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Abstract

Often considered in numerical simulations related to the control of quantum systems, the so-called monotonic schemes have not been so far
much studied from the functional analysis point of view. Yet, these procedures provide an efficient constructive method for solving a certain
class of optimal control problems. This paper aims both at extending the results already available about these algorithms in the finite-dimensional
case (i.e., the time-discretized case) and at completing those of the continuous case. This paper starts with some results about the regularity of
a functional related to a wide class of models in quantum chemistry. These enable us to extend an inequality due to Łojasiewicz to the infinite-
dimensional case. Finally, some inequalities proving the Cauchy character of the monotonic sequence are obtained, followed by an estimation of
the rate of convergence.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Following the increasing interest of the chemists community
in the optimal control of quantum systems [21,27] and the
successful laboratory demonstration of control over molecular
phenomena (see, e.g., [1,7,32] and more recently [12,31]),
some mathematical studies of the models involved in this
topic have been carried out, see e.g. [6,16]. In this way, it
has been proved in recent papers [4,9] that a wide class of
optimization problems considered by chemists are well posed.
Yet, these proofs are not constructive and consequently do not
give rise to concrete numerical methods to approximate their
solutions.

On the other hand, at numerical simulation level [8,22],
various kind of procedures exist and show a good efficiency.
Among them, the so-called monotonic algorithms have
demonstrated their efficiency on several problems. In a recent
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paper, a study of the time-discretized algorithms [24] have
been presented and first functional analysis results have been
obtained about the continuous case [14,25].

The aim of this paper is to complete these works by
providing general proofs of convergence of the optimizing
sequences. Consequently, we obtain a constructive method,
independent of time or space discretization to compute critical
points (and sometimes extrema, see Remark 3) of the cost
functional under consideration.

Let us briefly present the monotonic schemes in the simple
case of ordinary differential equations (ODE). Let A, B,C be
three square matrices in Mn(R), C being symmetric positive,
α > 0 and T > 0. Consider the optimal control problem
corresponding to the maximization of the functional J defined
by:

J (v) = y(T ) · Cy(T )− α

∫ T

0
v2(t)dt,

where “·” denotes the usual scalar product of Rn . Here, the state
y : [0, T ] → Rn and the control v : [0, T ] → R are linked by
the ODE:
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{
y′(t) = (A + v(t)B) y(t), ∀t ∈ (0, T )
y(0) = y0

the initial condition y0 being fixed.
Given two controls v and ṽ and the corresponding states y

and ỹ, we first note that:

J (̃v)− J (v) = (ỹ(T )− y(T )) · C (ỹ(T )− y(T ))

+ 2 (ỹ(T )− y(T )) · Cy(T )

−α

∫ T

0
(̃v(t)− v(t)) (̃v(t)+ v(t))dt.

We then introduce an auxiliary function z : [0, T ] → Rn

associated to y and v by{
z′(t) = −

(
A∗

+ v(t)B∗
)

z(t),
z(T ) = Cy(T )

where A∗ and B∗ are the transposed matrices of A and B.
Focusing on the second term on the right-hand side of this

equation, we get:

(ỹ(T )− y(T )) · Cy(T ) =

∫ T

0
(̃v(t)− v(t)) B ỹ(t) · z(t)dt.

Thus, we finally obtain:

J (̃v)− J (v) = (ỹ(T )− y(T )) · C (ỹ(T )− y(T ))

+α

∫ T

0
(̃v(t)− v(t))

(
2
α

B ỹ(t) · z(t)− ṽ(t)− v(t)

)
dt.

A simple way to guarantee that ṽ gives a better cost functional
value than v, is to impose that:

(̃v(t)− v(t))

(
2
α

B ỹ(t) · z(t)− ṽ(t)− v(t)

)
≥ 0. (1)

Following this approach, the sequence (vk)k∈N defined
iteratively by the implicit equation vk+1

=
1
α

Byk+1(t) · zk(t),
where yk+1 and zk correspond to vk+1 and vk respectively,
optimizes J monotonically since

J (vk+1)− J (vk) =

(
yk+1(T )− yk(T )

)
· C
(

yk+1(T )− yk(T )
)

+α

∫ T

0

(
vk+1(t)− vk(t)

)2
dt ≥ 0.

In this article, we prove the convergence of generalizations of
this algorithm towards a critical point of J in the case of the
Schrödinger partial differential equation:

i∂tψ(x, t)− [H − µ(x)ε(t)]ψ(x, t) = 0.

This equation governs the evolution of a quantum system,
described by its wave function ψ , that interacts with a laser
pulse of amplitude ε, the control variable. The factor µ is
the dipole moment operator of the system. In what follows,
H = −∆+V where ∆ is the Laplacian operator and V = V (x)
the electrostatic potential in which the system evolves. We refer
to [22] for more details about models involved in quantum
control.
The paper is organized as follows: we start in Section 2
with some necessary results about the linear and nonlinear
Schrödinger equations involved in the problem we are
considering. We then present the optimization problem in
Section 3, and claim some regularity results about the
corresponding cost functional in Section 4. We introduce in
Section 5 an important tool for proving the convergence of the
sequence, namely the Łojasiewicz inequality and some of its
generalizations. The definition of the monotonically optimizing
sequence is given in Section 6 where some useful properties
are also claimed. The convergence of the sequences is proved
in Section 7 and a first result about their rate of convergence
follows in the last section.

Throughout this paper, T is a positive real number
representing the time of control of a physico-chemical process.
We denote by L2 and L∞ the spaces L2(R3,C) and
L∞(R3,C), W p,∞(R3,R) with p ∈ [1,+∞) by W p,∞, the
Sobolev space H2(R3,C) by H2 and L p(0, T ; X) with p ∈

[1,+∞) denotes the usual Lebesgue space taking its values in
a Banach space X . We also use the notation 〈 . | . | . 〉 and
〈 . , . 〉 defined by:

〈 f |A|g〉 =

∫
R3

f (x)Ag(x)dx, 〈 f, g〉 =

∫
R3

f (x)g(x)dx,

where f and g are in L2 and A is an operator on L2. To simplify
our notation, the space variable x will often be omitted. Finally,
for h ∈ L p(0, T ; X), p ∈ ]1,∞], we recall that ‖h‖L p(0,T ;X) =

‖t 7→ ‖h(t) ‖X ‖L p(0,T ). Finally, we denote by Im(z) and Re(z)
the imaginary and the real part of a complex number z.

2. Preliminary existence results

The sequences we study in this paper are defined
through iterative resolutions of Schrödinger equations. Before
introducing the relevant framework of our study, we present
here some necessary preliminary existence and regularity
results concerning these equations. The first one will
correspond later to the initialization step in the definition of the
sequences. This lemma is a corollary of a general result on time
dependent Hamiltonians (see [23], p. 285, Theorem X.70) but
for the sake of clarity, we present here an approach using other
techniques also useful in the proof of the next lemmas.

