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In Nuclear Magnetic Resonance (NMR), it is of crucial importance to have an accurate knowledge of the spin 
probability distribution corresponding to inhomogeneities of the magnetic fields. An accurate identification of 
the sample distribution requires a set of experimental data that is sufficiently rich to extract all fundamental 
information. These data depend strongly on the control fields (and their number) used experimentally to perturb 
the spin system. In this work, we present and analyze a greedy reconstruction algorithm, and provide the 
corresponding SPIRED code, for the computation of a set of control functions allowing the generation of 
data that are appropriate for the accurate reconstruction of a sample probability distribution. In particular, 
the focus is on NMR and spin dynamics governed by the Bloch system with inhomogeneities in both the static 
and radio-frequency magnetic fields applied to the sample. We show numerically that the algorithm is able 
to reconstruct non trivial joint probability distributions of the two inhomogeneous Hamiltonian parameters. 
A rigorous convergence analysis of the algorithm is also provided.

Program summary

Program title: SPIRED

CPC Library link to program files: https://doi .org /10 .17632 /6fsmzp6srg .1
Licensing provisions: CC by 4.0

Programming language: MATLAB

Nature of problem: Identify the sample probability distribution corresponding to inhomogeneities of the magnetic 
field in Nuclear Magnetic Resonance from experimental data. The data depends strongly on the control fields 
and their number, and needs to be sufficiently rich in order to extract all fundamental information.

Solution method: Use greedy reconstruction algorithms to compute a set of control functions that allows the 
generation of data that are appropriate for an accurate reconstruction of the sample distribution.

Additional comments including restrictions and unusual features: Some routines in the SPIRED code use MATLAB’s 
fmincon-solver, which requires MATLAB’s Optimization Toolbox to be installed.
1. Introduction

Quantum Control (QC) is nowadays a well-recognized area of re-

search [1–5] with many applications ranging from magnetic reso-

nance [6–8] and atomic and molecular physics [9–12] to quantum 
technologies [7,13,14]. In this context, the control of spin dynamics 
by means of magnetic fields is today a well-established tool in Nuclear 

✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.

Magnetic Resonance (NMR) for the development of new techniques [7]. 
The goal of quantum control is generally to design external control 
fields to perform quantum operations on the studied system. A severe 
limitation of QC comes from measurement processes which are much 
more difficult to account for than their classical counterpart. This ex-

plains that a majority of QC protocols are performed in an open-loop 
framework without any feedback from the experiment when applying 
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the control (see however [15] for a closed-loop example). A good agree-

ment between theory and experiment is achieved if all the parameters 
of the model system are perfectly known within a given range of pre-

cision. In the context of NMR, the latter may be due to the spatial 
extension of the sample which means that in practice all its elements 
are not subjected to the same external electromagnetic field. The val-

ues of such parameters can be estimated experimentally but can also be 
actively found by using specifically adapted controls. To this aim, differ-

ent approaches using quantum features have been developed recently 
with success [16–18]. Among others, we can mention inversion tech-

niques [19], selective controls [20–23], the maximization of quantum 
Fischer information [24–28] and the fingerprinting approach [29,30]. 
Such methods allow one to estimate the value of the Hamiltonian pa-

rameter as well as its variation range. However, the latter is not the 
only interesting quantity and the probability distribution is also a key 
feature of the experimental sample. When controlling an ensemble of 
quantum systems, this distribution can be interpreted as the number of 
individual systems having a given value of the parameter. The distri-

bution can have a simple form such as a Gaussian or a Lorentzian one. 
In this case, the identification is quite straightforward and can be done 
using standard techniques. However, the identification is much more 
difficult when the distribution has a complex structure with, e.g., sev-

eral peaks.

In a previous work [31], we introduced a Greedy Reconstruction 
Algorithm (GRA) to identify in a systematic way the probability dis-

tribution of one given Hamiltonian parameter. This was based on the 
framework presented in [32,19]. In particular, we focused on an en-

semble of spin 1/2 particles in liquid state NMR subjected to an in-

homogeneous radio-frequency magnetic field [33,6,34,8,35,36], where 
the algorithm was successfully applied to identify the distribution of 
the scaling factor corresponding to the magnetic field inhomogeneity. 
More precisely, we considered an inhomogeneous ensemble of uncou-

pled spin systems in liquid state whose dynamics are governed by the 
Bloch equation, but subjected to a different radio-frequency magnetic 
field. Applying a given number of constant control fields to the sample 
during a fixed time, the algorithm was able to determine the probability 
distribution of the inhomogeneous parameter from the measure of the 
final ensemble magnetization. We showed numerically in [31] that GRA 
is able to identify with a good accuracy nontrivial probability distribu-

tions with several peaks or with a step variation. An optimized version 
of this algorithm was also proposed to further improve the identifica-

tion process and to limit the number of required controlled processes. 
Notice that a convergence analysis of the algorithm was only briefly 
sketched in [31], without rigorous proof.

The goal of the present paper is to extend the work [31] from three 
different points of view. Thus, the first novelty of this work is the ex-

tension of the GRA presented in [31], designed for the reconstruction 
a single parameter distribution, to the case of joint probability distri-

butions of two distinct inhomogeneous Hamiltonian parameters. We 
consider numerically the case of both inhomogeneous static and radio-

frequency magnetic fields applied to the sample. The second novelty is 
that we provide full MATLAB codes (SPIRED) implementing our GRA 
and its optimized version (denoted by OGRA) to find spin distributions. 
These codes can be directly used to solve the problems presented in [31]

(in addition to the ones investigated in the present paper). The third 
novelty is that we prove theoretical convergence results for GRA. These 
cover also the ones only stated in [31]. As a result, this paper is a self-

contained work that not only considers a more general problem than 
the one presented in [31], but also provides a full MATLAB code and a 
detailed and rigorous convergence analysis.

The paper is organized as follows. The identification problem of 
the spin distribution in NMR is presented in Sec. 2. The different vari-

ants of the greedy reconstruction algorithm are described in Sec. 3. 
Section 4 is dedicated to the description of the structure of the code

SPIRED and its use. A convergence analysis of the algorithm is pro-
2

vided in Sec. 5. Numerical results are presented in Sec. 6. Conclusion 
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and prospective views are drawn in Sec. 7. Additional results are pre-

sented in Appendix A.

2. Identification of spin distribution

The framework of our SPIRED code is illustrated in a standard con-

trol problem in liquid-state NMR, i.e., a spin ensemble subjected to both 
inhomogeneous static and radio-frequency magnetic fields [33,37,8]. In 
a given rotating frame, each isochromat is characterized by a Bloch vec-

tor M = [𝑀𝑥, 𝑀𝑦, 𝑀𝑧]⊤, evolving in time according to the equations

⎧⎪⎨⎪⎩
�̇�𝑥 = −𝜔𝑀𝑦 + (1 + 𝛼)𝜔𝑦𝑀𝑧,

�̇�𝑦 = 𝜔𝑀𝑥 − (1 + 𝛼)𝜔𝑥𝑀𝑧,

�̇�𝑧 = (1 + 𝛼)𝜔𝑥𝑀𝑦 − (1 + 𝛼)𝜔𝑦𝑀𝑥.

Notice that the components of M satisfy 𝑀2
𝑥 +𝑀2

𝑦 +𝑀2
𝑧 =𝑀2

0 , with 𝑀0
the equilibrium magnetization. Here, 𝜔𝑥 and 𝜔𝑦 are time-dependent 
controls corresponding to the components of the radio-frequency mag-

netic field along the 𝑥- and 𝑦- directions. The parameters 𝜔 and 𝛼
correspond to offset, i.e., to the inhomogeneity of the static magnetic 
field applied along the 𝑧- direction, and radio-frequency magnetic field 
inhomogeneities, respectively [6]. In standard experiments, we have 
𝜔
2𝜋 ∈ [−20, 20] Hz and 𝛼 ∈ [−0.2, 0.2]. For the purpose of this paper, 
we assume that the probability densities of 𝜔 and 𝛼 are unknown. The 
controls 𝜔𝑥2𝜋 and 𝜔𝑦2𝜋 are expressed in Hz. We consider a typical field 
amplitude 𝜔0 that can be fixed, for instance, to 𝜔0 = 2𝜋 × 100 Hz. We 
introduce normalized coordinates as

𝑢𝑥 = 2𝜋
𝜔𝑥

𝜔0
; 𝑢𝑦 = 2𝜋

𝜔𝑦

𝜔0
; 𝑡′ =

𝜔0
2𝜋

𝑡; Δ = 2𝜋 𝜔
𝜔0

;X = M

𝑀0
.

