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Abstract

Optimal control of finite-level quantum systems is investigated, and iterative solution schemes for the optimization of a control
representing laser pulses are developed. The purpose of this external field is to channel the system’s wavefunction between given
states in its most efficient way. Physically motivated constraints, such as limited laser resources or population suppression of certain
states, are accounted for through an appropriately chosen cost functional. First-order necessary optimality conditions and second-
order sufficient optimality conditions are investigated. For solving the optimal control problems, a cascadic non-linear conjugate
gradient scheme and a monotonic scheme are discussed. Results of numerical experiments with a representative finite-level quantum
system demonstrate the effectiveness of the optimal control formulation and efficiency and robustness of the proposed approaches.
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1. Introduction

Nowadays we witness a large growing interest in controlling quantum phenomena in a variety of application systems
[9,15,29–32]. Present and perspective applications range from quantum optics and quantum chemistry to semiconductor
nanostructures. In the last few years these research areas have received further impetus from the emerging fields of
quantum computation and quantum communication [7], aiming at quantum devices where there is the need to manipulate
wavefunctions with highest possible precision.

This high-fidelity quantum-state engineering can only be achieved putting together the most sophisticated experi-
mental and theoretical techniques for control of quantum systems. However, within each field of application one has
come up with its own strategies and it is only recently that a common consensus has arisen toward the use of optimal
control theory [10,13,21].
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In the optimal control framework, one starts by defining the optimality criteria in the form of a cost functional. For a
desired quantum-state transition, this functional will depend on the final state, the need to suppress population of certain
states during the control process, as well as other physically motivated constraints, e.g., limited laser resources. The
strategy is then to minimize this cost functional while satisfying the constraints of the underlying dynamic equations
governing the evolution of quantum states, e.g., the Schrödinger equation. The calculation of the necessary optimality
conditions for this optimization problem results in a system of coupled equations to be solved.

While we focus on quantum optimal control problems we argue that many of the results of this paper can be
extended to general time-dependent bilinear control problems. Bilinear systems [12,25] were introduced in the theory
of automatic control in the 1960s for electrical engineering applications. They represent a class of non-linear control
strategies with the aim to obtain better system response than possible with linear control. In general, the solution of
most bilinear systems poses challenging theoretical and computational problems which are open or have been only
partially addressed. This is in particular true for the control of the quantum mechanical systems discussed in this paper.

The purpose of this paper is to present a detailed formulation of a class of optimal control problems for finite-level
quantum systems and to address their solution by iterative methods. We prove existence of solutions to the optimal
control problems and investigate first-order necessary optimality conditions and second-order sufficient optimality
conditions. We review modern monotonic iterative schemes and their convergence properties and use these schemes as
benchmark for an alternative solution procedure that we propose in this paper. This procedure results from combining
an appropriate extension of a newly proposed non-linear conjugate gradient (NCG) method with a cascadic acceleration
scheme. Convergence of the proposed NCG method is proved, and its competitiveness in efficiency and robustness is
demonstrated by results of numerical experiments.

In the following section, we introduce the class of finite-level quantum optimal control problems considered in this
paper. Within an appropriate functional analytical setting, existence of at least one global optimal solution is proved. We
discuss existence of Lagrange multiplier and first-order necessary conditions for a minimum. Second-order sufficient
optimality conditions are also studied that allow to characterize local minima.

In Section 3, the proposed NCG scheme is formulated. Under appropriate less restrictive assumptions, we prove
convergence of this scheme to a local minimizer. This scheme is embedded in a cascadic iteration to obtain almost
optimal computational complexity.

To validate the computational performance of our cascadic non-linear conjugate gradient scheme (C-NCG), compari-
son with efficient monotonic schemes is presented showing that the former may outperform the latter. For completeness
and for comparison of theoretical aspects, in Section 4 a detailed review of newly proposed monotonic schemes is given.

In Section 5, results of an extended set of numerical experiments are given. We show that the optimal solution is quite
sensitive to the required tolerance of the norm of the gradient. We therefore discuss additional convergence criteria
involving the order of accuracy of solutions. Further numerical experiments demonstrate efficiency of the C-NCG
approach and its robustness with respect to change of values of the optimization parameters.

A section of conclusion completes the exposition of our work.

2. Quantum optimal control problems

This section is devoted to the formulation of a class of finite-level quantum optimal control problems, which are
the subject of our investigations. Existence of solutions to the optimal control problems is proved. We investigate
first-order necessary optimality conditions addressing existence and regularity issues of the Lagrange multipliers
and, correspondingly, of the control functions. To characterize a solution to the first-order optimality conditions that
corresponds to a local minimum, second-order sufficient optimality conditions are discussed.

To some extent the analysis presented in this section can be shortened utilizing results from the literature. However,
we make use of specific properties of the underlying optimal control problem like the bilinear structure of the equality
constraints and the fact that the variables (including the control function) are complex-valued. This is a situation which
is not common in the optimal control literature and, therefore, we report all details of the proofs.

2.1. The minimization problem

We consider localized finite-level quantum systems modeled by a Schrödinger equation for an n-component wave
function � : [0, T ] → Cn as follows:

i�̇(t) = H(�(t))�(t) for t ∈ (0, T ] and �(0) = �0, (1)
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where T > 0 is a given terminal time, H : C → Cn×n denotes the Hamiltonian matrix depending on the external
control field � : [0, T ] → C and �0 ∈ Cn is a fixed initial condition. The Hamiltonian H = H0 + H1(�) has two
constitutive components: the constant free Hamiltonian H0 ∈ Cn×n describing the unperturbed (uncontrolled) system
and H1 : C → Cn×n modeling the coupling of the quantum state to an external control field �.

The choice of T is a modeling issue motivated by physical considerations. Based on the quantum indeterminacy
principle �E�t � h̄ (where h̄ is the Planck’s constant that we set equal to one) we can state the following: for too small
T a highly energetic optimal control results (�E?1) thus involving many energy levels. On the other hand, for too
large T additional decoherence channels become important, which should be avoided; see, e.g., [15]. As a guideline,
the choice of T should be related to the transition frequency.

Strictly speaking, the wavefunction description given in (1) is appropriate for an isolated quantum system and in that
case the governing Hamiltonian H is hermitian. For a more realistic non-isolated system with environment couplings
and subject to control, a more general density-matrix description would be required [35]. Alternatively, we follow the
procedure outlined in [5] to construct a non-hermitian Hamiltonian H0 accounting for environment losses.

We focus on localized quantum systems, where H1 : C → Cn×n is hermitian and possesses the following structure:

H1(z) = zReH1Re + zImH1Im for z = zRe + izIm ∈ C, (2)

where H1Re, H1Im ∈ Cn×n are constants and zRe, zIm ∈ R. Consequently,

�(H1(z))�K0|z| for all z ∈ C, (3)

where �(·) denotes the spectral norm of complex-valued n × n matrices, | · | stands for the absolute value of complex
numbers and K0 = 2 max{�(H1Re), �(H1Im)}�0. Moreover, by (3) we have

�(H(z))��(H0) + K0|z| for all z ∈ C.

Remark 1. (a) A control Hamiltonian with the structure given in (2) and satisfying (3) is considered in the section of
numerical experiments.

(b) Within quantum control theory, linear control Hamiltonians are of interest. They represent the first-order terms
of multipole expansion of the charged particle–electric field interaction.

We call � : [0, T ] → Cn a solution to (1) if � belongs to H 1(0, T ; Cn), �(0)=�0 holds and � satisfies i�̇=H(�(·))�
in [0, T ] almost everywhere (a.e.). For the notion of Sobolev spaces we refer the reader to [1], for instance. Notice that
(1) is a linear system of ordinary differential equations, which therefore admits a unique solution � ∈ H 1(0, T ; Cn)

for every � ∈ L2(0, T ; C). The Hilbert space L2(0, T ; Cn) is endowed with the canonical inner product

〈�, �〉L2(0,T ;Cn) =
∫ T

0
� · �∗ dt for �, � ∈ L2(0, T ; Cn),

where ‘∗’ means complex conjugate and the dot ‘·’ denotes the usual vector–scalar product in Cn. We also have ‖ ·
‖L2(0,T ;Cn)=〈· , ·〉1/2.Analogously, the inner product and the corresponding induced norm are defined on H 1(0, T ; Cn).

To write (1) in a compact form, we define the Hilbert space

Y = L2(0, T ; Cn) × Cn

endowed with the common product topology and introduce the non-linear operator e = (e1, e2) by

e : H 1(0, T ; Cn) × L2(0, T ; C) → Y, (�, �) �→
(

i�̇ − H(�(·))�
�(0) − �0

)
.