Lemma 1. Let µ and V belong to W 2,∞ and let H = −∆+V .
If ε ∈ L2(0, T ) and ψ0 ∈ H2, the equation{

i∂tψ(x, t)− [H(x)− µ(x)ε(t)]ψ(x, t) = 0
ψ(x, 0) = ψ0(x)

(2)

has a unique solution ψ ∈ L∞(0, T ; H2) ∩ W 1,∞(0, T ; L2).
Moreover:

∀t ∈ [0, T ], ‖ψ(t)‖L2 = ‖ψ0‖L2 . (3)

Proof. One can also read a similar proof in [3] but here we give
some details. It is well known (see [11] for instance) that for
any T > 0 and u0 ∈ H2, the Schrödinger equation{

i∂t u(x, t)+ ∆u(x, t) = 0, x ∈ R, t ∈ [0, T ]

u(x, 0) = u0(x), x ∈ R
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has a unique solution u(t) = S(t)u0 such that u ∈

C([0, T ]; H2) ∩ C1([0, T ]; L2), where (S(t))t∈R denotes the
free Schrödinger semigroup eit∆. Moreover, for all t ∈ [0, T ]

we have

‖u(t)‖H2 = ‖S(t)u0‖H2 = ‖u0‖H2 . (4)

Let λ > 0 be a given positive number which will be fixed
hereafter and denote by Y the space C([0, T ]; H2) endowed
with the norm ‖ψ‖Y = supt∈[0,T ] e−λt

‖ψ(t)‖H2 . The solution
of Eq. (2) is obtained equivalently as a solution to the integral
equation

ψ(t) = S(t)ψ0 + i
∫ t

0
S(t − s)W (s)ψ(s) ds

where W (x, t) = −V (x)+µ(x)ε(t) for all t ∈ [0, T ], x ∈ R3.
We are going to show that this equation has a unique solution
in Y , by proving that operator Φ defined by

Φ(ψ)(t) = S(t)ψ0 + i
∫ t

0
S(t − s)W (s)ψ(s) ds

has a unique fixed point in a closed ball BR =

{ψ ∈ Y ; ‖ψ‖Y ≤ R} for suitable R.
If ψ ∈ BR , then ‖ψ(s)‖H2 ≤ eλs

‖ψ‖Y ≤ Reλs

and since W ∈ L2(0, T ; W 2,∞), we can set ρ > 0
such that ‖W‖L2(0,T ;W 2,∞) ≤ ρ. Using estimate (4) and
Cauchy–Schwarz inequality we obtain

‖Φ(ψ)(t)‖H2 ≤ ‖ψ0‖H2 +

∫ t

0
‖W (s)ψ(s)‖H2 ds

≤ ‖ψ0‖H2 + ρR

(∫ t

0
e2λsds

) 1
2

.

It follows that if R > 0 is large enough so that ‖ψ0‖H2 ≤
R
2

and if we choose λ > 2ρ2, then

‖Φ(ψ)‖Y ≤ sup
t∈[0,T ]

e−λt
‖ψ0‖H2 + ρR

(∫ t

0
e2λ(s−t)ds

) 1
2

≤
R

2
+
ρR
√

2λ
≤ R.

This means that Φ maps BR into itself. Then, for ψ1, ψ2 ∈ BR
it is clear that

‖(Φ(ψ1)− Φ(ψ2))(t)‖H2 ≤

∫ t

0
‖W (s)(ψ1 − ψ2)(s)‖H2ds

≤ ρ‖ψ1 − ψ2‖Y

(
e2λt

− 1
2λ

) 1
2

,

and since λ has been appropriately chosen, this proves that Φ is
a strict contraction from BR into itself as

‖(Φ(ψ1)− Φ(ψ2))‖Y ≤ ρ‖ψ1 − ψ2‖Y sup
t∈[0,T ]

(
1 − e−2λt

2λ

) 1
2

≤
ρ

√
2λ

‖ψ1 − ψ2‖Y ≤
1
2
‖ψ1 − ψ2‖Y

and therefore Φ has a unique fixed point, yielding the solution
of Eq. (2) in L∞(0, T ; H2). One can notice that uniqueness
is not only true in BR but also easily proved using the norm
in L∞(0, T ; L2). Moreover, calculating Im
∫
R (2).ψ(x)dx , one

can prove the conservation of the L2-norm (3) and finally, using
Eq. (2), it is easy to obtain that ψ ∈ W 1,∞(0, T ; L2). �

We will also have recourse to a similar lemma, dealing with
Eq. (2) with a nonzero source term.

Lemma 2. Let H, µ, ε be as above and ψ ∈ L∞(0, T ; H2).
Given ε′ ∈ L2(0, T ), the equation:i∂tψ

′(x, t)− [H(x)− µ(x)ε(t)]ψ ′(x, t)
= −µ(x)ε′(t)ψ(t, x)

ψ ′(x, 0) = 0
(5)

has a unique solution ψ ′
∈ L∞(0, T ; H2) ∩ W 1,∞(0, T ; L2).

Moreover the following estimate holds:

‖ψ ′
‖L∞(0,T ;L2) ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖ψ‖L∞(0,T ;L2). (6)

Proof. The key point to prove the existence of a solution for
(5) is to underline the fact that the source term f (x, t) =

µ(x)ε′(t)ψ(t, x) of this linear Schrödinger equation belongs to
L2(0, T ; H2). It is then very classical to get from Lemma 1
the existence and uniqueness of a solution ψ ′ to Eq. (5) in
L∞(0, T ; H2)∩W 1,∞(0, T ; L2). Now consider ϕ ∈ C([0, T ])

defined on [0, T ] by ϕ(t) = ‖ψ ′(t)‖2
L2 . We have:

d
dt
ϕ(t) = 2Re

〈
ψ ′(t),

H − µε(t)

i
ψ ′(t)−

µε′(t)

i
ψ(t)

〉
= −2ε′(t)Im

〈
ψ ′(t)|µ|ψ(t)

〉
. (7)

Moreover, there exists t0 such that: ϕ(t0) = supt∈[0,T ]

{‖ψ ′(t)‖2
L2}. We suppose that ε′ 6= 0 and ψ 6= 0, so that

ϕ(t0) 6= 0 by the uniqueness of the solution of (5). Since
ψ ′(x, 0) = 0 for all x ∈ R3, the integration of (7) between
0 and t0 yields ϕ(t0) =

∫ t0
0 −2ε′(t)Im〈ψ ′(t)|µ|ψ(t)〉dt , then:

ϕ(t0) = ‖ψ ′(t0)‖
2
L2

≤ ‖µ‖L∞‖ψ ′(t0)‖L2

∫ T

0
2|ε′(t)|‖ψ(t)‖L2dt.

Since ‖ψ ′(t)‖L2 ≤ ‖ψ ′(t0)‖L2 for all t ∈ [0, T ], we obtain

‖ψ ′(t)‖L2 ≤ ‖ψ ′(t0)‖L2

≤ 2‖µ‖L∞‖ψ‖L∞(0,T ;L2)

∫ T

0
|ε′(t)|dt,

which ends the proof of estimate (6). �

Finally, we claim a last result that will be useful to tackle
the problems related to a nonlinear Schrödinger equation we
encounter in this study. Actually the nonlinearity we consider
here is the one that appears naturally in the adjoint system from
a quadratic cost functional (as J is in (14)), even when the state
equation is linear.

Lemma 3. Let H, µ, ε and ψ0 be defined as above. Given
χ ∈ L∞(0, T ; H2), the nonlinear Schrödinger equation:i∂tψ(x, t)− [H(x)− µ(x)ε(t)

+ Im 〈χ(t)|µ|ψ(t)〉µ(x)]ψ(x, t) = 0
ψ(x, 0) = ψ0(x)

(8)

has a unique solution ψ ∈ L∞(0, T ; H2) ∩ W 1,∞(0, T ; L2).
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Proof. – First step –
Let u and χ ∈ H2, we denote the nonlinear term by F(u) =

Im〈χ |µ|u〉µu and we can prove that one has the following
estimates: ∃C = C(χ, µ) > 0 such that

∀u, v ∈ L2,

‖F(u)− F(v)‖L2 ≤ C(‖u‖L2 + ‖v‖L2)‖u − v‖L2 (9)

∀u, v ∈ H2,

‖F(u)− F(v)‖H2 ≤ C(‖u‖L2 + ‖v‖H2)‖u − v‖H2 (10)

‖F(u)‖H2 ≤ C‖u‖L2‖u‖H2 . (11)

Indeed

‖F(u)− F(v)‖L2 ≤ ‖Im〈χ |µ|u〉µu − Im〈χ |µ|v〉µv‖L2

≤ ‖Im〈χ |µ|u〉µ(u − v)‖L2 + ‖Im〈χ |µ|(u − v)〉µv‖L2

≤ ‖µ‖
2
L∞‖χ‖L2(‖u‖L2 + ‖v‖L2)‖u − v‖L2

which proves (9). Now, we have to establish (10) and (11). First
of all we have

‖F(u)− F(v)‖2
H2 = ‖F(u)− F(v)‖2

L2

+ ‖∆F(u)− ∆F(v)‖2
L2 .