In what follows, we omit the prime to simplify the notations. We deduce 
that the differential system can be expressed in normalized units as

⎧⎪⎨⎪⎩
�̇� = −Δ𝑦+ (1 + 𝛼)𝑢𝑦𝑧
�̇� =Δ𝑥− (1 + 𝛼)𝑢𝑥𝑧
�̇� = (1 + 𝛼)𝑢𝑥𝑦− (1 + 𝛼)𝑢𝑦𝑥

(1)

with 𝑥2 + 𝑦2 + 𝑧2 = 1. The initial state of the dynamics for each spin is 
the thermal equilibrium point, i.e., X0 = [0, 0, 1]⊤. We consider a control 
time of the order of 100 ms, that corresponds to a normalized time 
𝑡′
𝑓

of the order of 10. The range of variation of the parameter Δ is 
Δ0 + 2𝜋[−0.2, 0.2], where Δ0 is a frequency value that can be used to 
shift arbitrarily the interval. For the purpose of this paper, we assume 
that Δ0 ≥ 0.4𝜋, meaning that Δ ≥ 0.

The goal of our SPIRED code is to estimate simultaneously the dis-

tributions for the parameters 𝛼 and Δ by designing specific controls 
(𝑢𝑥, 𝑢𝑦). We consider an ensemble of 𝑁 spins whose dynamics are gov-

erned by Eq. (1). We assume that the control amplitudes (𝑢𝑥, 𝑢𝑦) belong 
to the admissible set  = {(𝑢𝑥, 𝑢𝑦) ∈ ℝ2 ∣ |𝑢𝑥| ≤ 𝑢𝑚, |𝑢𝑦| ≤ 𝑢𝑚}, where 
𝑢𝑚 is the maximum amplitude of each component. A simple way to pro-

ceed can be described as follows. We consider that the system of 𝑁 spins 
is divided into 𝐾Δ groups, and we associate with the 𝓁-th subgroup 
a certain value Δ𝓁 and the corresponding probability 𝑃Δ

⋆ (𝓁) = 𝑁Δ,𝓁
𝑁

, 
𝓁 = 1, … , 𝐾Δ, with 

∑𝐾Δ
𝓁=1 𝑃

Δ
⋆ (𝓁) = 1. The probability 𝑃Δ

⋆ (𝓁) is un-

known, which means that the number of elements 𝑁Δ,𝓁 of each group 
is to be found. Similarly, for the parameter 𝛼, we have 𝐾𝛼 groups with 
the probabilities 𝑃 𝛼

⋆ (𝓁) =
𝑁𝛼,𝓁

𝑁
, 𝓁 = 1, … , 𝐾𝛼 , with 

∑𝐾𝛼
𝓁=1 𝑃

𝛼
⋆ (𝓁) = 1 to 

estimate.

This problem can be viewed as a natural extension of the work [31]

and leads to the identification of two independent discrete distributions. 
However, this approach has two main drawbacks. First, the two random 
variables Δ and 𝛼 are assumed to be independent. This is a limitation 
when trying to reconstruct the two unknown distributions, since any 
possible correlation is a priori neglected. Second, the final identification 

problem is nonlinear, since the product of the two distributions would 
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appear. This is in contrast with the case of the reconstruction of one 
single distribution, where the identification problem is quadratic [31]. 
For these reasons, rather than considering two independent distribu-

tions, we work directly with the joint distribution, i.e., the system of 
𝑁 spins is divided into 𝐾 groups and we associate to each subgroup 
a pair (𝛼, Δ)𝓁 and the corresponding joint probability 𝑃⋆(𝓁) =

𝑁𝓁
𝑁

, 
𝓁 = 1, … , 𝐾 , with 

∑𝐾
𝓁=1 𝑃⋆(𝓁) = 1. Now, the joint probability 𝑃⋆(𝓁)

is unknown, namely the number of elements 𝑁𝓁 affected by the pairs 
(𝛼, Δ)𝓁 . This approach has the advantage of taking into account cor-

relation effects and the final identification problem remains quadratic. 
It should be noted that these are acquired at the cost of an increase in 
the dimension of the unknown object(s), i.e., from two one-dimensional 
functions to a two-dimensional function. Finally, we point out that two 
independent distributions can also be treated as a specific case of joint 
distributions.

Since we are dealing with an inverse problem, we need to define 
what quantities can be observed in an experimental setting. In NMR, 
only the first two coordinates of the magnetization vector can be di-

rectly measured. We do not have accessed directly to the 𝑧 component 
due to the strong constant magnetic field applied along this direc-

tion [6]. We denote by Yu,(Δ,𝛼)(𝑡) = [𝑥(𝑡), 𝑦(𝑡)]⊤ the projection of the 
Bloch vector onto the first two coordinates. Here, the dependence on 
u and (Δ, 𝛼) has been explicitly mentioned. The corresponding experi-

mental realization of this controlled dynamic is obtained at 𝑡 = 𝑡𝑓 and 
leads to Yexp

u (𝑡𝑓 ) = [𝑥exp
u (𝑡𝑓 ), 𝑦

exp
u (𝑡𝑓 )]⊤, where Yexp

u (𝑡𝑓 ) can be viewed 
as the average at time 𝑡𝑓 of the experimental measures of all the spins 
of the set subjected to the control u. The coordinates 𝑥exp

u and 𝑦exp
u are 

those of this measured magnetization vector.

The relation between the theoretical description of the dynamical 
system to the experimental outcome can be expressed as

Y
exp
u (𝑡𝑓 ) =

𝐾∑
𝓁=1

𝑃⋆(𝓁)Yu,(Δ,𝛼)𝓁 (𝑡𝑓 ), (2)

in which the two sides of the equation crucially depend on the control 
u.

In general, one control protocol is not sufficient to obtain an appro-

priate identification of the unknown 𝑃⋆, but a set of 𝐾 control processes 
with 𝐾 different control functions denoted u𝑘, 𝑘 = 1, ⋯ , 𝐾 , needs to be 
used. On the basis of the experimental outputs, a straightforward way 
to determine 𝑃⋆ is to solve the minimization problem

min
𝑃∈ℙ

𝐾∑
𝑘=1

‖Y
exp
u𝑘

(𝑡𝑓 ) −
𝐾∑
𝓁=1

𝑃 (𝓁)Yu𝑘,(Δ,𝛼)𝓁 (𝑡𝑓 )‖2, (3)

where ‖ ⋅ ‖ denotes the standard Euclidean vector norm, and ℙ is the 
convex and closed set of all probability distributions 𝑃 that satisfy 
𝑃 (𝓁) ≥ 0 for 1 ≤ 𝓁 ≤𝐾 and 

∑𝐾
𝓁=1 𝑃 (𝓁) = 1. At this point, it is clear that 

a key ingredient of the accuracy of the identification process rests on 
the choice of a set of 𝐾 controls u𝑘. The identification of the number 𝐾
of control functions is a difficult task. The theoretical analysis presented 
in Sec. 5 shows that the choice 𝐾 =𝐾 is sufficient. The GRA algorithm 
computes exactly 𝐾 = 𝐾 control fields. However, we will show that 
OGRA is capable of reducing (halving) the number 𝐾 of control fields 
while guaranteeing an accurate identification.