Recall H 1(0, T ; Cn) is continuously (even compactly) embedded in C([0, T ]; Cn), where C([0, T ]; Cn) denotes the
Banach space of all continuous functions � : [0, T ] → Cn that is endowed with the common norm, see [1]. Therefore,
there exists an embedding constant K1 > 0 satisfying

‖�‖C([0,T ];Cn) �K1‖�‖H 1(0,T ;Cn) for all � ∈ H 1(0, T ; Cn). (4)
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Let (�, �) ∈ H 1(0, T ; Cn) × L2(0, T ; C). Then we infer from (3) that

|H(�(t))�(t)|2Cn ��(H(�(t)))2|�(t)|2Cn �(2�(H0)
2 + 2K2

0 |�(t)|2)‖�‖2
C([0,T ];Cn)

for almost all t ∈ [0, T ]. Thus, H(�(·))� belongs to L2(0, T ; Cn) and, therefore, e is well defined.
In the following we shall consider the problem of determining a control field � ∈ L2(0, T ; C), such that (1) is

fulfilled and a number of optimality criteria are met. We require that the control sequence drives the system at time T
close to the desired target state �d ∈ Cn. We account for limited laser resources and increased smoothness through a
minimization of the control field strengths, and we require to suppress population of intermediate states which suffer
strong environment losses, thus also enforcing our modeling choice of a non-hermitian free Hamiltonian. All these
requirements are realized in the cost functional

J (�, �) = 1

2
|�(T ) − �d |2Cn + �

2
‖�‖2

L2(0,T ;C)
+ �

2
‖�̇‖2

L2(0,T ;C)

+ 1

2

∑
j∈I

	j‖�j‖2
L2(0,T ,C)

, (5)

where the constants �, ��0 are regularization parameters, which allow to vary the relative importance of the objectives
represented by the various terms. We suppose that � + � > 0. The goal of the first term of the cost functional is to track
the state � close to a given terminal state at t = T . The second and third terms are for the regularization of the problem
so that existence of at least one optimal control (see (P) below and proof of Theorem 3) is ensured. In the last term
of (5), which penalizes the occupation of certain states �j , the set I ⊂ {1, . . . , n} denotes a subset of possible state
indices and 	j > 0, j ∈ I , are weighting factors. Depending on the parameter �, we define the Hilbert space X by

X =
{

H 1(0, T ; Cn) × L2(0, T ; C) if � = 0,

H 1(0, T ; Cn) × H 1
0 (0, T ; C) if � > 0

and supply X with the natural product topology. Then, the optimal control problem can be written as the following
abstract minimization problem

min J (x) subject to x = (�, �) ∈ X and e(x) = 0 in Y . (P)

Remark 2. (1) As required in the quantum-mechanical framework, we choose |�0|Cn = 1. In the case that H0 is
non-hermitian and dissipative, a target state with the normalization |�d |Cn = 1 will not be attainable. This is typical of
dissipative systems and motivates penalization of occupation of states representing environment losses.

(2) Because of H 1 regularization (� > 0) we have a natural setting to impose zero (boundary) conditions on the
control field outside of the control window [0, T ]. This requirement is in agreement with the need of designing control
pulses with compact support.

(3) Recall the Poincaré inequality

‖�‖L2(0,T ;C) �K2‖�̇‖L2(0,T ;C) for all � ∈ H 1
0 (0, T ; C). (6)

Therefore, if � > 0 the L2-norm of � can be bounded by the L2-norm of its derivative. This implies that we can
choose � = 0 provided � > 0 holds.

The next theorem ensures that (P) has at least one global solution.

Theorem 3. The optimal control problem (P) admits a solution (�, �) ∈ X.

Proof. We prove the claim by two steps.
Step 1: We need an a-priori estimate for the solution of (1). For given � ∈ L2(0, T ; C), Eq. (1) is a linear system of

ordinary differential equations, which therefore has a unique solution � ∈ H 1(0, T ; Cn). We now write (1) in integral
form

i�(t) = i�0 +
∫ t

0
(H0 + H1(�(s)))�(s) ds for 0� t �T . (7)
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Taking the Euclidean norm in Cn on both sides of (7) and using the triangle inequality on the right-hand side results in

|�(t)|Cn � |�0|Cn +
∫ t

0
(�(H0) + �(H1(�(s))))|�(s)|Cn ds.

Now apply Gronwall’s inequality [13] to obtain

|�(t)|Cn � |�0|Cn exp

(∫ t

0
(�(H0) + �(H1(�(s)))) ds

)
for 0� t �T .

Using (3), squaring and integrating the above inequality over [0, T ] results in

‖�‖L2(0,T ;Cn) �
√

T |�0|Cn exp(c1 + c2‖�‖L2(0,T ;C)) for 0� t �T , (8)

with c1 = T �(H0) and c2 = √
T K0. Furthermore, using the state equation (1) yields that for every � ∈ L2(0, T ; C)

with ‖�‖L2(0,T ;C) �c3 the corresponding states � = �(�) are bounded in H 1(0, T ; Cn), i.e.,

‖�‖H 1(0,T ;Cn) �c4 for some c4 > 0.

Step 2: Let {�k}k �1 be a minimizing sequence for J, i.e.,

lim
k→∞ J (�k, �k) = inf{J (x)|x = (�, �) ∈ X and e(x) = 0 in Y },

where we denote by �k = �(�k) the unique solution to (1) for � = �k . Let � > 0 and � = 0 hold. Hence,

J (�(�), �) → ∞ as ‖�‖L2(0,T ;C) → ∞
so that the sequence {�k}k �1 is bounded in L2(0, T ; C). Since the unit ball in a Hilbert space is weakly compact, there
exists a weakly to an � ∈ L2(0, T ; C) convergent subsequence, which we again denote by {�k}k �1. Step 1 above ensures
that the corresponding sequence {�k}k �1 is bounded in H 1(0, T ; Cn); thus, again by choosing a proper subsequence

�k ⇀ � in H 1(0, T ; Cn),

it follows from the Sobolev embedding theorem [1] that

�k → � in L2(0, T ; Cn) and in C([0, T ]; Cn).

We can now show that (�, �) is a solution of the optimal control problem. Since �k solves (1) for �k we have

i�k(t) = i�0 +
∫ t

0
(H0 + H1(�k(s)))�k(s) ds for 0� t �T . (9)

Next, we consider the limit in k → ∞ of (9). The weak convergence of �k to � in L2(0, T ; C) implies weak convergence
also for the complex conjugates, i.e., �∗k ⇀ �∗ in L2(0, T ; C). Strong convergence of �k to � in L2(0, T ; Cn) allows
to go to the limit as k → ∞ on the right-hand side of (9). Thus, we find

i�(t) = i�0 +
∫ t

0
(H0 + H1(�(s)))�(s) ds,

which shows that � = �(�), or equivalently that e(�, �) = 0 in Y. We finally obtain

J (�, �) = 1

2
|�(T ) − �d |2Cn + �

2
‖�‖2

L2(0,T ;C)
+ 1

2

∑
j∈I

	j‖�j‖2
L2(0,T ;Cn)

� 1

2
lim

k→∞ |�k(T ) − �d |2Cn + 1

2
lim inf
k→∞ (� ‖�k‖2

L2(0,T ;C)
)

+ 1

2

∑
j∈I

	j lim
k→∞ ‖�k,j‖2

L2(0,T ;Cn)

= inf{J (x)|x = (�, �) ∈ X and e(x) = 0 in Y },



A. Borzì et al. / Journal of Computational and Applied Mathematics 216 (2008) 170–197 175

where we used the lower-semicontinuity of the L2-norm. Thus, we have proved that (�, �) is a solution to (P) for � > 0
and � = 0. If � > 0 and � = 0 hold the sequence {�k}k �1 is bounded in L2(0, T ; C) by the Poincaré inequality (6).
Thus, the proof follows by analogous arguments. �

2.2. First-order necessary optimality conditions

To solve the above optimal control problem, we use the method of Lagrange multipliers (see, e.g., [21]) to turn the
constrained minimization problem (P) into an unconstrained optimization problem, and we focus on the necessary
optimality conditions of first order.

We define the Lagrangian function L : X × Y → R by

L(�, �, p, q) = J (�, �) +Re(〈e(�, �), (p, q)〉Y )

= J (�, �) +Re(〈i�̇ − H(�(·))�, p〉L2(0,T ;Cn) + (�(0) − �0) · q∗),

for (�, �) ∈ X and (p, q) ∈ Y . To derive first-order necessary optimality conditions we need the following constraint
qualification.

Proposition 4. The operator e : X → Y is Fréchet-differentiable and its linearization ∇e(x◦) is surjective for every
x◦ = (�◦, �◦) ∈ X.

Proof. We first prove the claim for the case � > 0. Let x◦ = (�◦, �◦) ∈ X = H 1(0, T ; Cn) × H 1(0, T ; C) be arbitrary.
Recall that H 1

0 (0, T ; C) is continuously embedded into C([0, T ]; C) so that there exists an embedding constant c1 > 0
satisfying

‖�‖C([0,T ];C) �c1‖�‖H 1(0,T ;C) for all � ∈ H 1
0 (0, T ; C). (10)

Recall that the Hamiltonian matrix H is of the form (2). We compute the directional derivative of the operator e. For
any direction x = (�, �) ∈ X, � = �Re + i�Im with �Re, �Im ∈ H 1

0 (0, T ; R), we infer from (2) that

∇e(x◦)x = lim
h↘0

e(x◦ + hx) − e(x◦)
h

=
(

i�̇ − H(�◦(·))� − H1(�(·))�◦
�(0)

)
.

Next we prove that the directional derivative is already the Fréchet-derivative. Note that

e(x◦ + x) − e(x◦) − ∇e(x◦)x =
(

H1(�(·))�
0

)
.

Thus, we derive from (10), |�Re(t)|� |�(t)| and |�Im(t)|� |�(t)|:
‖e(x◦ + x) − e(x◦) − ∇e(x◦)x‖2

Y

�K2
0

∫ T

0
|�(t)|2|�(t)|2Cn dt �K2

0 ‖�‖2
C([0,T ];C)‖�‖2

L2(0,T ;Cn)

�c2(‖�‖2
H 1(0,T ;Cn)

+ ‖�‖2
H 1(0,T ;C)

)2 = c2‖x‖4
X,

where c2 = c2
1K

2
0 /2. Consequently,

0� lim‖x‖X↘0

‖e(x◦ + x) − e(x◦) − ∇e(x◦)x‖Y

‖x‖X

�c2 lim‖x‖X↘0
‖x‖X = 0

so that the directional derivative ∇e(x◦) is already the Fréchet-derivative.
Next we prove that the linear operator∇e(x◦) is surjective for everyx◦=(�◦, �◦) ∈ X. Recall that�◦ ∈ C([0, T ]; Cn).

Let (f, f0) ∈ Y be arbitrary. Then ∇e(x◦)(�, �) = (f, f0) is equivalent to

i�̇ = H(�◦(·))� + H1(�(·))�◦ + f in (0, T ] and �(0) = f0. (11)
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Applying (3) and (4), the right-hand side g =H1(�(·))�◦ +f belongs to L2(0, T ; Cn) for every � ∈ L2(0, T ; C). Thus,
(11) is a linear system of ordinary differential equations that admits a unique solution � ∈ H 1(0, T ; Cn) for every
� ∈ L2(0, T ; C). In particular, the operator ∇e(x◦) is surjective. �

Remark 5. It follows from the proof of Proposition 4 that the linear operator e�(x◦) : H 1(0, T ; Cn) → Y is bijective,
where e�(x◦) denotes the partial Fréchet-derivative at x◦ with respect to � ∈ H 1(0, T ; Cn).