The first term on the right-hand side is conveniently bounded in
(9). Moreover

‖∆F(u)− ∆F(v)‖L2

≤ ‖Im〈χ |µ|u − v〉∆(µ(u − v))‖L2 + ‖Im〈χ |µ|v〉∆(µv)‖L2

≤ ‖µ‖
2
W 2,∞‖χ‖L2(‖u‖L2 + ‖v‖H2)‖u − v‖H2

≤ C(‖u‖L2 + ‖v‖H2)‖u − v‖H2 .

Then, F is locally Lipschitz in H2. Therefore, taking v = 0, we
also get (11).
– Second step –
The proof of a local-in-time result is again based on a fixed
point theorem. We begin by fixing an arbitrary time T > 0 and
considering τ ∈ ]0, T ]. We also consider the functional

ξ : ψ 7−→ U ( . , 0)ψ0 − i
∫ .

0
U ( . , s)F(ψ(s)) ds,

where {U (t, s), s, t ∈ [0, T ]} is the propagator associated with
the operator H − µε and induced by Lemma 1 (such that
U (t, s) ∈ L(H2)—for details, see [5]), and the set

B = {v ∈ L∞(0, τ ; H2), ‖ψ‖L∞(0,τ ;H2) ≤ 2M‖ψ0‖H2}

where M satisfies ∀v ∈ H2, ‖U (t, s)v‖H2 ≤ M‖v‖H2 .
If τ > 0 is small enough, the functional ξ maps B into itself

and is a strict contraction in the Banach space L∞(0, τ ; H2).
Indeed, on the one hand, from estimate (11), if ψ ∈ B, we have
for all t ∈ [0, τ ]:

‖ξ(ψ)(t)‖H2 ≤

∥∥∥∥U (t, 0)ψ0 − i
∫ t

0
U (t, s)F(ψ(s)) ds

∥∥∥∥
H2

≤ M‖ψ0‖H2 + τM‖F(ψ)‖L∞(0,τ ;H2)

≤ M‖ψ0‖H2 + τC M‖ψ‖L∞(0,τ ;L2)‖ψ‖L∞(0,τ ;H2)

≤ M‖ψ0‖H2 + 4τC M3
‖ψ0‖

2
H2 .

Then, if we choose τ such that 4τC M2
‖ψ0‖H2 < 1 we obtain

‖ξ(ψ)‖L∞(0,τ ;H2) ≤ 2M‖ψ0‖H2 and ξ(ψ) belongs to B. On
the other hand, if ψ1 and ψ2 ∈ B, then for all t in [0, τ ] we
have,

‖ξ(ψ1)(t)− ξ(ψ2)(t)‖H2

=

∥∥∥∥∫ t

0
U (t, s) (F(ψ1(s))− F(ψ2(s))) ds

∥∥∥∥
H2

≤ C M
(
‖ψ1‖L∞(0,τ ;L2) + ‖ψ2‖L∞(0,τ ;H2)

)
×

∫ t

0
‖ψ1(s)− ψ2(s)‖H2 ds

≤ 4τC M2
‖ψ0‖H2 ‖ψ1 − ψ2‖L∞(0,τ ;H2)

with 4τC M2
‖ψ0‖H2 < 1. Therefore, from a usual fixed point

theorem, we can deduce existence and uniqueness in the set B,
then in L∞(0, τ ; H2), for τ > 0 small enough, of the solution
of equation

ψ(t) = U (t, 0)ψ0 − i
∫ t

0
U (t, s)F(ψ(s)) ds (12)

which is in fact equivalent to Eq. (8). Moreover, using (8), it is
easy to prove that ∂tψ belongs to L∞(0, τ ; L2).

The last point is then to prove the uniqueness of the solution
u of (8) in the space L∞(0, τ ; H2) ∩ W 1,∞(0, τ ; L2). Let ψ1
and ψ2 be two solutions of (8) and w equal to ψ1 − ψ2. Then
w(0) = 0 and

i∂tw − [H(x)− µ(x)ε(t)]w = F(ψ2)− F(ψ1). (13)

Calculating Im
∫
R (13).w(x)dx and using (9) we obtain

d
dt (‖w‖

2
L2) ≤ C‖w‖

2
L2 and uniqueness follows by Gronwall

lemma. Hence the proof of uniqueness, existence and regularity
of the solution of Eq. (8) in R × [0, τ ] for any time τ <

1
4C M2‖ψ0‖H2

.

– Third step –
Now, the goal is to obtain an a priori estimate of the solution
in W 1,∞(0, T ; L2) ∩ L∞(0, T ; H2) for any arbitrary time T ,
in order to prove that the local solution we obtained previously
exists globally because we have a uniform bound on the norm
‖ψ(t)‖H2 + ‖∂tψ(t)‖L2 .

Actually, since Eq. (8) is equivalent to the integral equation
(12) and since it is easy to prove the conservation of the L2-
norm of the solution, we have,

‖ψ(t)‖H2 ≤ ‖U (t, 0)ψ0‖H2 +

∥∥∥∥∫ t

0
U (t, s)F(ψ(s)) ds

∥∥∥∥
H2

≤ M ‖ψ0‖H2 + MC
∫ t

0
‖ψ(s)‖L2 ‖ψ(s)‖H2 ds

≤ C0,T

(
1 +

∫ t

0
‖ψ(s)‖H2 ds

)
where C0,T > 0 is a generic constant depending on the time
T , on µ, χ and on ‖ψ0‖H2 . We finally obtain from Gronwall
lemma and from Eq. (8), that ‖ψ(t)‖H2 + ‖∂tψ(t)‖L2 ≤ C0,T
for all t ∈ [0, T ]. Hence the proof of Lemma 3. �

3. Optimization problem

Let us now present the optimization problem we are dealing
with in this paper. Let O be a positive symmetric bounded
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operator on H2 and α and T two positive real numbers. Given
ψ0 ∈ H2, we consider the cost functional J defined on
L2(0, T ) by:

J (ε) = 〈ψ(T )|O|ψ(T )〉 − α

∫ T

0
ε2(t)dt, (14)

where ψ is the solution of (2). In all what follows we suppose
that ‖ψ0‖L2 = 1. The existence of a minimizer for similar cost
functionals (with the opposite sign) has been obtained in [3,4,
9] and follows from the construction of a minimizing sequence
and a compactness lemma (Aubin’s lemma). Here, the point is
to maximize the functional J and as usual, at the maximum
of J , the Euler–Lagrange critical point equations are satisfied.
A standard way to write these equations is to use a Lagrange
multiplier χ(x, t) usually called adjoint state. The following
critical point equations are thus obtained, for x ∈ R3 and
t ∈ (0, T ):{

i∂tψ(x, t)− [H(x)− µ(x)ε(t)]ψ(x, t) = 0
ψ(x, 0) = ψ0(x)

(15){
i∂tχ(x, t)− [H(x)− µ(x)ε(t)]χ(x, t) = 0
χ(x, T ) = Oψ(x, T )

(16)

αε(t)+ Im〈ψ(t)|µ|χ(t)〉 = 0.