Let us now rewrite (3) in a form that we consider in our SPIRED
implementation. We introduce a set Φ ∶= {𝜙𝑗}𝐾𝑗=1 of linearly indepen-

dent functions 𝜙𝑗 ∶ {1, … , 𝐾} → ℝ such that ℙ ⊂ span(Φ), where span

denotes the vector space generated by the functions. Expressing 𝑃 as 
𝑃 (𝓁) =

∑𝐾
𝑗=1 𝛽𝑗𝜙𝑗 (𝓁), the minimization problem (3) becomes

min
𝛽∈ℝ̂𝐾

𝐾∑
𝑘=1

‖Y
exp
u𝑘

(𝑡𝑓 ) −
𝐾∑

𝓁,𝑗=1
𝛽𝑗𝜙𝑗 (𝓁)Yu𝑘,(Δ,𝛼)𝓁 (𝑡𝑓 )‖2, (4)

where the vector 𝛽 = (𝛽𝑗 )𝐾𝑗=1 is taken in ℝ̂𝐾 , a subset of ℝ𝐾 , so that ∑

3

𝑃 = 𝑗 𝛽𝑗𝜙𝑗 is a probability distribution.
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We show in this study that GRA allows us to design a set of controls 
u𝑘 that makes (4) solvable and well conditioned. The algorithm is com-

posed of two steps, namely an offline and an online steps. In the offline 
step, GRA computes the controls u𝑘. In this step, only the theoretical 
model is needed without any experimental input. The derived controls 
are used in the online step in which the different magnetization vectors 
are measured and the minimization problem (3) is solved. Note that the 
controls are the same for any probability distribution to identify and 
only depend on the model system under study. Finally, we point out 
that in our algorithms the duration of each control pulse is considered 
as a variable to be optimized together with its amplitude. In particular, 
we assume that the controls are constant in time, i.e., u(𝑡) ≡ u ∈ ℝ2, 
and that we can freely choose the control time up to a fixed maximum 
value 𝑡𝑓 . Since the initial state is an equilibrium point, this is equiva-

lent to turning on the control at a time 𝑡 ≥ 0. We show in Sec. 5 that 
these hypotheses are sufficient for the different examples to identify the 
probability distributions. The generality of GRA allows one to tackle 
this situation in a straightforward manner.

3. Greedy reconstruction algorithms

We present in this section the GRA in its classical form and in an 
optimized extension called optimized GRA (OGRA).

GRA computes the controls u𝑘 and the corresponding control times 
𝑡𝑘 by solving a sequence of fitting-step and discriminatory-step prob-

lems. The goal of the fitting step is to identify a defect of the system, 
namely a nontrivial kernel of a certain matrix 𝑊 introduced below, 
while the discriminatory step designs a new control which is aimed to 
correct this discrepancy and to eliminate the identified nontrivial ker-

nel. The explicit formulation of GRA is presented in Algorithm 1 and is 
given in terms of the function h(𝑘) defined as

h(𝑘)(𝛽,u, 𝑡) ∶=
𝐾∑
𝓁=1

𝑘∑
𝑗=1

𝛽𝑗𝜙𝑗 (𝓁)Yu,(Δ,𝛼)𝓁 (𝑡), (5)

for any 𝛽 in ℝ𝑘. Notice that the fitting step minimizes over the full 
space ℝ𝑘, meaning that 

∑
𝑗 𝛽𝑗𝜙𝑗 does not have to be a probability dis-

Greedy Reconstruction Algorithm (GRA)

Require: A set of 𝐾 linearly independent functions Φ = {𝜙1, … , 𝜙𝐾}.

1: Compute the control u1 and the control time 𝑡1 by solving

max
u∈
𝑡∈[0,𝑡𝑓 ]

‖h(1)(1,u, 𝑡)‖2. (6)

2: for 𝑘 = 1, … , 𝐾 − 1 do

3: Fitting step: Find 𝛽𝑘 = (𝛽𝑘𝑗 )𝑗=1,…,𝑘 that solves

min
𝛽∈ℝ𝑘

𝑘∑
𝑚=1

‖h(𝐾)(𝑒𝑒𝑒𝑘+1,u𝑚, 𝑡𝑚) − h(𝑘)(𝛽,u𝑚, 𝑡𝑚)‖2, (7)

where 𝑒𝑒𝑒𝑘+1 is the (𝑘 + 1)-th canonical vector in ℝ𝐾 .

4: Discriminatory step: Find u𝑘+1 and 𝑡𝑘+1 that solves

max
u∈
𝑡∈[0,𝑡𝑓 ]

‖h(𝐾)(𝑒𝑒𝑒𝑘+1,u, 𝑡) − h(𝑘)(𝛽𝑘,u, 𝑡)‖2. (8)

5: end for

Algorithm 1: GRA consists of three steps. First, the initialization prob-

lem (6) computes the control u1 and control time 𝑡1. Afterwards, the 
algorithm iterates between the fitting and discriminatory step. The fit-

ting step attempts to find two different probability distributions such 
that their final ensemble magnetization can not be distinguished by any 
previously computed control. Then, the discriminatory step finds a new 
control u𝑘+1 and control time 𝑡𝑘+1 that maximize the difference be-

tween these final ensemble magnetizations. A graphical representation 

of the workflow of GRA can be found in Fig. 1.
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Fig. 1. Graphical representation of the workflow of GRA (left) and OGRA (right). The main difference between the two strategies are the while-condition that allows 
the algorithm to stop when it can not separate any more states by a new control, and the if-condition that allows it to skip the discriminatory step if one of the 

of t
previously computed controls already separates the two states computed by one 

tribution. However, this is a restrictive condition. On the contrary, it 
allows the algorithm to find and correct more nontrivial kernels than 
might be necessary.

One main characteristic of GRA is that the set Φ and its order have 
to be fixed a-priori. However, the choice and order of Φ can have a cru-

cial impact on the outcome of the algorithm as shown in [32, Sec. 5.3]. 
Hence, the idea of OGRA, which is stated in Algorithm 2, is to make 
the algorithm independent of the choice and order of the set Φ. Ad-

ditionally, it aims at avoiding the computation of unnecessary control 
functions. This is achieved by two adaptations in GRA. The first one 
is that in each step one does not only consider the next element (the 
next canonical vector 𝑒𝑒𝑒𝑘+1) in the set, but all remaining elements (the 
canonical vectors 𝑒𝑒𝑒𝑘+𝓁 for all 1 ≤ 𝓁 ≤ 𝐾 − 𝑘) in parallel. Hence, it is 
also possible to enlarge the set Φ (and thus enlarge 𝐾) by additional 
functions 𝜙𝑘 which do not have to be linearly independent. In order 
to progressively remove linearly dependent functions in the set and 
to avoid scaling issues, all remaining basis elements are orthonormal-

ized against the already selected ones after each iteration. The second 
adaptation is the introduction of two tolerances tol1, tol2 > 0. The first 
tolerance tol1 is used as a stopping criterion. The algorithm terminates 
if the function value in the initialization or any of the discriminatory 
steps (denoted by 𝑓𝓁 in Algorithm 2) is too small, thus not adding new 
information. The second tolerance tol2 is used to skip the computation 
of a new control field in the discriminatory step, if the minimum cost 
function value computed by the fitting step is not small enough. If this 
function value is large, then there already exists a control function in 
the current set of controls that discriminates between the two distri-

butions 𝜙𝑘+𝓁 and 
∑𝓁

𝑗=1 𝛽
𝓁
𝑗 𝜙𝑗 . Notice that setting tol2 to a very small 

value is reasonable if the final identification problem is quadratic. In 
this case, one can prove that a nonzero cost function value in the fit-

ting step implies that one does not need to compute a new control for 
the corresponding set element (compare with [32]). However, if the fi-

nal identification problem is not quadratic, then it can make sense to 
4

set tol2 to a larger value.
he fitting step problems.

Optimized Greedy Reconstruction Algorithm (OGRA)

Require: A set of 𝐾 functions Φ = {𝜙1, … , 𝜙𝐾} and two tolerances tol1, tol2 >
0.

1: Compute u1 , 𝑡1 and the index 𝓁1 by solving the initialization problem

max
𝓁∈{1,…,𝐾}

max
u∈
𝑡∈[0,𝑡𝑓 ]

‖h(1)(𝑒𝑒𝑒𝓁 ,u, 𝑡)‖2, (9)

2: Swap 𝜙1 and 𝜙𝓁1
in Φ, and set 𝑘 = 1, ̃𝑘 = 1, and 𝑓𝑚𝑎𝑥 = ‖h(1)(𝑒𝑒𝑒𝓁 , u1, 𝑡1)‖2.

3: while 𝑘 ≤𝐾 − 1 and 𝑓𝑚𝑎𝑥 > tol1 do

4: Orthonormalize all elements (𝜙𝑘+1, … , 𝜙𝐾 ) with respect to (𝜙1, … , 𝜙𝑘), 
remove any that are linearly dependent and update 𝐾 accordingly.