Notice that the quadratic cost functional J : X → [0, ∞) is twice continuously Fréchet-differentiable. Using
Proposition 4, first-order necessary conditions for a minimum are obtained by equating to zero the Fréchet derivatives
of L with respect to (�, �, p, q), where L�, L�, Lp, and Lq denote the partial derivatives of L with respect to �, �, p,
and q, respectively. We have ∇L(�, �, p, q) = (L�, L�, Lp, Lq).

Theorem 6. Suppose that x◦ = (�◦, �◦) ∈ X is a local solution to (P). Then there exist (unique) Lagrange multipliers
p◦ ∈ H 1(0, T ; Cn) and q◦ ∈ Cn satisfying

i�̇◦ = H(�◦(·))�◦ in (0, T ], (12a)

�◦(0) = �0, (12b)

i(ṗ◦)j = (H(�◦(·))∗p◦)j − 	j (�◦)j in (0, T ], j ∈ I , (12c)

i(ṗ◦)j = (H(�◦(·))∗p◦)j in (0, T ], j /∈ I , (12d)

ip◦(T ) = �◦(T ) − �d , (12e)

q◦ = ip◦(0), (12f)

−��̈◦ + ��◦ =Re(H1Re�◦ · p∗◦) + iRe(H1Im�◦ · p∗◦) in (0, T ], (12g)

�◦(T ) = �◦(0) = 0. (12h)

in case of � > 0. Moreover, �◦ ∈ C2([0, T ]; C) ∩ C([0, T ]; C), i.e., �◦ is a classical solution. If � = 0 holds, (12g) and
(12h) have to be replaced by

��◦ =Re(H1Re�◦ · p∗◦) + iRe(H1Im�◦ · p∗◦) in (0, T ). (12g
′
)

Proof. It follows from Proposition 4 that there exist (unique) Lagrange multipliers (p◦, q◦) ∈ Y satisfying

∇L(x◦, p◦, q◦) = 0 in X × Y . (13)

The condition Lp(x◦, p◦, q◦) = 0 in L2(0, T ; Cn) implies (12a), whereas the equation Lq(x◦, p◦, q◦) = 0 in Cn yields
(12b). Next we turn to the partial derivative of the Lagrangian with respect to �. Let � ∈ H 1(0, T ; Cn) be arbitrary.
Then we find

L�(x◦, p◦, q◦)� =Re

⎛⎝(�◦(T ) − �d) · �(T )∗ +
∑
j∈I

	j 〈(�◦)j , �j 〉L2(0,T ;Cn)

⎞⎠
+Re(〈i�̇ − H(�◦(·))�, p◦〉L2(0,T ;Cn) + �(0) · q∗◦ ). (14)

Using integration by parts and (13) we obtain

Re(〈i�̇ − H(�◦(·))�, p◦〉L2(0,T ;Cn)) =Re(〈iṗ◦ − H(�◦(·))∗p◦, �〉H 1(0,T ;Cn)′,H 1(0,T ;Cn))

+Re(ip◦(T ) · �(T )∗ − ip◦(0) · �(0)∗),

where 〈· , ·〉H 1(0,T ;Cn)′,H 1(0,T ;Cn) stands for the dual pairing of H 1(0, T ; Cn) and its dual space H 1(0, T ; Cn)′. We
infer from (14) that (12c)–(12d) are satisfied in H 1(0, T ; Cn)′. From (3) and the fact that �◦, p◦ ∈ L2(0, T ; Cn), it
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follows that the right-hand sides in (12c)–(12d) even belong to L2(0, T ; Cn). Hence, p◦ is an element in H 1(0, T ; Cn)

and (12c)–(12d) hold in L2(0, T ; Cn). Inserting (12c)–(12d) in (14) implies (12e)–(12f). In case of � > 0, we conclude
from L�Re

(x◦, p◦, q◦)�Re = 0 for all � = �Re + i�Im ∈ H 1(0, T ; C) that

�〈�◦Re, �Re〉L2(0,T ;R) + �〈�̇◦Re, �̇Re〉L2(0,T ;R) −Re

(∫ T

0
�ReH1Re�◦ · p∗◦

)
= 0

with �◦ = �◦Re + i�◦Im ∈ H 1
0 (0, T ; C) and �◦Re, �◦Im ∈ H 1

0 (0, T ; R). Applying integration by parts we derive

〈�̇◦Re, �̇Re〉L2(0,T ;R) = −〈�̈◦Re, �Re〉H 1(0,T ;R)′,H 1(0,T ;R).

Hence,

��◦Re − ��̈◦Re −Re(H1Re�◦ · p∗◦) = 0. (15)

Analogously, L�Im
(x◦, p◦, q◦)�Im = 0 for all � = �Re + i�Im ∈ H 1(0, T ; C) implies that

��◦Im − ��̈◦Im −Re(H1Im�◦ · p∗◦) = 0. (16)

Multiplying (16) by the complex unit i and adding (15) we obtain (12g), whereas (12h) follows directly from �◦ ∈
H 1

0 (0, T ; C). Since �◦, p◦ ∈ C([0, T ]; Cn), the right-hand side in (12g) belongs to C([0, T ]; C). Thus, �◦ is a classical
solution. In case of � = 0 we have to replace (15)–(16) by

��◦Im − ��̈�◦Re −Re(H1Re�◦ · p∗◦) = 0 and ��◦Im −Re(H1Im�◦ · p∗◦) = 0, (17)

respectively, so that we derive (12g′). �

Having computed a solution to the first-order conditions (12) it remains to verify that this solution corresponds to a
local minimum. For this reason, second-order optimality conditions are considered in the next section.

Remark 7. Recall that (1) is uniquely solvable for every � ∈ L2(0, T ; C). Thus, it is meaningful to introduce the
so-called reduced cost functional Ĵ : H 1(0, T ; C) → R given by

Ĵ (�) = J (�(�), �), (18)

where �(�) denotes the unique solution to (1) for �. It follows from the proof of Theorem 6 that the gradient of Ĵ with
respect to the real and imaginary parts of � = �Re + i�Im is given by

∇Ĵ (�) =
(

��Re − ��̈◦Re −Re(H1Re� · p∗)
��Im − ��̈Im −Re(H1Im� · p∗)

)
, (19)

where � and p solve (12a)–(12b) and (12c)–(12e), respectively, with � instead of ε◦; compare (15)–(16). If �= 0 holds,
then Ĵ is defined on L2(0, T ; C) and we have the representation

∇Ĵ (�) =
(

��Re −Re(H1Re� · p∗)
��Im −Re(H1Im� · p∗)

)
; (20)

see (17).

2.3. Second-order sufficient optimality conditions

Problem (P) is a non-convex programming problem so that different local minima will probably occur. Numerical
methods will deliver a local minimum close to the given starting point. Suppose that x◦ = (�◦, �◦) ∈ X is an optimal
solution to (P) and that (p◦, q◦) ∈ Y are the associated Lagrange multiplier satisfying (12c)–(12f). The second
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Fréchet-derivative of the Lagrangian—denoted by Lxx—at (x◦, p◦, q◦) with respect to x is given by

Lxx(x◦, p◦, q◦)(x, x)

= |�(T )|2Cn + �‖�‖2
L2(0,T ;C)

+ �‖�̇‖2
L2(0,T ;C)

+
∑
j∈I

	j‖�j‖2
L2(0,T ;Cn)

− 2Re

(∫ T

0
(H1(�(t))�(t)) · p◦(t)∗ dt

)
,

for every direction x = (�, �) ∈ X.
In case of � > 0 the second-order sufficient optimality conditions for (P) are as follows (see, e.g., [24]): There exists

a constant 
 > 0 such that

Lxx(x◦, p◦, q◦)((�, �), (�, �))�
(‖�‖2
H 1(0,T ;Cn)

+ ‖�‖2
H 1(0,T ;C)

), (21)

for all (�, �) ∈ X satisfying the linearized state equation

i�̇ = H(�◦(·))� + H1(�(·))�◦ in (0, T ] and �(0) = 0. (22)

It follows from Proposition 4 and Remark 5 that for every � ∈ L2(0, T ; C) the problem (22) possesses a unique solution.
In case of � = 0 we have to replace (21) by

Lxx(x◦, p◦, q◦)((�, �), (�, �))�
(‖�‖2
H 1(0,T ;Cn)

+ ‖�‖2
L2(0,T ;C)

). (23)

To prove the second-order sufficient optimality condition we need the following two lemmas.

