the fact that ParaOpt is an
exact (if \Delta t = \delta t) or approximate (otherwise) Newton method. The initial guess
we consider is c(t) = 1, y(T\ell ) = (1  - T\ell /T )y0 + T\ell /Tytarget, and \lambda (T\ell ) = (1, 1)T .
While for T = 1/3 we observe convergence for all L, if we increase T to T = 1,
we do not observe convergence any more for L < 10; in fact, without decomposing
the time domain, the sequential version of our solver with L = 1 does not converge,
even if we use the exact Jacobian without the coarse approximation. This shows that
using a time-domain decomposition actually helps in solving the nonlinear problem,
a phenomenon already observed for a different time parallelization method in [48].
These convergence problems we observed are also related to the existence of multiple
solutions. Indeed, if we coarsen the outer iteration by replacing the Newton iteration
with a Gauss--Newton iteration, i.e., by removing the second--order derivatives of g
and \widetilde g in Newton's iterative formula, we obtain another solution, as illustrated in
Figure 10 on the left for T = 1 and r = 1. For both solutions, we observe that the
eigenvalues associated with the linearized dynamics

\delta \.y1 = a1\delta y1  - b1\delta y1y2  - b1y1\delta y2 + \delta c1, \delta \.y2 = a2\delta y1y2 + a2y1\delta y2  - b2\delta y2 + \delta c2

in a neighborhood of the local minima remain strictly positive along the trajectories,
in contrast to the situation analyzed in section 3. Their values are presented in Figure
10 on the right.

We next test the numerical efficiency of our algorithm. The example we consider
corresponds to the last curve of Figure 9, i.e., T = 1/3 and r = 10 - 4, except that we
use various values of L\in \{ 1, 3, 6, 12, 24\} using the corresponding number of processors.
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Fig. 10. Left: two local minima of the cost functional J, obtained with Newton (plain line) and
Gauss--Newton (dashed line) in the outer loop, for T = 1. The cost functional values are J \approx 1064.84
and J \approx 15.74. The green cross and the red circle indicate y0 and ytarget. Right: (real) eigenvalues
associated with the linearized dynamics in a neighborhood of the local minima obtained with Newton
(top) and Gauss--Newton (bottom).

Table 2
Performance of ParaOpt: total computing time Tcpu, parallel computing time only in seconds,

and speedup (Tcpu(L = 1)/Tcpu(L)).

L Newton its. Tcpu Parallel computing time Speedup

1 14 777.53 777.42 1.00
3 10 172.13 167.36 4.52
6 9 82.10 79.67 9.47
12 9 43.31 42.49 17.95
24 9 25.75 24.74 30.20

We execute our code in parallel on workers of a parallel pool, using the MATLAB
Parallel Processing Toolbox on a 24-core machine that is part of the SciBlade cluster
at Hong Kong Baptist University. The results are presented in Table 2, where we
also indicate the total parallel computing time without communication, as well as the
number of outer Newton iterations required for convergence to a tolerance of 10 - 13.

We observe that our cluster enables us to get very good scalability; the total
computing time is roughly divided by two when the number of processors is doubled.
Though not reported in the table, we have observed that even in the case L = 1, i.e.,
without parallelization, ParaOpt outperforms the Newton method (777.53 s verus
865.76 s in our test).

To see how this compares with speedup ratios that can be expected from more
classical approaches, we run Parareal on the initial value problem (4.1) with the same
initial conditions and no control, i.e., c1 = c2 = 0. For L = 3, 6, 12, and 24 subintervals
and a tolerance of 10 - 13, Parareal requires K = 3, 6, 8, and 13 iterations to converge.
(For a more generous tolerance of 10 - 8, Parareal requiresK = 3, 6, 6, and 7 iterations.)
Since the speedup obtained by Parareal cannot exceed L/K, the maximum speedup
that can be obtained if Parareal is used as a subroutine for forward and backward
sweeps does not exceed 4 for our problem. Note that this result is specific to the
nondiffusive character of the considered equation. This speedup would change if the
constraint type changed to parabolic; see [44, Chapter 5].

4.3. A PDE example. We finally consider a control problem involving the heat
equation. More precisely, (2.1) is replaced by
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Fig. 11. Example of initial condition, target state, and final state of the solution of the control
problem.

\partial ty  - \Delta y = Bc,

where the unknown y = y(x, t) is defined on \Omega = [0, 1] with periodic boundary
conditions and on [0, T ] with T = 10 - 2. Initial and target states are

yinit = exp( - 100(x - 1/2)2),

ytarget =
1

2
exp( - 100(x - 1/4)2) +

1

2
exp( - 100(x - 3/4)2).

The operator B is the indicator function of a subinterval \Omega c of \Omega ; in our case, \Omega c =
[1/3, 2/3]. We also set \alpha = 10 - 4. The corresponding solution is shown in Figure 11.

We use a finite difference scheme with 50 grid points for the spatial discretiza-
tion. As in the previous subsection, an implicit Euler scheme is used for the time
discretization, and we consider a parallelization involving L = 10 subintervals, with
\delta t = 10 - 7 and \delta t = 10 - 9 so that the rate of convergence of the method can be tested
for various values of r = \delta t

\Delta t . For \alpha = 10 - 4, the evolution of the error along the
iterations is shown in Figure 12. Here, the error is defined as the maximum differ-
ence between the iterates and the reference discrete solution, evaluated at subinterval
interfaces.