5: for 𝓁 = 𝑘 + 1, … , 𝐾 do

6: Fitting step: Find (𝛽𝓁𝑗 )𝑗=1,…,𝑘 that solve the problem

min
𝛽∈ℝ𝑘

�̃�∑
𝑚=1

‖h(𝐾)(𝑒𝑒𝑒𝑘+𝓁 ,u𝑚, 𝑡𝑚) − h(𝑘)(𝛽,u𝑚, 𝑡𝑚)‖2, (10)

and set 𝑓𝓁 =
∑�̃�

𝑚=1 ‖h(𝐾)(𝑒𝑒𝑒𝑘+𝓁 , u𝑚, 𝑡𝑚) − h(𝑘)(𝛽𝓁 , u𝑚, 𝑡𝑚)‖2.
7: end for

8: if max𝓁=𝑘+1,…,𝐾 𝑓𝓁 > tol2 then

9: Set 𝓁𝑘+1 = argmax𝓁=𝑘+1,…,𝐾 𝑓𝓁 .

10: else

11: Extended discriminatory step: Find u�̃�+1, 𝑡�̃�+1 and 𝓁𝑘+1 that solve

max
𝓁∈{𝑘+1,…,𝐾}

max
u∈
𝑡∈[0,𝑡𝑓 ]

‖h(𝐾)(𝑒𝑒𝑒𝑘+𝓁 ,u, 𝑡) − h(𝑘)(𝛽𝓁 ,u, 𝑡)‖2. (11)

12: Set ̃𝑘 = �̃�+ 1.

13: end if

14: Swap 𝜙𝑘+1 and 𝜙𝓁𝑘+1
in Φ.

15: Set 𝑓𝑚𝑎𝑥 = ‖h(𝐾)(𝑒𝑒𝑒𝑘+𝓁𝑘+1 , u�̃�+1, 𝑡�̃�+1) − h(𝑘)(𝛽𝓁𝑘+1 , u�̃�+1, 𝑡�̃�+1)‖2.
16: Set 𝑘 = 𝑘 + 1.

17: end while

Algorithm 2: OGRA consists of the same three main substeps as GRA, 
with the difference that OGRA considers all remaining basis elements 
simultaneously in each substep. Additionally, OGRA is able to skip dis-

criminatory steps if no new control is required (line 8-9), or stop if 
no control that adds new information is found at all (line 3). The or-

thonormalization of the set Φ in line 4 removes redundant elements 

and prevents numerical instabilities. A graphical representation of the 
workflow of OGRA can be found in Fig. 1.
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Table 1

Routines related to the greedy reconstruction algorithm.

GRA routines Description

main Main function used to run the code.

GRA Greedy reconstruction algorithm.

OGRA Optimized greedy reconstruction algorithm.

discriminatory_step Routine that solves the initialization and 
discriminatory step problem using MATLAB’s 
fmincon-solver.

fitting_step Routine that solves the fitting step problem.

orthonormalize Routine that orthonormalizes all remaining 
basis elements after each iteration of OGRA.

SVD_solver Routine that solves the fitting step problem 
using the singular value decomposition (SVD).

Table 2

Routines related to the reconstruction of the probability distribu-

tion.

Reconstruction routines Description

generate_data Routine that generates the experimental 
realizations for all computed controls.

reconstr Routine that either solves the final 
identification problem (4) using a second 
order interior-point algorithm, or the 
compact form (compare (12) in Section 5) 
using a solver based on the SVD.

In conclusion, the main adaptations of OGRA in lines 3 and 8-9 allow 
the algorithm to reduce the number of computed controls 𝐾 , meaning 
that 𝐾 < 𝐾 . On the other hand, as we mentioned before, GRA is de-

signed to always compute exactly 𝐾 =𝐾 controls.

Flowcharts describing GRA and OGRA can be found in Fig. 1. The 
numerical implementation of GRA and OGRA is presented and discussed 
in the following sections.

4. The SPIRED code

4.1. Structure of the code

In this section, we provide a full list of all MATLAB functions con-

tained in the SPIRED code. Inside the SPIRED folder the user can find 
the main routine used to run the SPIRED code, as well as the rou-

tines that run GRA and OGRA, and that solve their sub-problems (see 
Table 1). Additionally, the SPIRED folder contains the routines that 
generate the synthetic experimental data for the true parameter prob-

ability distribution, and that solve the final identification problem (3)

(see Table 2). Notice that the both the discriminatory_step and 
the reconstr routine use MATLAB’s fmincon-solver, which requires 
MATLAB’s Optimization Toolbox to be installed.

There are also three subfolders labeled “Test1”, “Test2” and “Test3”. 
These contain three test problems the user can choose from. “Test1” cor-

responds to the problem discussed in this paper. “Test2” is the same as 
“Test1”, but only considers a control in the x direction (in other words 
u𝑦 = 0 for all control fields). Finally, “Test3” corresponds to the prob-

lem investigated in [31], where the resonance offset Δ is fixed and one 
attempts to reconstruct only the control inhomogeneity parameter 𝛼. 
Each of these “Test” folders contains routines to set the input variables, 
describe the cost function and its gradient for the discriminatory-step 
problem, and solve the corresponding dynamical system (see Table 3). 
They also each contain two routines used to plot the results and condi-

tion number of the reconstruction process (see Table 4).

4.2. Usage of the code

Here we illustrate the working procedure of the SPIRED code with 
an example. The user needs to define the test problem in the function

main, which is used to initialize the procedure.
5

func t ion [ cont ro l s , bases , model , r e s u l t s ] = main
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Table 3

Routines related to the test problems.

Test routines Description

starting Input function.

fun_discriminatory Function computing the cost functional and 
gradient for the discriminatory step problem.

NMR_solver Routine that solves the (normalized) dynamical 
system via direct calculations of the exponential 
matrix (compare the proof of Theorem 2).

Table 4

Routines plotting the results for the test problem.

Plotting routines Description

plot_reconstr Routine that plots the true and reconstructed 
probability distributions for the two control sets.

plot_condition Routine that produces a table containing the 
condition numbers corresponding to the 
reconstruction process.

% STEP 1: Choice of the Problem ;

addpath ( ' Test1 ' ) ;

% STEP 2: Assemble problem va r i ab l e s ;

[ model , bases , opt ions ] = s t a r t i n g ( ) ;

% STEP 3: Run!

[ con t ro l s .GRA, r e s u l t s .GRA] = GRA( bases .GRA, model ,

opt ions ) ;

[ con t ro l s .OGRA, bases .OGRA, r e s u l t s .OGRA] = OGRA( bases .

OGRA, model , opt ions ) ;

% STEP 4: Compute ( syn the t i c ) experimental data ;

Y_exp .GRA = generate _data ( con t ro l s .GRA, model ) ;

Y_exp .OGRA = genera te _data ( con t ro l s .OGRA, model ) ;

% STEP 5: Solve the f i n a l i d e n t i f i c a t i o n problem ;

...

In particular, at the “STEP 1” the user needs to define the path of the 
folder containing the test routines. Then, the user can define the input 
variables in the function starting, which is listed exemplary for the 
first test problem in the following.

funct ion [ model , bases , opt ions ] = s t a r t i n g ( )

% STEP 1: Input va r i ab l e s ;

% cont ro l bounds and maximum cont ro l time ;

um = 10;

t f = 16;

% va r i ab l e s fo r the unknown parameters

Delta0 = 4* pi ;

Delta1 = 0 .2 ;

D e l t a _ i n t e r v a l = Delta0 + 2* pi .*[−Delta1 , Delta1 ] ;

a l pha _ i n t e r va l = [−0.2 , 0 . 2 ] ;

% number of gr id po in t s fo r the unknown parameters

nr _a lphas = 10;

n r _De l t a s = 10;

% open the f i l e to get the input p robab i l i t y d i s t r i b u t i o n

load ( ' Test1 / D i s t r i b u t i o n s / Gaussian . mat ' , ' P _ s t a r ' )

% number of sp ins ;

n r _ sp i n s = 100000;

% opt ions fo r GRA and OGRA

i t e r a t i o n s = nr_a lphas * n r _De l t a s ;

Display_GRA = ' o f f ' ;

f l a g _ o r t h = 1;

% numerical parameters fo r OGRA;

to l _OGRA_ f i t = 1e−4;

tol _OGRA_discr = 1e−14;

% to le rance fo r the SVD so lve r in the f i t t i n g s tep ( and

op t iona l l y fo r the recons t ruc t i on so lve r )

t o l _ s v d = 1e−10;

% opt imizat ion method fo r the f i n a l i d e n t i f i c a t i o n problem

so lve r = ' fmincon ' ;

At “STEP 1” in this function, the user can define the input variables and 
the path to the .mat file containing the true probability distribution 𝑃⋆. 