Lemma 8. Let (�̃◦, �̃◦) ∈ L2(0, T ; Cn)×L2(0, T ; C) represent the linearization point and let (�, �) ∈ H 1(0, T ; Cn)×
L2(0, T ; C) satisfy (22). Then there exists a constant C > 0 depending on �̃◦ and �̃◦ so that

‖�‖L∞(0,T ;Cn) + ‖�‖L2(0,T ;Cn) �C‖�‖L2(0,T ;C) for almost all t ∈ (0, T ]. (24)

Proof. To prove the assertion we apply Gronwall’s lemma. From (22) we have

i�(t) = i�(0) +
∫ t

0
i�̇(s) ds =

∫ t

0
(H0 + H1(�̃◦(s)))�(s) + H1(�(s))�̃◦(s) ds

for almost all t ∈ (0, T ]. Using (3) we find

|�(t)|Cn �
∫ t

0
(�(H0) + K0|�̃◦(s)|)|�(s)|Cn + K0|�(s)||�̃◦(s)|Cn ds

�C1(1 + ‖�̃◦‖2
L2(0,T ;C)

)1/2
(∫ t

0
|�(s)|2Cn ds

)1/2

+ C2‖�‖L2(0,T ;C),

where C1 = max{2T �(H0)
2, 2K2

0 } and C2 = K0‖�̃◦‖L2(0,T ;Cn). Consequently,

|�(t)|2Cn �C3

(
(1 + ‖�̃◦‖2

L2(0,T ;C)
)

∫ t

0
|�(s)|2Cn ds + ‖�‖2

L2(0,T ;C)

)
,

with C3 = max{2C2
1 , 2C2

2 }. Applying Gronwall’s lemma and using �(0) = 0 we obtain

|�(t)|2Cn �C3‖�̃◦‖2
L2(0,T ;Cn)

e
C3t (1+‖�̃◦‖2

L2(0,T ;C)
)‖�‖2

L2(0,T ;C)
(25)

for almost all t ∈ (0, T ] and

‖�‖2
L2(0,T ;Cn)

�T C3‖�̃◦‖2
L2(0,T ;Cn)

e
C3T (1+‖�̃◦‖2

L2(0,T ;C)
) ‖�‖2

L2(0,T ;C)
. (26)

From (25) and (26) we infer (24). �
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Remark 9. If in addition to the hypotheses of Lemma 8, we have �̃◦ ∈ L∞(0, T ; Cn) then we can give an estimate
for � in the H 1(0, T ; Cn)-norm. Applying (3), it follows that

‖�̇‖2
L2(0,T ;Cn)

=
∫ T

0
|(H0 + H1(�̃◦(t))�(t) + H1(�(s))�̃◦(t)|2 dt

�
∫ T

0
|(�(H0) + K0|�̃◦(t)|)|�(t)|Cn + K0|�(t)||�̃◦(t)|Cn |2 dt

�
∫ T

0
2(�(H0) + K0 |�̃◦(t)|)2|�(t)|2Cn + 2K2

0 |�(t)|2|�̃◦(t)|2Cn dt

�4�(H0)
2 ‖�‖2

L2(0,T ;Cn)
+ 4K2

0 ‖�‖2
L∞(0,T ;Cn)

‖�̃◦‖2
L2(0,T ;C)

+ 2K2
0 ‖�̃◦‖2

L∞(0,T ;Cn)
‖�‖2

L2(0,T ;C)

�C4(‖�‖2
L∞(0,T ;Cn)

+ ‖�‖2
L2(0,T ;Cn)

+ ‖�‖2
L2(0,T ;C)

),

with

C4 = max{4�(H0)
2, 4K2

0 ‖�̃◦‖2
L2(0,T ;C)

, 2K2
0 ‖�̃◦‖2

L∞(0,T ;Cn)
}.

Thus, it follows from Lemma 8 that

‖�‖H 1(0,T ;Cn) �C5‖�‖L2(0,T ;C) (27)

for a constant C5 > 0 depending on ‖�◦‖L∞(0,T ;Cn) and ‖�◦‖L2(0,T ;C).

Lemma 10. Suppose that (�◦, �◦) is a local solution to (P). Let 	 = (	i ) ∈ Rn be given by 	i > 0 for i ∈ I and 	i = 0
otherwise. Then the solution p◦ ∈ H 1(0, T ; Cn) to (12c)–(12e) satisfies

|p◦(t)|Cn �C(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn)) for almost all t ∈ [0, T ],

where the constant C > 0 depends on �◦ and D	 denotes a diagonal matrix satisfying D	 = diag (	1, . . . , 	n) ∈ Rn×n.

Proof. From (12c)–(12d) we infer

(ip◦(T ) − ip◦(t))j =
(∫ T

t

(H ∗
0 + H1(�(s))

∗)p◦(s) − 	j (�◦(s))j ds

)
j

for almost all t ∈ [0, T ) and 1�j �n. Using (3) and i p◦(T ) = �◦(T ) − �d it follows that

|p◦(t)|Cn � |�◦(T ) − �d |Cn +
∫ T

t

(�(H0) + K0 |�(s)|)|p◦(s)|Cn + |D	�◦(s)|Cn ds

� |�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn)

+ C̃1(1 + ‖�◦‖2
L2(0,T ;C)

)1/2
(∫ T

t

|p◦(s)|2Cn ds

)1/2

,

where C̃1 = max{2T �(H0)
2, 2K2

0 }. Setting C̃2 = 4 max{1, 2C2
1 } we get

|p◦(t)|2Cn �C̃2

(
|�◦(T ) − �d |2Cn + ‖D	�◦‖2

L1(0,T ;Cn)
+ (1 + ‖�◦‖2

L2(0,T ;C)
)

∫ T

t

|p◦(s)|2Cn ds

)
.
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Applying Gronwall’s lemma it follows that

|p◦(t)|2Cn �C̃2e
C̃2(T −t)(1+‖�◦‖2

L2(0,T ;C)
)
(|�◦(T ) − �d |2Cn + ‖D	�◦‖2

L1(0,T ;Cn)
)

for almost all t ∈ [0, T ), which gives the assertion. �

Now we turn to the second-order sufficient optimality conditions. Let x◦ = (�◦, �◦) ∈ X be a local solution to (P)
and (p◦, q◦) ∈ X the associated pair of Lagrange multipliers. Suppose that � > 0 and x = (�, �) ∈ X satisfy (22). Due
to Remark 9 and (6) there exists a constant C̃ > 0 such that

‖�̇‖2
L2(0,T ;C)

� 1

C̃
‖�‖2

H 1(0,T ;Cn)
. (28)

By Lemma 10 there exists a constant Ĉ > 0 depending on �◦ such that

|p◦(t)|Cn �Ĉ
(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn)

)
for all t ∈ [0, T ]. (29)

From (3), (6), (28), and (29) we derive

Lxx(x◦, p◦, q◦)(x, x)

��‖�‖2
L2(0,T ;C)

+ �

2
‖�̇‖2

L2(0,T ;C)
+ �

2C̃
‖�‖2

H 1(0,T ;Cn)

− 2K0

∫ T

0
|�(t)||�(t)|Cn |p◦(t)|Cn dt

�
(

� + �

4K2

)
‖�‖2

L2(0,T ;C)
+ �

4
‖�̇‖2

L2(0,T ;C)
+ �

2C̃
‖�‖2

H 1(0,T ;Cn)

− ĈK0(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn))(‖�‖2
L2(0,T ;C)

+ ‖�‖2
H 1(0,T ;Cn)

)

� min

{
� + �

4K2
− ĈK0(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn)),

�

4

}
‖�‖2

H 1(0,T ;C)

+
(

�

2C̃
− ĈK0(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn))

)
‖�‖2

H 1(0,T ;Cn)
.

If

|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn) < min

{
4�K2 + �

4ĈK0K2
,

�

2C̃ĈK0

}
(30)

then


 = min

{
� + �

4K2
− ĈK0(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn)),

�

4
,

�

2C̃
− ĈK0(|�◦(T ) − �d |Cn + ‖D	�◦‖L1(0,T ;Cn))

}
is positive and (21) holds. In case of � = 0 we replace (28) by (27). Then, the second-order sufficient condition can be
shown analogously to the case � > 0. We summarize the results in the following theorem.

Theorem 11. Suppose that x◦ = (�◦, �◦) ∈ X is an optimal solution to (P) and that (p◦, q◦) ∈ Y are the associated
(unique) Lagrange multipliers satisfying (12c)–(12f). If (30) holds, then the second-order sufficient condition (21) is
satisfied.
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Remark 12. The second-order sufficient optimality condition holds provided the terminal residuum |�◦(T ) − �d |Cn

as well as the term

‖D	�◦‖L1(0,T ;Cn) =
∫ T

0

∑
j∈I

	j |(�◦(t))j | dt

are sufficiently small. The term ‖D	�◦‖L1(0,T ;Cn) is a measure of the population lost occurring in unstable states
modeled by �j , j ∈ I . If the population lost turns out to be large, then the terminal state does not reach the desired
state �d . Thus, the residual |�◦(T ) − �d |Cn is also large. On the other hand, if the population lost is small, we may
also expect that the residual is small. In Section 5 we show that appropriate choices of optimization parameters result
in small residual and reduced population lost, thus fulfilling (30).

3. Non-linear conjugate gradient approach

Our purpose is to give an appropriate formulation of the NCG method with a robust line search strategy and cascadic
acceleration that results in a competitive scheme for quantum optimal control problems. Two features determine the
success of the scheme proposed in this paper: (1) the use of a robust line search strategy together with an extension
of a newly proposed formula [11] for determining conjugate search directions in the NCG method and (2) the use of
cascadic acceleration. The latter is motivated by our computational experience and the results given in [4,36] regarding
CG schemes with cascadic acceleration applied to the solution of elliptic problems. In [4,36] it is proved that cascadic
CG schemes provide solvers with optimal computational complexity.

Gradient-type methods were the first to be used in the early day of quantum control computation [29], but appeared
to be less competitive than monotonic schemes based on the Krotov method, see Section 4. However, some encouraging
results were presented in [39] using an NCG scheme. The approach in [39] was a crude generalization of the NCG
method with a special rule concerning the value of steplength [39, formula 2.32]). The resulting algorithm was not
always robust and convergence slow-down could be observed.

In this section we illustrate our NCG approach that represents a considerable improvement with respect to the NCG
scheme in [39]. Moreover, we investigate the convergence properties of our algorithm, thus giving justification of the
use of the NCG scheme in the complex framework.

3.1. The non-linear conjugate gradient method

We start discussing the minimization by NCG methods of a differentiable function f : Rm → R. We denote
g(x) = ∇f (x), x ∈ Rm.

NCG schemes represent extensions of linear conjugate gradient (CG) to non-quadratic problems; see, e.g., [14,37].
In the common variants, the basic idea is to avoid matrix operations and express the search directions recursively as

dk+1 = −gk+1 + �kdk , (31)

for k = 1, 2, . . ., with d1 = −g1. The iterates for a minimum point are given by

xk+1 = xk + �kdk , (32)

where �k > 0 is a steplength. The parameter �k is chosen so that (31)–(32) reduces to the linear CG scheme if f is a strictly
convex quadratic function and �k is the exact one-dimensional minimizer of f along dk . In this case the NCG scheme
terminates in at most n steps in exact arithmetic. This case provides a lower bound to the computational complexity of
NCG schemes.