Observe also that the convergence curves corresponding to r = 10 - 1 and r = 10 - 2

on the left panel look nearly identical to the curves for r = 10 - 3 and r = 10 - 4 on
the right panel. This is because they correspond to the same values of \Delta t, namely
\Delta t = 10 - 6 and \Delta t = 10 - 5. This behavior is consistent with Theorem 3.8, where
the convergence estimate depends only on \Delta t, rather than on the ratio \delta t

\Delta t . Cases of
divergence can also be observed, in particular for T = 1 and small values of \alpha and r,
as shown in Figure 13.

Of course, one can envisage using different spatial discretizations for the coarse
and fine propagators; this may provide additional speedup, provided suitable restric-
tion and prologation operators are used to communicate between the two discretiza-
tions. This will be the subject of investigation in a future paper.
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Fig. 12. Convergence of the method for various values of the ratio r = \delta t
\Delta t

. Left: \delta t = 10 - 7;

right: \delta t = 10 - 9.

Fig. 13. Top left: spectral radius of the preconditioned matrix as a function of \alpha , with \delta t = 10 - 5

and \Delta t = \Delta T = 10 - 1. Top right: spectral radius of the preconditioned matrix as a function of
\Delta t/\Delta T , with \delta t = 10 - 8 and \alpha = 10 - 4. Bottom left: spectral radius of the preconditioned matrix as
a function of \alpha and \Delta t/\Delta T , with \delta t = 10 - 7. Bottom right: estimate (3.39) as a function of \alpha and
\Delta t/\Delta T .

5. Conclusions. We introduced a new time parallel algorithm we call ParaOpt
for time-dependent optimal control problems. Instead of applying Parareal to solve
separately the forward and backward equations as they appear in an optimization loop,
we propose in ParaOpt to partition the coupled forward-backward problem directly
in time and to use a Parareal-like iteration to incorporate a coarse correction when
solving this coupled problem. We analyzed the convergence properties of ParaOpt and
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proved in the linear diffusive case that its convergence is independent of the number
of subintervals in time and thus is scalable. We also tested ParaOpt on scalar linear
optimal control problems, a nonlinear nondiffusive optimal control problem involving
the Lotka--Volterra system, and on a control problem governed by the heat equation. A
small scale parallel implementation of the Lotka--Volterra case also showed scalability
of ParaOpt for this nonlinear problem.

Our ongoing work consists of analyzing the algorithm for nondiffusive problems.
Also, for problems with large state spaces, e.g., for discretized PDEs in three spatial
dimensions, the approximate Jacobian \scrJ G in (2.12) may become too large to solve by
direct methods. Thus, we are currently working on designing efficient preconditioners
for solving such systems iteratively. Finally, we are currently studying ParaOpt by
applying it to realistic problems from applications, in order to better understand its
behavior in such complex cases.

Appendix A. Proof of inequality (3.34). Our goal is to prove the following
lemma, which is needed for the proof of Lemma 3.3.

Lemma A.1. For every k > 0 and 0 < x \leq k, we have

(A.1) (1 + x)k/x > k

\biggl( 
2 + x

1 + x

\biggr) 
 - 1.

First, we need the following property of logarithmic functions.

Lemma A.2. For any x > 0, we have

ln(1 + x) \geq x

x+ 1
+

1

2

\biggl( 
x

x+ 1

\biggr) 2

.

Proof. Let u = x
x+1 < 1. Then

ln(1 + x) =  - ln

\biggl( 
1

1 + x

\biggr) 
=  - ln(1 - u)

= u+
u2

2
+

u3

3
+ \cdot \cdot \cdot \geq u+

u2

2
.

The conclusion now follows.

Lemma A.1. Let g and h denote the left- and right-hand sides of (A.1), respec-
tively. We consider two cases, namely when 0 < k \leq 1 and when k > 1. When k \leq 1,
we have

h(x) \leq 2 + x

1 + x
 - 1 =

1

1 + x
< 1 < (1 + x)k/x = g(x).

For the case k > 1, we will show that g(k) > h(k) and g\prime (x) - h\prime (x) < 0 for 0 < x < k,
which together imply that g(x) > h(x) for all 0 < x \leq k. The first assertion follows
from the fact that

g(k) - h(k) = 1 + k  - k \cdot k + 2

k + 1
+ 1 = 2 - k

k + 1
> 0.

To prove the second part, we note that
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g\prime (x) = (1 + x)k/x
\biggl[ 
 - k

x2
ln(1 + x) +

k

x(1 + x)

\biggr] 
=

 - k

x2
(1 + x)k/x - 1 [(1 + x) ln(1 + x) - x]

<
 - k

x2
(1 + x)k/x - 1 \cdot x2

2(x+ 1)
=

 - k

2
(1 + x)k/x - 2 < 0,

h\prime (x) =  - k

(1 + x)2
< 0.

Therefore, we have

g\prime (x) - h\prime (x) <  - k

(1 + x)2

\biggl[ 
1

2
(1 + x)k/x  - 1

\biggr] 
\leq  - k

(1 + x)2

\biggl[ 
1 + k

2
 - 1

\biggr] 
\underbrace{}  \underbrace{}  
> 0 since k > 1

< 0.

Thus, g(x) > h(x) for all 0 < x < k, as required.
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