The input parameters related to the problem are
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Fig. 2. The plot on the left shows the true Gaussian probability distribution for 𝐾 = 100 uniform mesh points. The plots in the middle and on the right contain the 
reconstructed distributions for the control sets generated by GRA (containing 100 control fields) and OGRA (containing 51 control fields).

Fig. 3. Difference between the true probability distribution 𝑃⋆ and the distributions 𝑃𝑟𝑒𝑐 reconstructed using the control sets generated by GRA (left) and OGRA 
(right). In brackets are the number of control fields for each set.
• um: bound 𝑢𝑚 for the absolute value of the control amplitudes;

• tf: maximum normalized control time 𝑡𝑓 ;

• Delta0: frequency shift Δ0 for the normalized resonance offset 
interval;

• Delta1: width Δ1 of the normalized resonance offset interval;

• Delta_interval: interval boundaries for the normalized reso-

nance offset Δ;

• alpha_interval: interval boundaries for the control field inho-

mogeneity parameter 𝛼;

• nr_alphas: number of grid points in the direction of 𝛼 for the 
joint discrete parameter probability distribution of 𝛼 and Δ;

• nr_Deltas: number of grid points in the direction of Δ for the 
joint discrete parameter probability distribution of 𝛼 and Δ;

• nr_spins: number of spins in the system;

• iterations: (maximum) number of iterations performed by 
GRA and OGRA; for any full basis of the discrete parameter space, 
the obvious choice is the total number of discretization points, 
which is the product of nr_alphas and nr_Deltas;

• Display_GRA Display option to print information about the cur-

rent iteration of GRA and OGRA in the command window; can be 
set to ‘off’ to display no output, ‘iter’ to show the current 
substep of GRA and OGRA, or ‘iter-detailed’ to also show 
the current optimization problem during the substeps of OGRA;

• flag_orth: flag variable that turns the orthonormalization of the 
remaining basis elements during OGRA on or off;

• tol_OGRA_fit: tolerance tol2 for OGRA;

• tol_OGRA_discr: tolerance tol1 for OGRA;

• tol_svd: tolerance for the SVD solver, used in the fitting step and 
(optionally) for the final identification problem;

• solver: optimization method used to solve the final identifica-

tion problem (4); can be set to ‘fmincon’ to solve (4) using the 
second-order interior-point algorithm of MATLAB’s fmincon-solver, 
or to ‘svd’ to solve a compact form of the problem (compare (22)

in Section 6) using the SVD solver;

The .mat file has to contain the variable P_star, which is the vector-

ized true joint probability distribution 𝑃⋆. If the user is considering a 
true experimental (laboratory) setup, meaning that they perform real 
experiments for the different controls to obtain the experimental data 
and that the true probability distribution is truly unknown, they should 
replace “STEP 4” in the “main.m” file with a load command to fetch the 
6

real experimental data.
Finally, to run the code the user has to write on the MATLAB prompt 
the following

>> [ contro l s , bases , model , r e s u l t s ] = main

After the computations, the routine saves the results in the MATLAB 
workspace (as documented in the code) and plots the reconstructed 
probability distributions and their difference to the true one, as well 
as the condition numbers for different mesh sizes.

In particular, the results obtained by running “Test1” are the true 
and reconstructed probability distributions for the control fields gen-

erated by GRA and OGRA, shown in Fig. 2. In Fig. 3 we show the 
difference between the true and reconstructed distributions for the two 
control field sets. Additionally, the routine provides a table containing 
the exact condition numbers corresponding to GRA and OGRA. Since 
the solver for the discriminatory step problem is initialized with a ran-

dom vector, there may be small variations in some results, without 
changing the overall outcome.

Examples of all figures produced by the different test problems are 
also provided in the folder “Results” that can be found in the corre-

sponding “Test”-folder. There one can also find the .mat files containing 
the set of random controls for each test problem, loaded in the main.

5. Convergence analysis

In this section, we prove that the controls generated by GRA and 
OGRA make possible the identification of the unknown probability 
distributions of the parameters Δ and 𝛼, i.e., they make problem (3)

uniquely solvable.

We start by recalling that problem (3) is equivalent to (4). Assum-

ing that 𝑃⋆ can be written as 𝑃⋆(𝓁) =
∑𝐾

𝑗=1 𝛽⋆,𝑗𝜙𝑗 (𝓁), we can write 
equation (4) in a compact form as follows:

min
𝛽∈ℝ̂𝐾

⟨𝛽⋆ − 𝛽|𝑊 |𝛽⋆ − 𝛽⟩, (12)

where 𝑊 ∶=
∑

𝑘𝑊 (u𝑘, 𝑡𝑘) is the sum of symmetric and positive semi-

definite 𝐾 ×𝐾 - matrices whose elements are defined as:

[𝑊 (u𝑘, 𝑡𝑘)]𝓁,𝑗 ∶= ⟨𝛾𝓁(u𝑘, 𝑡𝑘)|𝛾𝑗 (u𝑘, 𝑡𝑘)⟩ (13)

with ∑

𝛾𝑗 (u𝑘, 𝑡𝑘) ∶=

𝓁

𝜙𝑗 (𝓁)Yu𝑘,(𝛼𝓁 ,Δ𝓁 )(𝑡𝑘). (14)
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Since the set of vectors 𝛽 is a convex subset of ℝ𝐾 , we deduce that 
the problem is uniquely solvable if the matrix 𝑊 is positive definite. In 
the case 𝑊 has a non-trivial kernel, infinitely many solutions may exist 
which lead to wrong probability distributions different from the exper-

imental one 𝑃⋆. We stress that the non-triviality of the kernel depends 
completely on the choice of the controls u𝑘 and the corresponding con-

trol times 𝑡𝑘.

Using the notation (13)-(14), we can now also rewrite the subprob-

lems of GRA in terms of the matrix 𝑊 . The initialization problem (6)

can be written as

max
u∈

𝑡∈[0,𝑡𝑓 ]

|[𝑊 (u, 𝑡)]1,1|2. (15)

The fitting step problem (7) is equivalent to

min
𝛽∈ℝ𝑘

⟨v𝛽 |[𝑊 𝑘][1∶𝑘+1,1∶𝑘+1]|v𝛽⟩, (16)

where 𝑊 𝑘 ∶=
∑𝑘

𝑚=1𝑊 (u𝑚, 𝑡𝑚) and v𝛽 ∶= [𝛽⊤, −1]⊤. Finally, the dis-

criminatory step problem (8) can be written as

max
u∈

𝑡∈[0,𝑡𝑓 ]

⟨v𝛽𝑘 |[𝑊 (u, 𝑡)][1∶𝑘+1,1∶𝑘+1]|v𝛽𝑘⟩. (17)

A direct interpretation of these reformulated problems is that each con-

trol u𝑘 generated by GRA at iteration 𝑘 ensures that ⟨𝑒𝑒𝑒𝑘|𝑊 |𝑒𝑒𝑒𝑘⟩ > 0. 
Iteratively, this implies that ⟨w|𝑊 |w⟩ > 0 for any w ∈ ℝ𝐾 which is 
equivalent to 𝑊 being positive definite.