We focus on the NCG scheme in [11] based on the formula

�k = �DY
k := 〈gk+1, gk+1〉Rm

〈dk, yk〉Rm
,

where yk = gk+1 − gk . In [11], convergence of the proposed NCG scheme is established requiring that the steplength
�k satisfies the standard Wolfe conditions given by

f (�k) − f (�k + �kdk)� − �k 〈gk, dk〉Rm
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and

〈g(�k + �kdk), dk〉Rm > � 〈gk, dk〉Rm ,

with 0 <  < � < 1. Replacing the second of these two conditions above with the following results in the strong Wolfe
conditions:

|〈g(�k + �kdk), dk〉Rm |� − � 〈gk, dk〉Rm ,

with 0 <  < � < 1
2 ; see [14]. This condition means that the graph of f should not increase too fast (beyond the minimum).

Note that convergence can only be proved provided dk is a descent direction for any k, i.e., 〈gk, dk〉 < 0 holds.
Next, we discuss the minimization of the real-valued differentiable function Ĵ (�) = J (�(�), �) defined in (18); see

Remark 7. Denote with g(�) = ∇Ĵ (�). Note that g(�) ∈ H 1
0 (0, T ; C) for � > 0 and g(�) ∈ L2(0, T ; C) for � = 0. In

the following we discuss the NCG scheme in a continuous setting on L2(0, T ; C) with 〈u, v〉 = 〈u, v〉L2(0,T ;C). In the

discrete setting the following holds true with 〈u, v〉 = t
∑N−1

�=0 u� v∗
� , N t = T ; see Section 4 for more details.

We define

�k = ‖gk+1‖2

Re 〈dk, yk〉 . (33)

We require that the steplength �k satisfies

Ĵ (�k) − Ĵ (�k + �kdk)� − �kRe 〈gk, dk〉, (34)

〈g(�k + �kdk), dk〉 > �Re 〈gk, dk〉, (35)

where the parameters are still chosen such that: 0 <  < � < 1
2 . The quality of line search in non-linear CG algorithms

is crucial to preserve mutual conjugacy property of search directions and to ensure that each generated direction is one
of descent. We use the Wolfe–Powell strategy to determine �k; see [26].

In the present framework, a sufficient descent condition is given by

Re 〈gk, dk〉� − c ‖gk‖2,

for some c > 0 and for all k�1 is guaranteed only replacing (35) with the stronger condition

|〈g(�k + �kdk), dk〉|� − �Re 〈gk, dk〉
(and c = 1/(1 + �) results).

We consider the following NCG scheme:

Algorithm 13 (NCG method). Step 1: Given k = 1, �1, d1 = −g1, if ‖g1‖ < tol then stop.
Step 2: Compute �k > 0 satisfying (34)–(35).
Step 3: Let �k+1 = �k + �kdk .
Step 4: Compute gk+1 = ∇Ĵ (�k+1).
If ‖gk+1‖ < tolabs or ‖gk+1‖ < tolrel‖g1‖ or k = kmax then stop.
Step 5: Compute �k by (33).
Step 6: Let dk+1 = −gk+1 + �k dk .
Step 7: Set k = k + 1, goto Step 2.

In the remaining of this section we prove convergence of the NCG scheme defined above that gives justification of
the use of the NCG scheme in the complex framework.

We need the following assumption.

Assumption 14. (1) Ĵ is bounded from below and is continuously real differentiable in a neighborhood N of the level
set L = {� ∈ E : Ĵ (�)� Ĵ (�1)}.
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(2) ∇Ĵ is Lipschitz continuous in N, i.e., there exists a constant L > 0 such that

‖∇Ĵ (�1) − ∇Ĵ (�2)‖�L ‖�1 − �2‖ for all �1, �2 ∈ N.

Notice that in our setting Assumption 14-(1) is satisfied. Moreover, � �→ Ĵ (�) is twice continuously Fréchet-
differentiable so that Assumption 14-(2) holds at least locally.

We have

Re〈gk+1, dk+1〉 =Re〈gk+1, −gk+1 + �kdk〉 = −‖gk+1‖2 + �kRe 〈gk+1, dk〉

= − ‖gk+1‖2 + ‖gk+1‖2

Re 〈dk, yk〉 Re 〈gk+1, dk〉

= ‖gk+1‖2

Re 〈dk, yk〉 (−Re 〈dk, yk〉 +Re 〈gk+1, dk〉) = �kRe 〈gk, dk〉.

Therefore, we have

�k = Re 〈gk+1, dk+1〉
Re 〈gk, dk〉 . (36)

Now we need the following lemma which is an extension of Lemma 3.2 in [11].

Lemma 15. Suppose that �1 is a starting point for which Assumption 14 is satisfied and consider any method of the
form �k+1=�k +�k dk where dk is a descent direction and �k satisfies (34)–(35). Then the following Zoutendijk condition
holds:∑

k �1

Re 〈gk, dk〉2

‖dk‖2 < ∞.

Proof. From (35) it follows that

Re 〈yk, dk〉 =Re 〈gk+1 − gk, dk〉�(� − 1)Re 〈gk, dk〉.
The Lipschitz condition implies that

Re 〈yk, dk〉 =Re 〈gk+1 − gk, dk〉��kL ‖dk‖2.

Combining the two inequalities one obtains

�k � � − 1

L

Re 〈gk, dk〉
‖dk‖2 .

This result combined with (34) gives

Ĵ (�k) − Ĵ (�k + �kdk)� − �kRe 〈gk, dk〉�c
Re 〈gk, dk〉2

‖dk‖2 ,

where c = (1 − �)/L is a positive constant. Summing up for k�1 and recalling that Ĵ is bounded below concludes
the proof. �

We can now prove the following theorem representing an extension of Theorem 3.3 in [11].

Theorem 16. Suppose that �1 is a starting point for which Assumption 14 holds. Let the sequence {�k}k �1 be generated
by the NCG Algorithm 13. Then this algorithm either terminates at the stationary point or converges in the sense that

lim inf
k→∞ ‖gk‖ = 0.

If, in addition, the sequence {‖dk‖/‖gk‖} is bounded then limk→∞ ‖gk‖ = 0.
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Proof. First notice that if the NCG algorithm does not terminate after finite many iterations, we have

‖gk‖ > 0 for all k.

Next we show that the search directions are descent, in the sense that

Re 〈gk, dk〉 < 0. (37)

This is obvious for k = 1. Now assume that it holds for k and recall the following two results:

Re 〈yk, dk〉�(� − 1)Re 〈gk, dk〉 (38)

and

Re 〈gk+1, dk+1〉 = �kRe 〈gk, dk〉. (39)

Notice that (� − 1) 〈gk, dk〉 is positive. Therefore, we obtain

Re 〈gk+1, dk+1〉 = �kRe 〈gk, dk〉 = ‖gk+1‖2

Re 〈dk, yk〉 Re 〈gk, dk〉� ‖gk+1‖2

(� − 1)
< 0.

That is, (37) holds for all k (and hence �k > 0 for all k).
Now, consider the scalar product of both sides of dk+1+gk+1=�k dk with themselves. We have ‖dk+1‖2 =�2

k‖dk‖2 −
2R e〈gk+1, dk+1〉 − ‖gk+1‖2. Dividing with Re〈gk+1, dk+1〉2 and using (36), we obtain

‖dk+1‖2

Re 〈gk+1, dk+1〉2 = ‖dk‖2

Re 〈gk, dk〉2 −
(

1

‖gk+1‖ + ‖gk+1‖
Re 〈gk+1, dk+1〉

)2

+ 1

‖gk+1‖2

� ‖dk‖2

Re 〈gk, dk〉2 + 1

‖gk+1‖2 ,

and for k = 1 we have ‖d1‖2/Re〈g1, d1〉2 = 1/‖g1‖2. Therefore, we have

‖dk‖2

Re 〈gk, dk〉2 �
k∑

i=1

1

‖gi‖2 for all k�1. (40)

The proof of the theorem is concluded with a contradiction argument. If the theorem is not true, then there exists a
constant c > 0 such that ‖gk‖�c for all k�1 and from (40) it follows that

‖dk‖2

Re 〈gk, dk〉2 � k

c2 ,

which implies that

∑
k �1

Re 〈gk, dk〉2

‖dk‖2 �c2
∑
k �1

1

k
= ∞,

thus contradicting Lemma 15. �

3.2. Cascadic acceleration

The cascadic approach results from combining nested iteration techniques with iterative schemes.
Consider a hierarchy of nested grids with index lev = lev0, . . . , levf . The idea is to start from a coarse grid, with

index lev0, where the size of the problem is small and therefore the problem can be solved by the iterative scheme
with a reasonable computational effort. Let us denote with xlev0 the solution obtained by this process with, e.g., ‘zero’
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initialization x∗
lev0

. The step that follows is to interpolate this solution to the next finer grid, using an interpolation

operator I lev+1
lev . Therefore, we obtain an initialization of the iterative process on the finer grid that is given by

x∗
lev+1 = I lev+1

lev xlev,

where lev = lev0. With this initialization, after a sufficient number of iterations we obtain the solution xlev+1. This
process is repeated until the finest grid is reached and the desired solution is obtained.

An algorithm of this method is given by the following. Denote with xlev = Slev(x
∗
lev) the result of the iteration, with

x∗
lev as initialization, that is applied until a given stopping criterion is satisfied. We have:

Algorithm 17 (Cascadic method). Step 1: Given lev = lev0, x∗
lev0

.
Step 2: Compute xlev = Slev(x

∗
lev).

Step 3: If lev = levf then stop.
Step 4: Else if lev < levf then interpolate x∗

lev+1 = I lev+1
lev xlev.