The existence of χ ∈ L∞(0, T ; H2) results from an adaptation
of Lemma 1, as for ψ(T ) ∈ H2 since Eq. (15) is actually Eq.
(2). In what follows, we also consider the linearized equation of
(16):i∂tχ

′(x, t)− [H(x)− µ(x)ε(t)]χ ′(x, t)
= −µ(x)ε′(t)χ(t, x)

χ ′(x, T ) = Oψ ′(T ),
(17)

where ε′ ∈ L2(0, T ) and ψ ′ is the solution of (5),
corresponding to the solution ψ of (15). The existence of χ ′

∈

L∞(0, T ; H2) follows from Lemma 2. The analysis done in the
proof of estimate (6) gives in this case:

‖χ ′(t)‖L2 ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖χ‖L∞(0,T ;L2)

+ ‖χ ′(T )‖L2 . (18)

Since χ(T ) = Oψ(T ), χ ′(T ) = Oψ ′(T ) and from (6) and the
conservation of the L2-norm, we obtain

‖χ ′
‖L∞(0,T ;L2) ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖χ‖L∞(0,T ;L2)

+ 2‖O‖∗‖µ‖L∞‖ε′‖L1(0,T )‖ψ‖L∞(0,T ;L2)

≤ 4‖µ‖L∞‖O‖∗‖ε
′
‖L1(0,T ), (19)

where ‖O‖∗ denotes the operator norm of O on L2.

4. Properties of the functional J

We begin with some properties about the regularity of the
cost functional J .

4.1. Gradient of J

We start with some first-order properties. As often, the use
of the adjoint state χ allows us to simplify the computation of
the derivative of J . This result is the purpose of the next lemma.
Lemma 4. The cost functional J is differentiable on L2(0, T )
and its gradient can be expressed by

(∇ J (ε), ε′) = −2
∫ T

0
(αε(t)+ Im〈χ(t)|µ|ψ(t)〉) ε′(t)dt, (20)

where (·, ·) is the usual inner product on L2(0, T ) and ψ and
χ are the solutions of (15) and (16).

Proof. We only give here a sketch of the proof. The details
can be found in Reference [3] for a slightly different cost
functional. The main point is to prove the differentiability of
the functional φ : ε ∈ L2(0, T ) 7→ ψ(T ), where ψ is the
solution of Eq. (15). Actually, one can prove that the solution
ψ ′ of (5) is such that Dφ(ε)[ε′] = ψ ′(T ). Therefore, since
J (ε) = 〈ψ(T )|O|ψ(T )〉 − α

∫ T
0 ε2(t)dt , we have

(∇ J (ε), ε′) = 2Re〈ψ ′(T )|O|ψ(T )〉 − 2α
∫ T

0
ε(t)ε′(t)dt.

To end the proof of (20), we consider the solution χ of the
adjoint state Eq. (16) and we multiply Eq. (5) by χ (the complex
conjugate of χ ), integrate on R × [0, T ] and take the imaginary
part. We obtain:

Im
∫ T

0

∫
R
(i∂tψ

′
− [H − µε]ψ ′)χ = Im

∫ T

0

∫
R
µε′ψχ.

After an integration by parts and since ψ ′(0) = 0, we get

Im
∫ T

0

∫
R

i∂tχψ
′
− Im

∫
R
ψ ′(T ) iχ(T )

− Im
∫ T

0

∫
R

[H − µε]χψ ′
= Im

∫ T

0

∫
R
µε′ψχ.

Since χ satisfies Eq. (16), we then obtain

Re〈ψ ′(T )|O|ψ(T )〉 = Re
∫
R
ψ ′(T ) Oψ(T )

= −Im
∫ T

0

∫
R
µε′ψχ

= −

∫ T

0
Im〈χ(t)|µ|ψ(t)〉ε′(t)dt

what ends the proof of the lemma. �

In what follows, we denote by ∇ J (ε) the function t 7→

−2 (αε(t)+ Im〈χ(t)|µ|ψ(t)〉) and by CJ the set of the critical
points of J , i.e.,

CJ = {ε ∈ L2(0, T ), ∀t ∈ [0, T ], αε(t)

+ Im〈χ(t)|µ|ψ(t)〉 = 0}. (21)

Note that, thanks to the results of the Section 2, we have
CJ ⊂ L∞(0, T ) since for all ε ∈ CJ ,

‖ε‖L∞(0,T ) ≤
1
α

‖〈χ |µ|ψ〉‖L∞(0,T )

≤ C‖µ‖L∞‖χ‖L∞(0,T ;L2)‖ψ‖L∞(0,T ;L2).
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Remark 1. Also note that for α > 6T ‖µ‖
2
L∞‖O‖∗, the set CJ

is reduced to one point. Indeed, suppose that CJ contains two
distinct points ε1 and ε2, we then have, for t ∈ (0, T ):

α (ε2(t)− ε1(t))+ Im〈χ2(t)− χ1(t)|µ|ψ2(t)〉

+ Im〈χ1(t)|µ|ψ2(t)− ψ1(t)〉 = 0,

where ψ1, ψ2 (resp. χ1, χ2) are the solutions of (15) (resp. (16))
corresponding to ε1 and ε2 respectively. Using estimates (6)
with ψ = ψ1, ψ ′

= ψ2 − ψ1, ε = ε2 and ε′ = ε2 − ε1 and
(18) with χ = χ1, χ ′

= χ2 − χ1, ψ ′
= ψ2 − ψ1, ε = ε2 and

ε′ = ε2 − ε1, we obtain

α‖ε2 − ε1‖L1(0,T ) ≤ 6T ‖µ‖
2
L∞‖O‖∗‖ε2 − ε1‖L1(0,T ),

which leads to α ≤ 6T ‖O‖∗‖µ‖
2
L∞ , and the result follows.

In order to prove the compactness of CJ , we introduce an
important property of the application ε(t) 7→ ψ(x, t), firstly
presented in a more general setting by J.M. Ball, J.E. Marsden
and M. Slemrod in [2]. In our context, this result can be stated
as follows.

Lemma 5. Assume that ε ∈ L1(0, T ), µ : X → X is a
bounded operator and that H generates a C0-semigroup of
bounded linear operators on some Banach space X. For x ∈ R3

and t ∈ (0, T ), we denote by ψ(x, t) the solution of{
i∂tψ − [H − µε]ψ = 0,
ψ(0) = ψ0 ∈ X.

Then, ε 7→ ψ is a compact mapping in the sense that for any
weakly converging sequence (εn)n∈N to ε in L1(0, T ), (ψn)n∈N
converges strongly to ψ in C([0, T ]; X).

The precise proof of this result derives directly from [2]
(Theorem 3.6, p. 580), see also [10,26]. It allows us to obtain
the following lemma.

Lemma 6. For µ ∈ W 2,∞, CJ is compact in L∞(0, T ).

Proof. Consider a bounded sequence (εn)n∈N of CJ . By
definition, for all n ∈ N, εn

∈ L2(0, T ) and εn(t) =

−
1
α

〈χn(t)|µ|ψn(t)〉 where ψn and χn are the corresponding
solutions of (15) and (16). It is also possible to extract a
weakly convergent sub-sequence in L2(0, T ), still denoted
(εn)n∈N. From Lemma 1, one knows that the Hamiltonian
H = −∆ + V with V ∈ W 2,∞ generates a C0-semigroup
of bounded linear operators on the Banach space X = H2.
Therefore, with µ ∈ W 2,∞ the conditions of Lemma 5 are

fulfilled and we obtain the strong convergences ψn n→+∞
−→ ψ

and χn n→+∞
−→ χ in C([0, T ]; H2). Thus, for all t ∈ (0, T ),∫

R3 ψn(t) µχn(t) dx
n→+∞
−→

∫
R3 ψ(t) µχ(t) dx . The sequence

(εn(t))n∈N then strongly converges in L∞(0, T ) and the result
follows. �

4.2. Analyticity of J

The implicit formulation of the derivative can be iteratively
carried on in order to prove the analyticity of J .
Lemma 7. Let ψ be the solution of (15) corresponding to ε.
The functional

ϑ : L2(0, T ) → L∞(0, T ; H2) ∩ W 1,∞(0, T ; L2)

ε 7→ ψ,

is analytic.