In more details, the first control u1 and the control time 𝑡1 are 
chosen by the initialization (15) such that the first upper left entry of 
𝑊 (u1, 𝑡1) is positive. This guarantees that ⟨𝑒𝑒𝑒1|𝑊 |𝑒𝑒𝑒1⟩ > 0 since

⟨𝑒𝑒𝑒1|𝑊 |𝑒𝑒𝑒1⟩ = 𝐾∑
𝑗=1

⟨𝑒𝑒𝑒1|𝑊 (u𝑗 , 𝑡𝑗 )|𝑒𝑒𝑒1⟩ ≥ [𝑊 (u1, 𝑡1)]1,1 > 0,

where we used that 𝑊 (u, 𝑡) is positive semi-definite for any u and 𝑡. 
Assume now that the upper left 2 × 2-submatrix of 𝑊 1 =𝑊 (u1, 𝑡1) is 
not positive definite. Then it has a one-dimensional kernel spanned by 
a vector v𝛽1 ∶= [𝛽1, −1]⊤ ∈ ℝ2 (see [32, Lem. 5.3]). The correspond-

ing scalar 𝛽1 is clearly the unique solution to the fitting step problem 
(16) for 𝑘 = 1. Now, the discriminatory step problem (17) attempts 
to find a control u2 ∈  and a control time 𝑡2 ∈ [0, 𝑡𝑓 ] such that the 
vector v𝛽1 is not in the kernel of the upper left 2 × 2-submatrix of 
𝑊 (u2, 𝑡2). If this is successful then the upper left 2 × 2-submatrix of 
𝑊 2 =𝑊 (u1, 𝑡1) +𝑊 (u2, 𝑡2) is positive definite. This also implies that ⟨𝑒𝑒𝑒2|𝑊 |𝑒𝑒𝑒2⟩ > 0. Repeating this procedure for 𝑘 = 2, … , 𝐾 −1, we obtain ⟨𝑒𝑒𝑒𝑘|𝑊 |𝑒𝑒𝑒𝑘⟩ > 0 for all 𝑘 ∈ 1,… ,𝐾 , which guarantees that 𝑊 is positive 
definite. We summarize the arguments above in the following theorem.

Theorem 1. Let {(u𝑘, 𝑡𝑘)}𝐾𝑘=1 be a set of controls and corresponding control 
times generated by GRA, such that [𝑊 (u1, 𝑡1)]1,1 > 0. Let 𝛽𝑘 be the solution 
to the fitting step problem (16) for 𝑘 = 1, … , 𝐾 − 1, such that the vectors 
v𝛽𝑘 = [(𝛽𝑘)⊤, −1]⊤ are not in the kernel of [𝑊 (u𝑘+1, 𝑡𝑘+1)][1∶𝑘+1,1∶𝑘+1]. 
Then the matrix 𝑊 =

∑
𝑘𝑊 (u𝑘, 𝑡𝑘) is positive definite.

It remains to show that the discriminatory step can always find

a control such that the vector v𝛽𝑘 is not in the kernel of

[𝑊 (u, 𝑡)][1∶𝑘+1,1∶𝑘+1]. In fact, it is sufficient to show that for any 
𝑘 ∈ {1, … , 𝐾} there exists a control u ∈  and a 𝑡 ∈ [0, 𝑡𝑓 ] such that ⟨v𝛽𝑘 |[𝑊 (u, 𝑡)][1∶𝑘+1,1∶𝑘+1]|v𝛽𝑘⟩ > 0. We show in Theorem 2 that this is 
valid in the context of this paper.

Theorem 2. Let 𝑘 ∈ {1, … , 𝐾 − 1}, 𝑊 𝑘
[1∶𝑘,1∶𝑘] be positive definite, 𝛽𝑘 the 

solution to the fitting-step problem (16), and v𝛽𝑘 = [(𝛽𝑘)⊤, −1]⊤. Then any 
solution (u, 𝑡) to the discriminatory-step problem (17) satisfies
7

⟨v𝛽𝑘 |𝑊[1∶𝑘+1,1∶𝑘+1](u, 𝑡)|v𝛽𝑘⟩ = ‖h
(𝐾)(𝑒𝑒𝑒𝑘+1,u; 𝑡) − h

(𝑘)(𝛽𝑘,u; 𝑡)‖2 > 0.
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Proof. For brevity, we identify 𝛼 with 1 + 𝛼 for the remainder of this 
proof. We start by writing

h(𝐾)(𝑒𝑒𝑒𝑘+1,u, 𝑡)−h(𝑘)(𝛽𝑘,u, 𝑡) =
𝐾∑
𝓁=1

(
𝜙𝑘+1(𝓁)−

𝑘∑
𝑗=1

𝛽𝑘𝑗 𝜙𝑗 (𝓁)

)
Yu,(Δ,𝛼)𝓁 (𝑡).

Since the functions {𝜙1, … , 𝜙𝐾} are linearly independent, it holds that

∃𝓁 ∈ {1,… ,𝐾} ∶ 𝜙𝑑𝑖𝑓𝑓 (𝓁) ∶= 𝜙𝑘+1(𝓁) −
𝑘∑

𝑗=1
𝛽𝑘𝑗 𝜙𝑗 (𝓁) ≠ 0. (18)

According to (1), we have for any (𝛼, Δ)𝓁

𝑑
𝑑𝑡

X(𝑡) =
[
Δ𝓁𝐴+ 𝛼𝓁(𝑢𝑥𝐵𝑥 + 𝑢𝑦𝐵𝑦)

]
X(𝑡), X(0) = X0, (19)

where

𝐴 =
⎡⎢⎢⎣
0 −1 0
1 0 0
0 0 0

⎤⎥⎥⎦ , 𝐵𝑥 =
⎡⎢⎢⎣
0 0 0
0 0 −1
0 1 0

⎤⎥⎥⎦ , 𝐵𝑦 =
⎡⎢⎢⎣
0 0 1
0 0 0
−1 0 0

⎤⎥⎥⎦ , X0 =
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ .
Now, consider the control ̃u ∶= [0, 𝑏]⊤ and a corresponding control time 
�̃� ∈ [0, 𝑡𝑓 ], where both 𝑏 ∈ℝ ⧵ {0} and ̃𝑡 are to be chosen later. We have 
Yu,(Δ,𝛼)𝓁 (̃𝑡) = 𝐶X(u, (𝛼, Δ)𝓁 ; ̃𝑡), where X(u, (𝛼, Δ)𝓁 ; ̃𝑡) is the solution to 

(19) and 𝐶 =
[
1 0 0
0 1 0

]
. Thus, we obtain

Yũ,(Δ,𝛼)𝓁 (̃𝑡) = 𝐶𝑒�̃�(Δ𝓁𝐴+𝛼𝓁𝑏𝐵𝑦)X0.

Since Δ𝓁𝐴 + 𝛼𝓁𝑏𝐵𝑦 is skew-symmetric, we can compute its expo-

nential matrix explicitly. By setting 𝐴 ∶= �̃�(Δ𝓁𝐴 + 𝛼𝓁𝑏𝐵𝑦) and 𝑥𝓁 ∶=√
Δ2
𝓁 + 𝛼2𝓁𝑏

2, we have 𝑒𝐴 = 𝐼3 +
sin(̃𝑡𝑥)
�̃�𝑥

𝐴+ 1−cos(̃𝑡𝑥𝓁 )
�̃�2𝑥2

𝓁

𝐴2 (see, e.g., [38]). 

Since 𝐶𝐼3X0 = 0 and

𝐴2 = �̃�2
⎡⎢⎢⎣
−Δ2

𝓁 − 𝛼𝓁𝑏
2 0 0

0 −Δ2
𝓁 Δ𝓁𝛼𝓁𝑏

0 Δ𝓁𝛼𝓁𝑏 −𝛼2𝓁𝑏
2

⎤⎥⎥⎦ ,
we obtain

𝐶X(ũ, 𝛼𝓁 ; �̃�) = 𝐶

(
sin(̃𝑡𝑥𝓁)

𝑥𝓁

⎡⎢⎢⎣
𝛼𝓁𝑏
0
0

⎤⎥⎥⎦+
1 − cos(̃𝑡𝑥𝓁)

𝑥2𝓁

⎡⎢⎢⎣
0

Δ𝓁𝛼𝓁𝑏
−𝛼2𝓁𝑏

2

⎤⎥⎥⎦
)
=
⎡⎢⎢⎣

sin(̃𝑡𝑥𝓁 )
𝑥𝓁

𝛼𝓁𝑏
1−cos(̃𝑡𝑥𝓁 )

𝑥2𝓁
Δ𝓁𝛼𝓁𝑏

⎤⎥⎥⎦ .
Thus, we have

h(𝐾)(𝑒𝑒𝑒𝑘+1, ũ, �̃�) − h(𝑘)(𝛽𝑘, ũ, �̃�) = 𝑏
𝐾∑
𝓁=1

𝜙𝑑𝑖𝑓𝑓 (𝓁)𝛼𝓁
⎡⎢⎢⎣

sin(̃𝑡𝑥𝓁 )
𝑥𝓁

Δ𝓁
1−cos(̃𝑡𝑥𝓁 )

𝑥2
𝓁

⎤⎥⎥⎦ =∶ 𝐹 (̃𝑡).