Step 5: Set lev = lev + 1, goto Step 2.

The original motivation for using the cascadic approach comes from our previous computational experience and the
results given in [4,36] where a cascadic conjugate gradient method is discussed and optimal computational complexity
for elliptic problems is proved.

While we are not able to extend the convergence theory in [4,36] to the case of non-convex optimization problems
using the NCG scheme, we are able to obtain considerable computational improvement combining our NCG scheme with
the cascadic method. We denote the resulting scheme by C-NCG. For results of numerical experiments, see Section 5.

4. Monotonic schemes for quantum control

Monotonic schemes have been initially introduced in a general framework in [17–19]. Following this approach,
Tannor et al. [38] and then Zhu and Rabitz [41] have proposed two procedures for quantum control computation.
These algorithms have a common basis, as it appears in [23], where a unified framework is presented. Other extensions
have then been designed to obtain bounded and bang–bang controls [40], stochastic monotonic schemes [34] or to
optimize more general cost functionals [27] and systems involving dissipative states [28]. Recently, a relationship
between these algorithms and local trajectory tracking procedures has been established, providing a new interpretation
of these schemes [34]. At the theoretical level, some proofs of the convergence of the monotonic schemes have been
presented using either compactness and semi-group theory [20] or the Łojasiewicz inequality and its extensions [2].
On the other hand, usual time discretization of the monotonic schemes often leads to instabilities that prevent to
reach numerical convergence. This problem is studied in [22,33], where an appropriate time discretization is proposed
which avoids instability. In order to tackle the control problem of the finite-level system presented in the section of
numerical experiments, we present here a time-discretized monotonic scheme based on a Crank–Nicholson propagator.
The resulting algorithm is unconditionally stable and allows us to work with a large range of time steps.

For simplicity, throughout this section we will consider that � = 0 and require the following assumption that char-
acterizes dissipation in the system.

Assumption 18. We assume that〈
H0 − H ∗

0

i
�, �

〉
L2(0,T ;Cn)

�0 for all � ∈ H 1(0, T ; Cn).

This assumption corresponds to the dissipative character of the system, i.e., the Euclidian norm of the wavefunction
decreases with respect to time. For reason of simplicity, we introduce an auxiliary cost functional

J̃ (�) : =Re(�∗
d · �(T )) − �

2
‖�‖2

L2(0,T ;C)
+ 1

2
〈�, ��〉L2(0,T ;Cn),

where � and � are linked by (1) and � is defined by

(��)j = −	j�j −
(

H0 − H ∗
0

i
�

)
j

.
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We consider the optimal control problem corresponding to the maximization of J̃ (�) under the constraint (1). Notice
that this problem is equivalent to the optimal control problem (P) since

Ĵ (�) = |�0|2Cn −Re(�∗
d · �(T )) − 1

2
〈�, ��〉L2(0,T ;Cn) + �

2
‖�‖2

L2(0,T ;C)

= |�0|2Cn + |�d |2
Cn

2
− J̃ (�).

We assume that the following holds.

Assumption 19. The parameters 	j fulfill the condition:

−
∑
j∈I

	j |�j |2 −
〈
H0 − H ∗

0

i
�, �

〉
L2(0,T ;Cn)

�0 for all � ∈ Cn.

This assumption means that the parameters 	j have to be calibrated in conjunction with the dissipative character of
the system to make the operator � positive. This condition is necessary to guarantee the monotonicity of our algorithm
(see (43) and Lemma 21).

Before presenting a monotonic scheme corresponding to the maximization of J̃ (�)= J̃ (�(�), �), we need to compute
the variation of this cost functional between two control fields. Let us first define the Lagrange multiplier q by

iq̇ = (H ∗
0 + H1(�(·))) q + ��,

iq(T ) = −�d . (41)

Remark 20. Given � ∈ L2(0, T ; C) and � the solution to (1), the Lagrange multipliers q and p are linked by the
relation

iq = ip − �.

Eq. (12g), often used to update � in optimization procedures, holds when replacing p by q. However, this equivalence is
not true if � and q are computed with different fields, which is the case during the iterations of the monotonic schemes
(see, e.g., Lemma 21).

Consider two fields � and �′, and the corresponding wavefunctions � and �′, and Lagrange multipliers q and q ′,
respectively. We have

J̃ (�′) − J̃ (�) =Re(�∗
d · (�′(T ) − �(T ))) +Re〈��, �′ − �〉L2(0,T ;Cn)

+ 1

2
〈�′ − �, �(�′ − �)〉L2(0,T ;Cn)

− �

2
(‖�′‖2

L2(0,T ;C)
− ‖�‖2

L2(0,T ;C)
). (42)

Focusing on the first two terms of this sum, we obtain

Re(�∗
d · (�′(T ) − �(T ))) +Re 〈��, �′ − �〉L2(0,T ;Cn)

=Re(iq(T )∗ · (�′(T ) − �(T ))) +Re 〈��, �′ − �〉L2(0,T ;Cn)

=Re

〈
−iq,

H0 + H1(�′(·))
i

�′ − H0 + H1(�(·))
i

�

〉
L2(0,T ;Cn)

+Re 〈−iq̇, �′ − �〉L2(0,T ;Cn) +Re 〈��, �′ − �〉L2(0,T ;Cn)

=Re 〈q, (H1(�
′(·)) − H1(�(·)))�′〉L2(0,T ;Cn).
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Thus, the variation in J̃ reads as follows:

J̃ (�′) − J̃ (�) =
∫ T

0
Re(q(s)∗ · (H1(�

′(s)) − H1(�(s)))�
′(s)) − �

2
(|�′(s)|2 − |�(s)|2) ds

+ 1

2
〈�′ − �, �(�′ − �)〉L2(0,T ;Cn). (43)

This formula is the starting point for the design of the monotonic algorithm. For example, we have the following result.

Lemma 21. Given � ∈ L2(0, T ; C), suppose there exists �′ such that

�′Re
(t) = 1

�
Re(q(t)∗ · H1Re�

′(t)),

�′Im
(t) = 1

�
Re(q(t)∗ · H1Im�′(t)).

Then J̃ (�′)� J̃ (�).

4.1. Time-discretized algorithm

Due to their sequential feature, monotonic schemes require a particular time discretization in order to keep their
monotonicity at the discrete level. This discretization is discussed in detail in this section.

For any given integer N, let us introduce the discretization parameter t defined by N t =T and �� = �Re,� + i�Im,�,
��, and q� represents approximations to �(�t), �(�t), q(�t).

Remark 22. Note that all what follows can be rewritten with (small enough—see Theorem 27) variable time steps.
We do not use such a discretization in order to make it simple.

Moreover, we denote by H� the approximation of the Hamiltonian H0 + H1(�(�t)).
Given an initial state �0, we solve numerically (1) and (41) by a Crank–Nicholson scheme. This discretization gives

rise to the following iteration:

��+1 =
(

Id − tH�

2i

)−1 (
Id + tH�

2i

)
�� (44)

and

q�+1 =
(

Id + tH ∗
�

2i

)(
Id − tH ∗

�

2i

)−1

q� − it���+1,

iqN = −�d , (45)

where Id is the identity matrix. Since H1(�) is hermitian and because of Assumption 18, the following uniform bounds
can be obtained:

|��|Cn � |�0|Cn , |q�|Cn �T �(�) |�0|Cn + |�d |Cn for all � = 0, . . . , N . (46)

We also introduce the time-discretized cost functional

J̃t (�) =Re(�∗
d · �N) − �t

2

N−1∑
�=0

|��|2 + t

2

N−1∑
�=0

(��∗
�+1 · ��+1).

Remark 23. Here, we use a first-order approximation for the integrals appearing in the cost functional for reason of
simplicity. Yet, our approach can be applied with higher order approximations.
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Consider two control fields � and �′. Repeating the computations of the previous section at the discrete level, we
obtain the following equivalent to (43):

J̃t (�
′) − J̃t (�) =

N−1∑
�=0

Re(q∗
� · DH��

′
�) − �t

2
(|�′�|2 − |��|2)

+ t

2

N−1∑
�=0

((�′
� − ��)

∗ · �(�′
� − ��)), (47)

where

DH� = i

((
Id + tH�

2i

)−1 (
Id − tH�

2i

)(
Id − tH ′

�

2i

)−1 (
Id + tH ′

�

2i

)
− Id

)
.

We now present a monotonic scheme to optimize J̃t . First, notice that given � = (��)0���N−1 and �′
�, the term

Re(q∗
� ·DH��

′
�) − t

�
2 (|�′�|2 − |��|2) in (47) depends only on �′�. Starting from this remark, the algorithm we propose

consists in optimizing recursively each term of the first sum in (47) with respect to �′� via one iteration of a Newton
method.

Let us compute a Taylor expansion with respect to �� = �′� − �� =�Re,� + i�Im,�. Defining �H� =H1(�′)−H1(�),
we have

(q∗
� · DH��

′
�) = t

2
(̃q∗

� · �H��̌
′
�) − i

t2

4

[
q̃∗
� · �H�

(
Id − tH�

2i

)−1

�H��̌
′
�

]

+ o((�H�)
2),

where

q̃� =
(

Id +
(

Id + tH ∗
�

2i

)(
Id − tH ∗

�

2i

)−1
)

q� = q� + q�+1 + it���+1,

�̌
′
� =

(
Id − tH�

2i

)−1

�′
�.