Proof. Let ε, ε′ ∈ L2(0, T ) be such that ‖ε′‖L1(0,T ) ≤

1
4‖µ‖L∞

and the sequence (ψ`)`∈N ∈ (L∞(0, T ; H2))N defined

recursively by ψ0
= ϑ(ε) and for ` > 0:

i∂tψ
`(x, t)− [H − µ(x)ε(t)]ψ`(x, t)

= −µ(x)ε′(t)ψ`−1(x, t)
ψ`(x, 0) = 0.

(22)

The existence of ψ` is a consequence of Lemma 2. Thanks to
(6) applied with ψ = ψ`−1 and ψ ′

= ψ`, one has for ` ≥ 1
and t ∈ [0, T ]:

‖ψ`(t)‖L2 ≤ 2‖µ‖L∞‖ε′‖L1(0,T )‖ψ
`−1

‖L∞(0,T ;L2)

≤ 2`‖µ‖
`
L∞‖ε′‖`L1(0,T ). (23)

Given N > 0, we obtain by summing (22) from ` = 0 to N :

i∂t

(
N∑
`=0

ψ`(x, t)

)
− [H − µ(x)

(
ε(t)+ ε′(t)

)
]

×

(
N∑
`=0

ψ`(x, t)

)
= µ(x)ε′(t)ψN (x, t)

N∑
`=0

ψ`(x, 0) = ψ0(x).

(24)

On the other hand, one has:

i∂tϑ(ε + ε′)− [H − µ(x)(ε(t)+ ε′(t))]ϑ(ε + ε′) = 0. (25)

Subtracting (24) and (25) and using estimates (6) with ψ =

−ψN , ψ ′
=
∑N
`=0 ψ

`(x, t) − ϑ(ε + ε′), ε = ε + ε′ and (23),
we get:∥∥∥∥∥ϑ(ε + ε′)(t)−

N∑
`=0

ψ`(t)

∥∥∥∥∥
L2

≤ 2N
‖µ‖

N
L∞‖ε′‖N

L1(0,T ) ≤ 2−N

and the functional ϑ now reads: ϑ(ε+ε′) =

∞∑̀
=0
ψ` in L2(0, T ).

Since ε′ 7→ ψ` is `-linear, the theorem follows. �

The next lemma follows immediately from this result.

Lemma 8. The cost functional J is analytic on L2(0, T ).

4.3. About the Hessian operator of J

Let us now investigate some properties of the second-order
derivative of J . Though we express it as an implicit function
of its argument ε, some results can be obtained from the next
lemma.
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Lemma 9. Let ψ and χ be the solutions of (15) and (16). The
functional γ : ε 7→ I m〈χ |µ|ψ〉 is differentiable on L2(0, T )
and one has:

Dγ (ε)[ε′] = Im〈χ ′
|µ|ψ〉 + Im〈χ |µ|ψ ′

〉, (26)

where ψ ′ and χ ′ are the solutions of (5) and (17). Moreover,
for all ε ∈ L2(0, T ), Dγ (ε) is compact on L2(0, T ).

Proof. Let ε ∈ L2(0, T ) and ψ and χ the corresponding
solutions of (15) and (16). As in the proof of Lemma 4, the
key point is the differentiability of the functional ϑ , defined
in Lemma 7 on L2(0, T ). Actually, Dϑ(ε)[ε′] = ψ ′, where
ψ ′ is the solution of (5). The main explanations can be read
in [4]. Repeating this argument for ε 7→ χ , we obtain that γ is
differentiable and we get (26).

Let us now prove the compactness of this operator. Let
(ε′

n
)n∈N be a bounded sequence in L2(0, T ) and let (ψ ′n)n∈N

and (χ ′n)n∈N be the corresponding solutions of (5) and (17).
As ψ ′n

∈ L∞(0, T ; H2) ∩ W 1,∞(0, T ; L2) (see the proof
of Lemma 2), we have that ψ ′n

∈ C([0, T ]; L2) and ∂tψ
′n

∈

L2(0, T ; L2). By means of the continuity of:

L2(0, T ) → C([0, T ]; L2) ε′ 7→ ψ ′ and

L2(0, T ) → L2(0, T ; L2) ε′ 7→ ∂tψ
′ (27)

there exist ψ ′∞ such that, up to extraction, ψ ′n ⇀ ψ ′∞
∈

L2(0, T ; L2) and

∂tψ
′n ⇀ ∂tψ

′∞
∈ L2(0, T ; L2). (28)

Since ψ ′n(0) = 0, we have ψ ′n(t) =
∫ t

0 ∂tψ
′n(s)ds and (28)

implies that for all t ∈ [0, T ], (‖ψ ′n(t)‖L2)n∈N is uniformly
bounded. Moreover, for all t, t ′ ∈ [0, T ], t ≤ t ′, we have:

‖ψ ′n(t ′)− ψ ′n(t)‖L2 ≤

∫ t ′

t
‖∂tψ

′n(s)‖L2ds

≤
√

t ′ − t‖∂tψ
′n

‖L2(0,T ;L2).

Combining this with (28), we find that (ψ ′n)n∈N is an equicon-
tinuous sequence in C([0, T ], L2). We conclude by apply-
ing Ascoli’s theorem to the family

{
Im〈χ |µ|ψ ′n

〉, n ∈ N
}

of the space C([0, T ]). Similar arguments apply for{
Im〈χ ′n

|µ|ψ〉, n ∈ N
}
, and the results follows. �

Thanks to the previous lemma, J is twice differentiable and
its Hessian operator reads:

HJ (ε) : ε′ 7→ −2
(
αε′ + Dγ (ε)[ε′]

)
.

In what follows, a criterion ensuring that the Hessian operator
of J is invertible will be useful. The next lemma provides it.

Lemma 10. Suppose that: α > 6T ‖µ‖
2
L∞‖O‖∗. Then the

operator HJ (ε) is invertible on L2(0, T ).

Proof. We keep the notation of Lemma 9. The Cauchy–Schwarz
inequality, combined with (6) and (19) yields:

‖Dγ (ε)[ε′]‖L∞(0,T ) ≤ ‖µ‖L∞

(
‖χ ′

‖L∞(0,T ;L2)

+ ‖O‖∗‖ψ
′
‖L∞(0,T ;L2)

)
≤ 6

√
T ‖µ‖

2
L∞‖O‖∗‖ε

′
‖L2(0,T ).
Finally, thanks to the assumption of the lemma, one has

sup
{ε′,‖ε′‖L2(0,T )=1}

(
1
α

‖Dγ (ε)[ε′]‖L2(0,T )

)
< 1,

which implies that I +
1
α

Dγ (ε) is invertible and the result
follows. �

5. Łojasiewicz inequality for the cost functional J

Several convergence results of dynamical systems have been
proved thanks to the Łojasiewicz inequality recalled here. In
order to tackle the problem of the convergence of the optimizing
sequence presented in the next section, we have to extend
this inequality to the case of a compact set in an infinite-
dimensional space. The basic result considered in this section
is the following (cf. [17,18]):

Theorem 1. Let N be an integer and Γ : RN
→ R be an

analytic function in a neighborhood of a point a ∈ RN . Then
there exists σ > 0 and θ ∈ ]0, 1

2 ] such that

∀x ∈ RN , ‖x − a‖ < σ,

‖∇Γ (x)‖ ≥ |Γ (x)− Γ (a)|1−θ ,
(29)

where ‖.‖ is a given norm on RN .

The real number θ is a Łojasiewicz exponent of a. Following
the work [15] of M.A. Jendoubi (which simplifies the
theorem of Łojasiewicz–Simon [28]), the latter theorem can be
generalized to the case of infinite dimension.