Now, seeking a contradiction, assume that h(𝐾)(𝑒𝑒𝑒𝑘+1, ̃u, ̃𝑡) −h(𝑘)(𝛽𝑘, ̃u, ̃𝑡) =
0 for all ̃𝑡 ∈ [0, 𝑡𝑓 ] and all 𝑏 ∈ℝ ⧵{0}. Since 𝐹 is analytic in ̃𝑡, we obtain 
𝐹 (𝑘)(̃𝑡) = 0 for all 𝑘 ∈ ℕ and all ̃𝑡 ∈ [0, 𝑡𝑓 ]. For 𝑘 odd, we have

𝐹 (𝑘)(̃𝑡) = 𝑏
𝐾∑
𝓁=1

𝜙𝑑𝑖𝑓𝑓 (𝓁)𝛼𝓁(−1
𝑘−1
2 )

[
𝑥𝑘−1𝓁 cos(𝑇𝑥𝓁)

Δ𝓁𝑥
𝑘−2
𝓁 sin(𝑇𝑥𝓁))

]
. (20)

Since 𝐹 (𝑘)(𝑇 ) = 0 for all 𝑘 odd, the first component of 𝐹 (𝑘)(𝑇 ) in (20), 
for different 𝑘 odd, implies that

⎡⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1
𝑥21 𝑥22 ⋯ 𝑥2

𝐾
𝑥41 𝑥42 ⋯ 𝑥4

𝐾
⋮ ⋮ ⋮ ⋮

𝑥𝐾1 𝑥𝐾2 ⋯ 𝑥𝐾
𝐾

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜙𝑑𝑖𝑓𝑓 (1)𝛼1 cos(𝑇𝑥1)
𝜙𝑑𝑖𝑓𝑓 (2)𝛼2 cos(𝑇𝑥2)

⋮
𝜙𝑑𝑖𝑓𝑓 (𝐾)𝛼𝐾 cos(𝑇𝑥𝐾 )

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 0.
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐷

=∶𝜙𝜙𝜙�̃�
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Notice that 𝐷 is a Vandermonde matrix (see, e.g., [39]). Now, let 𝐾 =

2(𝐾 − 1), meaning that 𝐷 ∈ ℝ(𝐾2 +1)×𝐾 is a square matrix. Then, the 
determinant of 𝐷 is given exactly by

det(𝐷) =
∏

1≤𝑖<𝑗≤𝐾
(𝑥2𝑗 − 𝑥2𝑖 ).

This implies that two rows of 𝐷 are linearly independent if and only if |𝑥𝑖| ≠ |𝑥𝑗 |. Hence, det(𝐷𝑥) = det(𝐷𝑦) ≠ 0 (and therefore 𝜙𝜙𝜙�̃� = 0) if and 

only if |𝑥𝑖| ≠ |𝑥𝑗 | for 𝑖 ≠ 𝑗. Recalling that 𝑥𝓁 =
√

Δ2
𝓁 + 𝛼2𝓁𝑏

2, |𝑥𝑖| ≠ |𝑥𝑗 |
is equivalent to Δ2

𝑖 + 𝛼2𝑖 𝑏
2 ≠ Δ2

𝑗 + 𝛼2𝑗 𝑏
2. For 𝑖 ≠ 𝑗 we also have 𝛼𝑖 ≠

𝛼𝑗 and/or Δ𝑖 ≠ Δ𝑗 by definition. Since 𝛼𝓁 ∈ [0.8, 1.2] and Δ𝓁 ∈ Δ0 +
2𝜋[−0.2, 0.2] with Δ0 ≥ 0.4𝜋, we obtain 𝛼2𝑖 ≠ 𝛼2𝑗 and/or Δ2

𝑖 ≠ Δ2
𝑗 for 

𝑖 ≠ 𝑗. Thus, there exists 𝑏 ∈ℝ ⧵0 such that Δ2
𝑖 +𝛼2𝑖 𝑏

2 ≠Δ2
𝑗 +𝛼2𝑗 𝑏

2 for all 
𝑖, 𝑗 ∈ {1, … , 𝐾} with 𝑖 ≠ 𝑗. In conclusion, we have |𝑥𝑖| ≠ |𝑥𝑗 | for 𝑖 ≠ 𝑗, 
which implies that 𝜙𝜙𝜙�̃� = 0 and therefore 𝜙𝑑𝑖𝑓𝑓 (𝓁)𝛼𝓁 cos(̃𝑡𝑥𝓁) = 0 for all 
𝓁 ∈ {0, … , 𝐾} and all �̃� ∈ [0, 𝑡𝑓 ]. However, we also have 𝜙𝑑𝑖𝑓𝑓 (𝓁) ≠
0 by (18), 𝛼𝓁 > 0 and 𝑥𝓁 > 0. Thus, there exists �̃� ∈ [0, 𝑡𝑓 ] such that 
𝜙𝑑𝑖𝑓𝑓 (𝓁)𝛼𝓁 cos(̃𝑡𝑥𝓁) ≠ 0, which is a contradiction. □

Analogously to the proof of Theorem 2, one can show that any solu-

tion (u1, 𝑡1) to the initialization problem (15) satisfies [𝑊 (u1, 𝑡1)]1,1 > 0. 
We conclude our analysis by the following theorem.

Theorem 3. Let (u𝑘, 𝑡𝑘), 𝑘 = 1, … , 𝐾 , be a set of controls and correspond-

ing control times generated by GRA. Then problem (4) is uniquely solvable 
by 𝛽 = 𝛽⋆.

Proof. Let 𝛽𝑘 be the solution to the fitting step problem (16) for 
𝑘 = 1, … , 𝐾 − 1. By Theorem 2, the vector v𝛽𝑘 = [(𝛽𝑘)⊤, −1]⊤ is not 
in the kernel of [𝑊 (u𝑘+1, 𝑡𝑘+1)][1∶𝑘+1,1∶𝑘+1] for all 𝑘 ∈ {1, … , 𝐾 − 1}. 
Thus, we obtain by Theorem 1 that the matrix 𝑊 =

∑
𝑘 𝑊 (u𝑘, 𝑡𝑘) is 

positive definite. Hence, problem (12) is uniquely solvable by 𝛽 = 𝛽⋆. 
By equivalency of problems (12) and (4), we obtain the result. □

Notice that, in the notation above, OGRA simply reorders rows and 
columns of the matrix 𝑊 𝑘 while attempting to find and correct its 
kernel. In fact, the second improvement in lines 8-9 in OGRA skips 
the discriminatory step only if there exists a row and column of 𝑊 𝑘

with index 𝓁𝑘+1 such that, by swapping 𝜙𝑘+1 and 𝜙𝓁𝑘+1
, the matrix 

𝑊 𝑘
[1∶𝑘+1,1∶𝑘+1] is positive definite. Thus, if tol1 is sufficiently small, one 

can also prove convergence of OGRA analogously to GRA.

6. Numerical results

We test GRA and OGRA on the setting described in Sec. 2. We choose 
a maximum control time of 160 ms, which corresponds to a normalized 
time 𝑡𝑓 = 16. The shift of the parameter Δ is set to Δ0 = 4𝜋 and the 
width of its interval to 4𝜋Δ1, with Δ1 = 0.2. We consider two different 
probability distributions 𝑃⋆, a simple Gaussian one (see panel on the 
left in Fig. 2) and a step distribution with three peaks (see panel on the 
left in Fig. 4). They are discretized by a uniform mesh of 100 points (10 
points in each direction). Similarly, we discretize the set of linearly in-

dependent functions {𝜙𝑗}𝐾𝑗=1 by setting 𝐾 = 100 and 𝜙𝑗 = 𝑒𝑒𝑒𝑗 ∈ℝ100 the 
𝑗-th canonical vector in ℝ100. Finally, we fix the tolerances for OGRA 
to be tol1 = 10−14 and tol2 = 10−4.