This expression can be rewritten in terms of the quantity ��:

(q∗
� · DH��

′
�) = t

2
A

†
�

(
�Re,�

�Im,�

)
− it2

4

(
�Re,�

�Im,�

)†

B�

(
�Re,�

�Im,�

)
+ o((��)

2),

where † stands for transpose, and the matrices A� and B� are given by

A� =
(

(̃q∗
� · H1Re�̌

′
�)

(̃q∗
� · H1Im�̌

′
�)

)
, B� =

(
B�,1,1 B�,1,2

B�,2,1 B�,2,2

)
, (48)

with

B�,1,1 =
(

q̃∗
� · H1Re

(
Id − tH�

2i

)−1

H1Re�̌
′
�

)

B�,2,2 =
(

q̃∗
� · H1Im

(
Id − tH�

2i

)−1

H1Im�̌
′
�

)
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B�,1,2 = B�,2,1

= 1

2

[
q̃∗
� ·
{

H1Im

(
Id − tH�

2i

)−1

H1Re�̌
′
� + H1Re

(
Id − tH�

2i

)−1

H1Im�̌
′
�

}]
.

On the other hand, one has

|�′�|2 − |��|2 = 2

(
�Re,�

�Im,�

)† ( �Re,�

�Im,�

)
+
(

�Re,�

�Im,�

)† ( �Re,�

�Im,�

)
,

and the corresponding variation in the cost functional reads

J̃t (�
′) − J̃t (�) = t

N−1∑
�=0

(
1

2
ReA� − �

(
�Re,�

�Im,�

))† ( �Re,�

�Im,�

)

−
(

�Re,�

�Im,�

)T (
−t

4
ImB� + �

2
I2

)(
�Re,�

�Im,�

)
+ o((��)

2)

+ t

2

N−1∑
�=0

((�′
� − ��)

∗ · �(�′
� − ��)),

where I2 denotes the identity matrix of R2.

Algorithm 24 (Crank–Nicholson monotonic scheme (CNMS)). Let us denote by ‖.‖d the Euclidian norm on R2. Given
an initial control amplitude �0, its associated state �0 and Lagrange multiplier q0 and a tolerance tol > 0, suppose
that �k , qk , �k , have already been computed. The derivation of �k+1, qk+1, �k+1, is done as follows:

Step 1. If
∑N−1

�=0

∥∥∥∥∥Re

(
((̃qk

� )∗ · H1Re�̌
k
�)

((̃qk
� )∗ · H1Im�̌

k

�)

)
− �

(
�k
Re,�

�k
Im,�

)∥∥∥∥∥
d

� tol, then stop.

Step 2. Forward propagation: Given �k+1
0 = �0, compute recursively �k+1

�+1 from �k+1
� by

Step 2.1. (Newton iteration) Compute �k+1
� by(

�k+1
Re,�

�k+1
Im,�

)
=
(

�k
Re,�

�k
Im,�

)
+ 1

2

(
−t

4
ImBk

� + �

2
I2

)−1
(

1

2
ReAk+1

� − �

(
�k
Re,�

�k
Im,�

))
, (49)

where Ak+1 is defined by (48), with q̃ = q̃k and �̌
′ = �̌

k+1
.

Step 2.2. Compute �k+1
�+1 by (44).

Step 3. Backward propagation: Given qk+1
N = i�d , compute recursively qk+1

� from qk+1
�+1 by (45).

Step 4. Go back to Step 1.

4.2. Convergence of the algorithm

We present some results concerning the convergence of the CNMS. An important property of this scheme is that the
sequence (�k)k∈N is bounded, as claimed in the next lemma.

Lemma 25. For small enough t , there exists M, such that

∀k ∈ N, ∀� = 0...N − 1, |�kRe,�
|�M, |�kIm,�

|�M .
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Proof. Consider an initial control field �0 and define m and M by

m = 2K0|�0|Cn(|�d |Cn + �(�)(T + t |�0|Cn)),

� = 2m

�
+ max

�=0...N−1
|�0

�|,

M = 3�.

Let us denote by ARe,� and AIm,� the components of A�. Given � such that

max
�=0...N−1

|�Re,�|�M, max
�=0...N−1

|�Im,�|�M , (50)

the estimates (46) and the definition (48) give

max(|ARe,�|, |AIm,�|)� m

1 − t ((�(H0) + K0
√

2M)/2)
.

A similar estimate can be obtained for the coefficients of B�, when � satisfies (50). Let us denote by b the bound obtained
in this case.

The iteration (49) reads

�k+1
� = (I2 − k

�)�
k
� + k

�

2�
Re Ak

� ,

where

k
� =

(
− t

2�
ImBk

� + I2

)−1

.

Now suppose that, for given k, � ∈ N, max(|�k
Re,�

|, |�k
Im,�

|)�M and that t is such that:

m

1 − t ((�(H0) + K0
√

2M)/2)
���.

Since the coefficients of Bk
� are bounded by b, it can be supposed that the diagonal coefficients of k

� belong to [ 1
2 , 3

2 ]
and the others to [− 1

8 , 1
8 ]. Then

max(|ARe,�|, |AIm,�|)���.

Consequently:

|�k+1
Re,�

|� |1 − k
�,1,1||�kRe,�

| + |k
�,1,2||�kIm,�

| + |k
�,1,1|
2�

|ReARe,�| + |k
�,1,2|
2�

|ReAIm,�|

� |1 − k
�,1,1||�kRe,�

| + |k
�,1,2||�kIm,�

| + |k
�,1,1|
2

� + |k
�,1,2|
2

�

�
(

|1 − k
�,1,1| + |k

�,1,2| + |k
�,1,1| + |k

�,1,2|
6

)
M

�M ,

where k
�,i,j denotes the components of k

� . The same result holds for |�k+1
Im,�

|. The lemma follows. �

The next lemma gives a result about the monotonicity of CNMS.
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Lemma 26. For small enough t , the CNMS converges monotonically, in the sense that

∃� > 0, J̃t (�
k+1) − J̃t (�

k)��‖�k+1 − �k‖2
CN .

Proof. The variation in J̃t between two iterations reads

J̃t (�
k+1) − J̃t (�

k) = t�

2

N−1∑
�=0

|�k�|2 + t

2

N−1∑
�=0

((�′
� − ��)

∗ · �(�′
� − ��))

+
N−1∑
�=0

Re Rk
� ,

where

Rk
� = (qk ∗

� · DH��
k+1
� ) − t

2
(Ak

�)
†

(
�k
Re,�

�k
Im,�

)
+ i

t2

4

(
�k
Re,�

�k
Im,�

)†

Bk
�

(
�k
Re,�

�k
Im,�

)
.

Using the Taylor–Lagrange formula and Lemma 25, we obtain

Rk
� = |�k�|2 o(t),

and the result follows. �

Further analysis shows that there exists � > 0 such that

‖∇J̃t (�
k+1)‖CN ��‖�k+1 − �k‖CN ,

where ∇J̃t denotes the gradient of J̃t with respect to �. This fact combined with Lemma 26 enables us to claim the
following convergence result.

Theorem 27. For all initial value �0, the sequence (�k)k∈N converges toward a critical point of J̃t . Denoting by �∞
this limit, there exists c > 0 and � > 0 such that:

‖�k − �∞‖CN �ck−�.

Note that, for large values of �, it can be proved that the convergence rate is indeed linear. We refer to [33] for the
details of the proof.

5. Numerical experiments

We present results of numerical experiments considering the control of a representative three-level quantum system.
The main purpose of this section is to show that the proposed cascadic NCG scheme is efficient and robust with respect
to the choice of the optimization parameters. In fact, at least with the model considered in this section, the cascadic NCG
scheme results more efficient and robust than the monotonic scheme. With the improved computational performance
obtained with the cascadic NCG scheme we are able to solve the quantum optimal control problem to very small
residual and investigate the tracking performance of our optimal control formulation also in the case of very small
regularization (optimization) parameters.

Consider a three-level quantum system whose configuration is represented by � = (�1, �2, �3) ∈ H 1(0, T ; C3)

which consists of two long-lived states �1 and �2, which are energetically separated by some amount , and a state
�3, which has a finite lifetime because of environment coupling (wiggled line); see Fig. 1. Such �-type configurations
have a long-standing history in quantum optics and have been demonstrated successful in the explanation of many
coherence-phenomena in atomic systems [3]; more recently, similar configurations have received increasing attention
also in semiconductor quantum dots [6,16].
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�3

�2

�1



Fig. 1. Prototypical �-type three-level scheme: �1 and �2 are long-lived states whereas �3 is a short-lived state which is optically coupled to both
�1 and �2; wiggled line indicates relaxation and dephasing of state �3.

Time evolution of this finite-level quantum system is governed by the following Hamiltonian [3,16]:

H0 = 1

2

(− 0 0
0  0
0 0 −i�0

)
, (51)

where the term −i�0 accounts for environment losses (e.g., spontaneous photon emissions). The coupling to the external
field � = �Re + i�Im, reads

H1(�) = −1

2

( 0 0 �1�
0 0 �2�

�1�
∗ �2�

∗ 0

)
, (52)

where �1 and �2 describe the coupling strengths of states �1 and �2 to the inter-connecting state �3 (e.g., optical dipole
matrix elements).

Typical initial and final states are given by

�0 =
(1

0
0

)
and �d =

( 0
e−it

0

)
,

respectively.
Concerning the optimality condition (12g) we have

H1Re = −1

2

( 0 0 �1
0 0 �2
�1 �2 0

)
and H1Im = −1

2

( 0 0 i�1
0 0 i�2

−i�1 −i�2 0

)
.

Assuming that the system is initially prepared in state �0, we use the optimal control approach to determine the
most efficient way to bring the system close to �d . The form of H1(�) is such that direct optical transition between �1
and �2 is forbidden. The presence of the third auxiliary state �3 allows this transition through intermediate population
transfer while introducing losses because of environment coupling. Therefore, we require to find a sequence of laser
pulses that minimizes the population of level �3 along evolution. Therefore, we have I = {3} in the cost functional (5)
and we denote 	3 = 	.