Lemma 11. Given ε ∈ L2(0, T ), there exists σ ′ > 0, κ > 0
and θ ′

∈ ]0, 1
2 ] such that:

∀ε′ ∈ L2(0, T ), ‖ε′ − ε‖L2(0,T ) ≤ σ ′,

‖∇ J (ε′)‖L2(0,T ) ≥ κ|J (ε′)− J (ε)|1−θ ′

.

We give the proof of this lemma in the Appendix. A more
precise result can be obtained if the Hessian operator under
consideration is invertible at point a (see e.g, [13]). Indeed, one
can then show that 1/2 is a Łojasiewicz exponent of a. We will
use this improvement in Section 8 since Lemma 10 provides
actually an expected sufficient condition. The next lemma is a
global version of the previous one.

Lemma 12. Let C̃J be a connected component of CJ in
L2(0, T ). We denote by l the value of J (ε) for all ε ∈ C̃J
and we set J̃ (ε) = l − J (ε). There exist σ̃ > 0, κ̃ > 0 and
θ̃ ∈ ]0, 1

2 ] such that:

∀ε ∈ L2(0, T ), d2(ε, C̃J ) < σ̃ ,

‖∇ J (ε)‖L2(0,T ) ≥ κ̃| J̃ (ε)|1−θ̃ ,
(30)

where d2 is the distance associated to the L2(0, T )-norm.
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Proof. Lemma 11 ensures that for each point a in C̃J there exist
three real numbers σa , θa and κa such that:

∀ε ∈ RN , ‖ε − a‖L2(0,T ) < σa

‖∇ J (ε)‖L2(0,T ) ≥ κa | J̃ (ε)|1−θa .

The compactness of C̃J , guaranteed by Lemma 6, allows
us to extract from

{
B(a, σa

2 ), a ∈ C̃J
}

a finite family A ={
B(ai ,

σai
2 )
}

i∈F
, where F is a finite set of indexes, such that

C̃J ⊂ A.
We then define σ̃ , κ̃ and θ̃ ∈ ]0, 1/2] as the respective

lower bounds of
{
σai
2

}
i∈F

,
{
κai

}
i∈F and

{
θai

}
i∈F and the result

follows. �

6. Optimizing sequence

We have now gathered all the necessary results to present
and analyze the optimizing sequence.

6.1. Definition of the sequence

Following the approach sketched in the introduction, Y.
Maday and G. Turinici have defined an optimizing sequence
(εk)k∈N for the cost functional J as follows [20]:

Consider (δ, η) ∈ ]0, 2[×]0, 2[, ε0
∈ L∞(0, T ), ε̃0

∈

L∞(0, T ), ψ0 and χ0 the corresponding solutions of (15)
and (16) according to Lemma 1. The functions εk and ε̃k are
computed by solving iteratively:{

i∂tψ
k(x, t) =

(
H(x)− εk(t)µ(x)

)
ψk(x, t)

ψk(x, 0) = ψ0(x)
(31)

εk(t) = (1 − δ)ε̃k−1(t)−
δ

α
Im〈χk−1(t)|µ|ψk(t)〉 (32){

i∂tχ
k(x, t) =

(
H(x)− ε̃k(t)µ(x)

)
χk(x, t)

χk(x, T ) = Oψk(x, T )
(33)

ε̃k(t) = (1 − η)εk(t)−
η

α
Im〈χk(t)|µ|ψk(t)〉. (34)

Existence and uniqueness of solutions ψk and χk of the above
equations result from an easy adaptation of Lemma 3, as for the
proof of εk, ε̃k

∈ L2(0, T ) for all k ∈ N.

Remark 2. Note that this choice of optimizing sequence is
not canonical. There exists other ways to guarantee that
the condition (1) is fulfilled (see, e.g. [30]). However, this
formulation includes many monotonic algorithms, e.g. the one
by Krotov (presented in [29]) or by W. Zhu and H. Rabitz [34]
which are often used in the numerical simulations.

6.2. Properties of the sequence

We present here two results about the sequence (εk)k∈N. The
proofs can be found in [19,20]. These results state that (εk)k∈N
defined by (31)–(34) is bounded in L∞(0, T ) and that the
corresponding sequence

(
J (εk)

)
k∈N increases monotonically.
Lemma 13. Given an initial field ε0
∈ L∞(0, T ), let us define

M by:

M = max
(

‖ε0
‖L∞(0,T ),

max
(

1,
δ

2 − δ
,

η

2 − η

)
‖O‖∗‖µ‖L∞

α

)
.

The sequences (εk)k∈N and (̃εk)k∈N satisfy:

∀k ∈ N, ‖εk
‖L∞(0,T ) ≤ M, ‖̃εk

‖L∞(0,T ) ≤ M.

Lemma 14. The sequence (εk)k∈N defined by (31)–(34)
ensures the monotonic convergence of the cost functional J in
the sense that:

J (εk+1)− J (εk) = 〈ψk+1(T )− ψk(T )|O|ψk+1(T )− ψk(T )〉

+

(
2
η

− 1
)∥∥∥εk+1

− ε̃k
∥∥∥2

L2(0,T )

+

(
2
δ

− 1
)∥∥∥̃εk

− εk
∥∥∥2

L2(0,T )
, (35)

and there exists lε0 such that lim
k→+∞

J (εk) = lε0 .

In order to study the convergence of (εk)k∈N, we will need to
estimate the gradient of J at each point εk . Such an estimate is
obtained in the next lemma.

Lemma 15. There exists λ > 0, depending on µ, O, α, δ, η
and T , such that:

‖∇ J (εk)‖L1(0,T ) ≤ λ
(
‖εk

− ε̃k−1
‖L2(0,T )

+ ‖̃εk−1
− εk−1

‖L2(0,T )

)
. (36)

Proof. Thanks to (20), we have:

∇ J (εk)(t) = −2
(
αεk(t)+ Im〈χk−1(t)|µ|ψk(t)〉

+ Im〈χε
k
(t)− χk−1(t)|µ|ψk(t)〉

)
= −2

(
α

(
1 −

1
δ

)(
εk(t)− ε̃k−1(t)

)
+ Im〈χε

k
(t)− χk−1(t)|µ|ψk(t)〉

)
(37)

where χε
k

is the solution of (16) with ψ = ψk and ε = εk .
Next, χε

k
−χk−1 is the solution of Eq. (17) corresponding to

ε = εk , ε′ = ε̃k−1
− εk and χ = χk−1. The associated estimate

(18) then gives:

‖χε
k
(t)− χk−1(t)‖L2 ≤ 2‖µ‖L∞‖εk

− ε̃k−1
‖L1(0,T )‖O‖∗

+ ‖O(ψk(T )− ψk−1(T ))‖L2

≤ 4‖µ‖L∞‖O‖∗(‖ε
k
− ε̃k−1

‖L1(0,T )

+ ‖̃εk−1
− εk−1

‖L1(0,T )). (38)

Combining (37) and (38), we obtain (36) with λ =

2
√

T
(

4T ‖O‖∗‖µ‖
2
L∞ + α

(
1 −

1
δ

))
. �
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6.3. Limit points of the sequence

We now present some results about the limit points of
(εk)k∈N. These results give first hints about the relationship
between these limit points and the set CJ of the critical points
of the cost functional J . Thus, we obtain a first case of
convergence.

Lemma 16. Let (εkn )n∈N be a weakly convergent sub-sequence
of (εk)k∈N in L2(0, T ). Then (εkn )n∈N converges in L∞(0, T )
towards a critical point of the cost functional J .

Proof. Let (εkn )n∈N be a weakly convergent sub-sequence of
(εk)k∈N in L2(0, T ) and let us consider ` ∈ N. Eq. (35) ensures
that (εkn+`)n∈N also converges weakly (and has the same limit
as (εkn )n∈N). Thanks to Lemma 5, the sequences

(
χkn+`

)
n∈N

and
(
ψkn+`

)
n∈N converge strongly in the space C([0, T ]; L2).