To determine the evolution of state and adjoint variables we consider an implicit second-order Crank–Nicholson
scheme. Given the solution at time step �, the value of the wave function at the next time step � + 1 is given by

i
��+1 − ��

t
= 1

2
H�+1��+1 + 1

2
H���.

Thus ��+1 is given by

��+1 = (Id − t

2i
H�+1)

−1
(

Id + t

2i
H�

)
��, � = 0, . . . , N − 1.
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Table 1
Optimization results for different values of tolerance

tol ‖res�‖ |�(T ) − �d |C3 J CPU

10−4 2.93 · 10−3 5.46 · 10−3 7.69 · 10−2 1.09
10−6 1.49 · 10−3 2.99 · 10−3 6.77 · 10−3 3.04
10−8 2.39 · 10−5 3.13 · 10−3 6.77 · 10−3 5.43
10−10 5.23 · 10−6 3.15 · 10−3 6.77 · 10−3 8.18
10−12 8.84 · 10−7 3.15 · 10−3 6.77 · 10−3 28.29
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Fig. 2. Control fields computed with different choices of tolerance tol = {10−4, 10−8} (from left to right).

In our case of a three-level quantum system, the operator (Id + i(t/2)H�+1) is a 3 × 3 complex matrix which is
easily invertible. The formula above holds for the adjoint equation marching backwards by inverting the time direction.
Notice that this scheme is slightly different from the one presented in Section 4.1, this latter being relevant to the
sequential feature of the CNMS scheme. However, in both the cases we expect second-order accuracy of solutions.
This is demonstrated by the results of numerical experiments given below.

Some of problems’ parameters are held fixed. We choose  = 20, �0 = 0.01, �1 = 1, �2 = 1, 	1 = 0, 	2 = 0, and
T = 5. N is the number of time steps and t = T/N . The figures are computed with N = 4096.

First we focus on the problem of assessing convergence of iterative solvers to quantum optimal control solutions.
We give evidence that optimal solutions are quite sensitive to the order of tolerance required in computations. For this
purpose consider the results reported in Table 1. These results have been obtained using the convergence criterion

|J k+1 − J k|
J k

� tol,

where J k is the value of the reduced cost functional after k iterations. This criterion is commonly used in the scientific
computing community and typical values for the tolerance are tol ∈ (10−6, 10−4). One should notice that in the case of
minimization problems with flat minima basins, such convergence criteria may be misleading. This fact can be partly
seen in Table 1 considering the values of |�(T ) − �d |C3 and of J. In Fig. 2, a more dramatic picture is given of how
sensitive the optimal solution is with respect to the chosen tolerance.

On the other hand, resulting values of the discrete L2(0, T ; C)-norm (denoted by ‖·‖) of the residual of the optimality
conditions (12g), ‖res�‖, suggest to use this value in order to have a robust convergence criteria. In fact, we use the
criteria as given in NCG Algorithm 13, that is,

‖gk+1‖ < tolabs and ‖gk+1‖ < tolrel ‖g1‖,

where we take tolrel = 10 tolabs.
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Table 2
Approximation results for different meshes; N = 2lev

N ‖e�1,lev−1‖ ‖e�2,lev−1‖ ‖e�3,lev−1‖ ‖e�,lev−1‖
tolabs = 10−7 512 1.4 · 10−2 5.4 · 10−3 4.2 · 10−3 6.1 · 10−13

1024 3.5 · 10−3 1.3 · 10−3 1.0 · 10−3 6.8 · 10−3

2048 8.9 · 10−4 3.3 · 10−4 2.6 · 10−4 1.7 · 10−3

4096 2.2 · 10−4 8.7 · 10−5 7.0 · 10−5 3.6 · 10−4

tolabs = 10−5

512 1.4 · 10−2 5.2 · 10−3 4.2 · 10−3 6.3 · 10−13

1024 3.5 · 10−3 1.4 · 10−3 1.1 · 10−3 6.0 · 10−3

2048 8.6 · 10−4 3.7 · 10−4 3.2 · 10−4 1.3 · 10−3

4096 2.2 · 10−4 8.1 · 10−5 7.2 · 10−5 3.7 · 10−4

tolabs = 10−3

512 1.4 · 10−2 7.2 · 10−3 5.5 · 10−3 6.5 · 10−13

1024 3.5 · 10−3 1.3 · 10−3 1.9 · 10−3 4.4 · 10−3

2048 9.2 · 10−4 5.7 · 10−4 5.2 · 10−4 8.2 · 10−4

4096 2.3 · 10−4 9.8 · 10−5 1.2 · 10−4 3.6 · 10−4

Table 3
Residuals on mesh N = 8192 for different values of tolerance

tol ‖res�‖ ‖res�‖ ‖resp‖
10−4 2.9 · 10−3 6.5 · 10−13 5.9 · 10−15

10−6 1.5 · 10−3 6.3 · 10−13 4.2 · 10−15

10−8 2.4 · 10−5 6.3 · 10−13 4.2 · 10−15

10−10 5.2 · 10−6 6.2 · 10−13 4.1 · 10−15

10−12 8.8 · 10−7 6.1 · 10−13 4.0 · 10−15

Table 4
Computational efforts of the NCG scheme and the CNMS scheme for different choices of tolerance

tolabs N = 2048 N = 4096

CPU(NCG) CPU(CNMS) CPU(NCG) CPU(CNMS)

10−4 1.17 1.28 2.32 1.39
10−5 4.32 12.63 9.26 15.92
10−6 5.01 48.00 17.21 no conv

Table 5
Computational effort to solve for tolabs = 10−6; �0 = 0.01, 	3 = 0.05; in C-NCG coarsest level N = 1024

N � = 10−4 � = 10−6

CPU(NCG) CPU(C-NCG) CPU(NCG) CPU(C-NCG)

4096 40.54 6.26 254.70 58.10
8192 112.57 12.71 319.46 134.00

16 384 312.17 27.42 626.84 279.46

While analysis of accuracy of numerical approximation of quantum optimal control problems deserves additional
effort in a separate work, we provide results of experiments that demonstrate that using second-order marching schemes
for the optimality system results in second-order accurate solutions. To show this fact, and since it is difficult to define
an exact solution for this class of problems, we adopt the following strategy [8] that can be viewed as an additional
criteria of convergence to the optimal solution.

Consider a hierarchy of nested meshes with N =2lev where lev is the level index. We take the solution on a fine mesh
lev as the reference solution for computing the error on the next coarser mesh lev − 1 as follows e�k,lev−1 =�k,lev−1 −
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Table 6
Optimization results depending on optimization parameters, tolabs = 10−7

� � 	 |�(T ) − �d |C3 J CPU

10−7 10−7 0.05 8.6 · 10−4 2.37 · 10−3 19.6
10−7 10−9 0.05 3.7 · 10−4 5.46 · 10−4 55.6
10−7 0 0.05 6.9 · 10−5 1.41 · 10−4 424.8
10−7 0 0 1.2 · 10−3 2.33 · 10−6 763.1

10−4 10−4 0.05 3.3 · 10−2 6.52 · 10−2 47.3
10−4 10−6 0.05 4.4 · 10−3 9.03 · 10−3 42.3
10−4 0 0.05 2.7 · 10−3 5.68 · 10−3 17.2
10−4 0 0 8.3 · 10−3 3.34 · 10−4 5.5
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Fig. 3. Optimal solutions for � = 10−4 and � = 0 (top) and � = 10−6 (bottom) 	3 = 0.01. Left, the control field, right, the wave function.

I lev−1
lev �k,lev, k = 1, 2, 3, and e�,lev−1 = �lev−1 − I lev−1

lev �lev where I lev−1
lev is injection. In Table 2 we report results for

different meshes and different values of tolerance obtained with the NCG scheme. We see that for sufficiently small
tolabs second-order accuracy is attained. This result suggests a way to assess convergence of optimal solutions. In Table 3
we report values of norm of residuals. Because at each time step the exact solution of the implicit Crank–Nicholson
scheme is performed, residuals of state and adjoint equations are zero. On the other hand, we see again that ‖res�‖ is
representative of the attained accuracy of the solution.
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In Table 4 results are reported to compare the computational performance of the NCG scheme (without cascadic
acceleration) and the CNMS scheme for different choices of tolerance and mesh sizes. We see that the NCG scheme
provides increasing better performance as tolabs is taken smaller and N is taken larger. Further experiments show lack
of robustness of the CNMS scheme when � is sufficiently small. That is, smaller time step-size t is required for
convergence with the consequence of slowing down of the iteration or else the algorithm may diverge.

The remaining part of this section is dedicated to the improvement of the NCG approach by cascadic acceleration
and to the investigation of the tracking ability of our optimal control formulation.

In Table 5, the performance of the NCG scheme and its accelerated version, C-NCG, are compared. We see a dramatic
improvement with the C-NCG version especially for moderate values of �. Taking smaller � the optimal control problem
becomes more ill-conditioned (stiff) and more computational effort is required for convergence.

We now discuss the effect of different choices of values of the optimization parameters using the results reported
in Table 6. As required we see that smaller values of |�(T ) − �d |C3 are attained for smaller �. We remark that
� = 10−7 is quite small and that makes the problem quite stiff and ill-conditioned. The NCG algorithm appears to
be robust with respect to changes of �. We can also see the effect of the regularization parameter �. As � increases,
|�(T ) − �d |C3 increases, demonstrating that the additional smoothness of the control function (slightly) reduces
the capability of tracking. Apparently, larger � makes the problem behaving better, resulting in a smaller number of
iterations. Concerning the parameter 	3 = 	 we obtain better tracking for non-zero 	. This is expected since we have
|�d |C3 = 1, whereas |�(T )|C3 < 1 whenever �0 > 0, because of dissipation. By taking 	 > 0 dissipation is reduced and,
therefore, better |�(T ) − �d |C3 is possibly achieved (Fig. 3).

6. Conclusions

Optimal control of finite-level quantum systems was investigated and iterative solution procedures were discussed.
It was shown that a cascadic non-linear conjugate gradient (C-NCG) approach provides a very efficient solution

procedure that may outperform fast monotonic schemes. Moreover, it appeared that the C-NCG approach provides a
robust iteration allowing to solve for very small values of the optimization parameters. This computational performance
was exploited to investigate the tracking properties of our optimal control formulation. Results of numerical experiments
were reported to demonstrate the efficiency and robustness of the proposed approach.
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