Thus, we obtain by bilinearity the strong convergence of
both sequences

(〈
χkn |µ|ψkn

〉)
n∈N and

(〈
χkn |µ|ψkn+1

〉)
n∈N in

L∞(0, T ).
According to (32) and (34), (εkn )n∈N also reads:

εkn+1
= (1 − δ)(1 − η)︸ ︷︷ ︸

ν

εkn + ukn ,

where |ν| < 1 and where ukn (t) = −
(1−δ)η
α

Im〈χkn (t)|µ|ψkn

(t)〉− δ
α

Im
〈
χkn (t)|µ|ψkn+1(t)

〉
strongly converges in L∞(0, T ).

Again note that given ` ∈ N, (ukn+`)n∈N also converges in
L∞(0, T ) (towards the same limit). For all k ∈ N, the abso-
lute value of uk(t) can be estimated by:

|uk(t)| ≤ m =
4‖µ‖L∞‖O‖∗

α
.

Let us prove that (εkn )n∈N is Cauchy in L∞(0, T ). Consider
e > 0. There exists n1 > 0 be such that

2m
∞∑
j1

|ν| j
≤

e
4
. (39)

Since the sequence (ukn−`)n∈N is Cauchy for all `with 0 ≤ ` ≤

n1, we have:

∃n2 > 0/ ∀s > n2, ∀q ≥ 0,

‖uks+q−` − uks−`‖L∞(0,T ) ≤
e

4n1
.

(40)

Let n be an integer fulfilling the conditions:

∀p ≥ 0, |νkn+p − νkn | ≤
e

4‖ε0‖L∞(0,T )
,

kn > n1, n > n2. (41)

Let p be a positive integer. Since we have, for all n ∈ N∗,

εkn = νknε0
+

kn−1∑
j=0

ν j ukn− j−1 we obtain

εkn+p − εkn = (νkn+p − νkn )ε0
+

kn+p−1∑
j=kn

ν j ukn+p− j−1

+

kn−1∑
j1

ν j (ukn+p− j−1 − ukn− j−1)
+

n1−1∑
j=0

ν j (ukn+p− j−1 − ukn− j−1). (42)

Thanks to (39) and the first two conditions of (41):∥∥∥(νkn+p − νkn )ε0
∥∥∥

L∞(0,T )
≤

e
4
,∥∥∥∥∥∥

kn+p−1∑
j=kn

ν j ukn+p− j−1

∥∥∥∥∥∥
L∞(0,T )

≤

∞∑
j=kn

∥∥∥ν j ukn+p− j−1

∥∥∥
L∞(0,T )

≤ m
∞∑

j=kn

|ν| j
≤

e
4
.

According to condition (39), the third term of (42) can be
estimated by:∥∥∥∥∥kn−1∑

j1

ν j (ukn+p− j−1 − ukn− j−1)

∥∥∥∥∥
L∞(0,T )

≤ 2m
∞∑
j1

|ν| j
≤

e
4
.

Lastly, |ν| < 1, the third condition of (41) and the Cauchy
property (40) allows us to estimate the last term of (42):∥∥∥∥∥n1−1∑

j=0

ν j (ukn+p− j−1 − ukn− j−1)

∥∥∥∥∥
L∞(0,T )

≤

n1−1∑
j=0

∥∥ukn+p− j−1 − ukn− j−1
∥∥

L∞(0,T ) ≤
e
4
.

We have thus proved that for all e > 0, if n is large enough
then, for every p > 0,

‖εkn+p − εkn ‖L∞(0,T ) ≤ e,

which proves that (εkn )n∈N is Cauchy in L∞(0, T ).
We denote by ε the limit of (εkn )n∈N. Thanks to (35),

(̃εkn )n∈N also converges towards ε. Passing through the limit
in (31)–(34), we then deduce that ε belongs to CJ , according to
definition (21). �

Let us denote by Cε0 ⊂ CJ the set of limit points of
(εkn )n∈N. As stated in Remark 1, for α > 6T ‖µ‖

2
L∞‖O‖∗, CJ ,

and consequently Cε0 , are reduced to one point. By means of
Lemma 13, the convergence of the sequence (εk)k∈N is then
guaranteed in this case.

Remark 3. In addition, the uniqueness of the critical point
implies that the limit in this case is necessarily an extremum
of J .

In order to obtain the convergence for all α > 0, we need to
study more precisely the asymptotic behavior of the sequence
(εk)k∈N in the neighborhood of Cε0 . A standard argument of
compactness applied to Cε0 enables us to obtain the following
result.

Lemma 17. Let denote by d∞ the distance corresponding to
the L∞(0, T )-norm. One has:

d∞(ε
k,Cε0) → 0. (43)
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Remark 4. By means of the monotonicity property, we find
that J = lε0 on the set Cε0 (with lε0 = limk→+∞ J (εk)). It
is then possible to apply Lemma 12 with C̃J = Cε0 since the
assumption that C̃J is connected is only necessary to ensure that
J is a constant on this set. It can however be proved that Cε0 is
connected (see [25]).

7. Convergence of the sequence

It is now possible to prove the convergence of the sequence
(εk)k∈N by a Cauchy argument.

Theorem 2. Suppose that ε0
∈ L∞(0, T ). The sequence

(εk)k∈N defined by (31)–(34) is convergent in L2(0, T ).

Proof. We still denote by lε0 the value of J on Cε0 and by J̃
the shifted cost functional J − lε0 . First suppose that ∀k ∈

N, J̃ (εk) 6= 0. By (43), there exists k0 such that (30) holds
(with C̃J = Cε0 ) for all εk with k ≥ k0. Consider an integer
k ≥ k0. We have:((

J̃ (εk)
)θ̃

−

(
J̃ (εk+1)

)θ̃)
≥

θ̃

( J̃ (εk+1))1−θ̃

(
J (εk+1)− J (εk)

)
(44)

≥
κ̃ θ̃

‖∇ J (εk+1)‖L1(0,T )

((
2
δ

− 1
)

‖εk+1
− ε̃k

‖
2
L2(0,T )

+

(
2
η

− 1
)

‖̃εk
− εk

‖
2
L2(0,T )

)
(45)

≥
κ̃ θ̃a(δ,η)
λ

(
‖εk+1

− ε̃k
‖L2(0,T ) + ‖ε̃k

− εk
‖L2(0,T )

)
(46)

≥
κ̃ θ̃a(δ,η)
λ

‖εk+1
− εk

‖L2(0,T ),

where a(δ,η) =
1

max(δ,η) −
1
2 . The inequality (44) comes from

the concavity of s 7→ s θ̃ , whereas (45) is a consequence of (30)
and (35). Inequality (46) follows from (36).

Since
((

J̃ (εk)
)θ̃)

k∈N
is a Cauchy sequence (as a monotonic

sequence bounded by (2‖O‖∗)
θ̃ ), we obtain that (εk)k∈N is also

a Cauchy sequence.
If there exists k1 such that J̃ (εk1) = 0, the monotonicity of

the algorithm implies that

J (εk1) = J (εk1+1) = J (εk1+2) = · · ·

and by (35) the sequence (εk)k∈N is a constant for k ≥ k1. �

Remark 5. Thanks to the definition of the sequence (εk)k∈N
and to the regularity of the solutions ψ and χ of the appropriate
Schrödinger equations (see Lemmas 1–3), we can easily prove
by induction that if ε0

∈ W 1,∞(0, T ), then for all k ∈ N,
εk

∈ W 1,∞(0, T ).
8. Rate of convergence

The rate of convergence can be now evaluated by a second
use of the Łojasiewicz inequality. The result is summarized in
the next theorem.

Theorem 3. Let us denote by ε∞, the limit of (εk)k∈N defined
by (31) and (32) and θ̃ , κ̃ the real numbers appearing in (30),
where Cε0 = {ε∞}.

If θ̃ < 1
2 , then there exists c > 0 such that ‖εk

−

ε∞‖L2(0,T ) ≤ ck
−

θ̃

1−2θ̃ .

If θ̃ =
1
2 , then there exist c′ and τ such that:

‖εk
− ε∞‖L2(0,T ) ≤ c′e−τk . (47)

Proof. As in the proof of Theorem 2, let k0 be an integer such
that

∀` ≥ k0 ‖∇ J (ε`)‖L1(0,T ) ≥ κ̃| J̃ (ε`)|1−θ̃ . (48)

Let us fix k ≥ k0 and introduce ∆k defined by:

∆k
=

∞∑
`=k

‖ε`+1
− ε̃`‖L2(0,T ) + ‖ε̃` − ε`‖L2(0,T ).

With no loss of generality, we may assume that ∆k > 0 for all
k ≥ k0. Summing (46) between k and +∞, we obtain:(

J̃ (εk)
)θ̃

≥
κ̃ θ̃a(δ,η)
λ

∆k .

This estimate, combined with (48), with ` = k yields:

‖∇ J (εk)‖L1(0,T ) ≥ κ̃

(
κ̃ θ̃a(δ,η)
λ

∆k

) 1−θ̃

θ̃

.

From Lemma 15, we obtain:

λ(∆k−1
− ∆k) ≥ κ̃

(
κ̃ θ̃a(δ,η)
λ

∆k

) 1−θ̃

θ̃

,

which may be written as follows:

∆k−1
− ∆k

(∆k)β
≥ υ, (49)

with β =
1−θ̃

θ̃
and υ =

κ̃
λ

(
κ̃ θ̃a(δ,η)
λ

) 1−θ̃

θ̃ . Now suppose that

θ̃ =
1
2 , i.e., β = 1. Eq. (49) then becomes:

(1 + υ)k0∆k0

(
1

1 + υ

)k

≥ ∆k,

and (47) is proved with c′
= (1 + υ)k0∆k0 and τ = ln(1 + υ).

Now suppose that θ̃ < 1
2 . Let r ∈]0, 1[, and suppose first

that:

(∆k)β ≥ r(∆k−1)β .
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Since 1 − β < 0, the function s 7→ s1−β is concave and we
have:

(∆k)1−β
− (∆k−1)1−β

≥ (β − 1)
∆k−1

− ∆k

(∆k−1)β

≥ (β − 1)r
∆k−1

− ∆k

(∆k)β
≥ (β − 1)rυ.

In the other case:

(∆k)1−β
− (∆k−1)1−β

≥ (∆k)1−β
− (r

1
β ∆k)1−β

= (1 − r
1−β
β )(∆k)1−β

≥ (1 − r
1−β
β )(∆k0)1−β .

Thus, in any case, there exists υ ′ > 0 independent of k, such
that:

(∆k)1−β
− (∆k−1)1−β

≥ υ ′. (50)

Now consider k′ > k, inequality (50) implies that for a small
enough c, one have:

∆k′

≤

(
υ ′(k′

− k)+ (∆k)
2−

1
θ̃

)−
θ̃

1−2θ̃
≤ ck′−

θ̃

1−2θ̃ ,

and the result follows. �

Remark 6. Thanks to Lemma 10, we have thus obtained that
if α > 6T ‖µ‖

2
L∞‖O‖∗ the convergence of the sequence is at

least linear.
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Appendix. Proof of Lemma 11

Consider ε ∈ L2(0, T ) and J defined by (14). For reason of
simplicity, we suppose that J (ε) = 0, ∇ J (ε) = 0.

Thanks to Lemma 9, the operator HJ (ε) is a Fredholm
operator. The Fredholm alternative states then that either HJ (ε)

is bijective or Ker HJ (ε) = span(ϕ1, . . . , ϕm), with m > 0. Let
us denote by Π , the orthogonal projection on Ker HJ (ε) (with
Π = 0 if Ker HJ (ε) = 0). The operator L = Π + HJ (ε) is
then bijective on L2(0, T ).

We are now in the position to apply the local inverse
mapping theorem to L = Π + ∇ J (analytic version, see [33],
Corollary 4.37, p. 172), that asserts that there exist V and V ′
two neighborhoods of 0 in L2(0, T ) and K : V ′
→ V an

analytic mapping such that:

∀ε′ ∈ V, K (L(ε′)) = ε′, ∀ε′′ ∈ V ′, L(K (ε′′)) = ε′′.

Since L and K are C∞, there exist C and C ′ such that:

∀ε1, ε2 ∈ V, ‖L(ε2)− L(ε1)‖L2(0,T ) ≤ C‖ε2 − ε1‖L2(0,T )

∀ε′1, ε
′

2 ∈ V ′, ‖K (ε′2)− K (ε′1)‖L2(0,T )

≤ C ′
‖ε′2 − ε′1‖L2(0,T ).

Now consider ε′ ∈ V ∩ V ′. For ζ ∈ Rm such that
∑m

j=1 ζ jϕ j ∈

V , let us define Γ : ζ 7→ J
(

K (
∑m

j=1 ζ jϕ j )
)
, and ξ ∈ Rm

such that Π ε′ =
∑m

j=1 ξ jϕ j . Let us first estimate ∇Γ (ξ).
Using Π ε′ ∈ V ′, we obtain:

|∇Γ (ξ)| ≤ C ′′
‖∇ J

(
K (Π ε′)

)
‖L2(0,T ) = C ′′

‖∇ J (ε′)

+ ∇ J
(
K (Π ε′)

)
− ∇ J (ε′)‖L2(0,T )

≤ C ′′
(
‖∇ J (ε′)‖L2(0,T ) + C‖K (Π ε′)− ε′‖L2(0,T )

)
= C ′′

(
‖∇ J (ε′)‖L2(0,T ) + C‖K (Π ε′)

− K
(
Π ε′ + ∇ J (ε′)

)
‖L2(0,T )

)
≤ c‖∇ J (ε′)‖L2(0,T ), (51)

where c = C ′′(1 + CC ′). On the other hand, one has:

|J (ε′)− Γ (ξ)| = |J (ε′)− J
(
K (Π ε′)

)
|

=

∣∣∣∣∣
∫ 1

0

d
ds

J
(
ε′ + s

(
K (Π ε′)− ε′

))
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
∇ J

(
ε′ + s

(
K (Π ε′)− ε′

))
, K (Π ε′)− ε′

)
ds

∣∣∣∣∣
≤ ‖K (Π ε′)− ε′‖L2(0,T )

∫ 1

0
‖∇ J (ε′)‖L2(0,T )

+ Cs‖K (Π ε′)− ε′‖L2(0,T )ds

= ‖K (Π ε′)− ε′‖L2(0,T )

(
‖∇ J (ε′)‖L2(0,T )

+
C

2
‖K (Π ε′)− ε′‖L2(0,T )

)
≤ c′

‖∇ J (ε′)‖2
L2(0,T ), (52)

where c′
= C ′(1 +

CC ′

2 ). By diminishing V , the Łojasiewicz
inequality (29) applied to the analytic functional Γ states that
there exist θ ∈ ]0, 1/2], σ > 0 such that:

|∇Γ (ξ)| ≥ |Γ (ξ)|1−θ
= |J (ε′)− Γ (ξ)− J (ε′)|1−θ

≥
1
2
|J (ε′)|1−θ

−
1
2
|J (ε′)− Γ (ξ)|1−θ .

Combining (51) and (52), we obtain:

c‖∇ J (ε′)‖L2(0,T ) ≥
1
2
|J (ε′)|1−θ

− c′
‖∇ J (ε′)‖2(1−θ)

L2(0,T )
,

and the result follows.
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