Now, let us briefly discuss how we solve the sub-steps of the algo-

rithms numerically. The initialization and discriminatory step problems 
are solved by a second-order trust-region method. For the fitting step, 
we use the equivalent compact form (16). The corresponding first-order 
optimality system is given by
8

[𝑊 𝑘][1∶𝑘,1∶𝑘]𝛽 = [𝑊 𝑘][1∶𝑘,𝑘+1]. (21)
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Since the matrix [𝑊 𝑘][1∶𝑘,1∶𝑘] is symmetric and positive definite, any 
solution to Eq. (21) is a global solution to Eq. (16). Hence, we solve 
the fitting step problem by solving the linear system (21) using a solver 
based on the SVD. This solver first computes the SVD of [𝑊 𝑘][1∶𝑘,1∶𝑘], 
i.e., two orthogonal matrices 𝑈, 𝑉 ∈ ℝ𝑘×𝑘 and a diagonal matrix Σ ∈
ℝ𝑘×𝑘 such that 𝑈Σ𝑉 ⊤ = [𝑊 𝑘][1∶𝑘,1∶𝑘]. To make the method more robust 
against numerical instabilities, it then removes all singular values that 
are smaller than a given tolerance, and the corresponding columns of 
𝑈 and 𝑉 . Finally, it computes 𝛽 by setting 𝛽 = 𝑉 ⊤𝛽 and solving Σ𝛽 =
𝑈⊤[𝑊 𝑘][1∶𝑘,𝑘+1].

After running the algorithms, we reconstruct 𝑃⋆ by solving prob-

lem (4). Notice that, using the notation (13)-(14), the gradient of the 
cost function in (4) is given by 𝑊 𝛽 −

∑
𝑘 Γ(u𝑘, 𝑡𝑘)⊤Y

exp
u𝑘

(𝑡𝑘), where the 
columns of Γ are given by the 𝛾𝑗 (u𝑘, 𝑡𝑘) defined in Eq. (14). We can also 
immediately see that the Hessian of the cost function in Eq. (4) is ex-

actly 𝑊 , which is guaranteed to be positive definite by our analysis in 
Sec. 5. Hence, the global solution to Eq. (4) is given by the (unique) 
solution to

𝑊 𝛽 =
∑
𝑘

Γ(u𝑘, 𝑡𝑘)⊤Y
exp
u𝑘

(𝑡𝑘). (22)

However, in order to ensure that the coefficients of the computed so-

lution correspond to a probability distribution (i.e., belong to ℝ̂𝐾 ), we 
add the necessary constraints and solve Eq. (4) with the second-order 
interior point algorithm of MATLAB’s fmincon-solver. Nonetheless, the 
code includes an option to solve directly Eq. (22) using a SVD solver 
(see Section 4).

Now, we run both GRA and OGRA on the canonical set {𝜙𝑗}100𝑗=1 of 
hat functions. In contrast to [31], we do not include any additional 
random vectors in the canonical set for OGRA and also do not remove 
any elements from the set during OGRA (but still reorder them). The 
reason for this is that we experienced for the problem of this paper 
that additional random elements do not improve the results and re-

moving elements from the canonical set does not reduce the number 
of controls, but is more likely to make the final identification problem 
numerically unstable. While GRA computes 100 controls, OGRA only 
designs 51 by skipping 48 discriminatory steps. We then choose 𝑃⋆ as 
the Gaussian distribution in Fig. 2 (left) and compute the correspond-

ing experimental realizations {Y
exp
u𝑘

(𝑡𝑘)}𝐾𝑘=1 for the two resulting sets 
of control fields, with 𝐾 = 100 for GRA and 𝐾 = 51 for OGRA. Recon-

structing 𝑃⋆ as described above, we obtain the coefficient vectors 𝛽𝑟𝑒𝑐
and thereby the distributions 𝑃𝑟𝑒𝑐 =

∑100
𝑗=1 𝛽𝑟𝑒𝑐,𝑗𝜙𝑗 corresponding to GRA 

and OGRA, shown in Fig. 2. Looking at the errors with respect to the 
true distribution 𝑃⋆ shown in Fig. 3, we observe that GRA outperforms 
OGRA by one order of magnitude. However, the difference is so small 
that it is not visible in the reconstructed distributions. Similar results 
are obtained for a step distribution with three peaks in Fig. 4.

To investigate the dependence of the results on the choice of param-

eters, we repeat the experiment for different maximum control times, 
widths of the Δ-interval and 𝐾 = 400 mesh points. First, we take a 
look at the number of control fields generated by OGRA in Table 5. 
We observe that the number of generated control fields is increasing 
with decreasing maximum control time and decreasing width of the Δ-

interval. We also observe that the ratio between the number of GRA 
controls (which is equal to the number of mesh points 𝐾) and the num-

ber of OGRA controls is decreasing with an increasing number of mesh 
points. To validate this point, we plot the number of controls for both 
algorithms, for different total numbers of mesh points in Fig. 5.

An explanation of this behavior is given by the condition number 
of the corresponding matrices 𝑊 , defined in Eq. (13), representing the 
compact form (12) of the final identification problem. The condition 
numbers corresponding to GRA and OGRA for the settings in Table 5

are shown in Tables 6 and 7. Based on our theoretical results for GRA 
and OGRA proving that 𝐾 = 𝐾 controls are sufficient, we also add a 

set of fully random controls (randomized within the given bounds 𝑢𝑚
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Fig. 4. Same as Fig. 2 but for a step distribution with three peaks. In brackets are the number of control fields for each set.
Table 5

Number of controls computed by OGRA for a control bound 𝑢𝑚 =
10, and different numbers of discretization points 𝐾 , maximum 
control times 𝑡𝑓 and widths 4𝜋Δ1 of the Δ-interval. Bold numbers 
indicate that the number of OGRA controls is less than 60% of the 
number of GRA controls. Notice that GRA always generates 𝐾
controls.

𝐾 = 100 𝐾 = 400

Δ1

𝑡𝑓 8 16 24 32 8 16 24 32

0.1 70 525252 505050 505050 259 299 276 240

0.2 585858 515151 505050 505050 305 288 223223223 220220220
0.4 565656 505050 505050 505050 326 256 211211211 200200200
0.8 515151 505050 505050 505050 292 210210210 200200200 200200200
1.6 505050 505050 515151 505050 275 205205205 200200200 200200200

Fig. 5. Number of controls for GRA (dashed circles) and OGRA (solid crosses) 
for different total numbers of mesh points. To highlight the ratio between the 
amount of controls, we also plot half the amount of GRA controls (dotted 
squares).

and 𝑡𝑓 ) that has the same number of controls as GRA (i.e., 𝐾 = 100 and 
𝐾 = 400, respectively). We observe that the condition number shows 
the same correlation with respect to the maximum control time, width 
of the Δ-interval and number of mesh points, as the number of OGRA 
controls. In particular, the condition number of OGRA is below 1𝑒15 for 
all settings where OGRA computed less than 60% of the number of GRA 
controls.

Regarding the condition numbers, GRA and random controls show 
the same behavior as OGRA. The reason can be found by taking a closer 
look at the entries of the matrix 𝑊 . It can be shown that the difference 
between two adjacent rows or columns of 𝑊 is bounded in norm by 
𝑢𝑚, 𝑡𝑓 and the mesh size for the probability distribution, i.e., 𝛼𝓁+1 −
𝛼𝓁 and Δ𝓁+1 − Δ𝓁 . The interested reader can find more details about 
this result in Appendix A. We conclude that, if the control bound, the 
maximum control time, or the mesh size (or equivalently the width 
of the Δ-interval) is too small, the difference between two adjacent 
rows/columns of 𝑊 can become numerically equal to zero, implying 
that 𝑊 has a nontrivial kernel.

In order to investigate the impact of this numerical instability on the 
reconstructed results, we consider again the setting of the beginning of 
this section (i.e., Δ1 = 0.2 and 𝑡𝑓 = 16), but for 𝐾 = 400 mesh points. 
9

The results for a Gaussian and a step distribution with three peaks are 
plotted in Figs. 6 and 7, respectively. We observe that all three con-

trol field sets are able to fully reconstruct the step distribution and, at 
least partially, the Gaussian distribution. This is because the admissi-

ble set of solutions for the final identification problem (4) is restricted 
to ℝ̂𝐾 . Thus, a bad condition number does not necessarily imply that 
it is impossible to (at least partially) reconstruct the true probability 
distribution. However, a good condition number guarantees stability of 
the numerical solver and improves the accuracy of the results. In this 
context, notice that if we would sufficiently increase either the control 
bound 𝑢𝑚, or the maximum control time 𝑡𝑓 , both GRA and OGRA would 
show better condition numbers and be able to perfectly reconstruct also 
the Gaussian distribution in Fig. 6.

We observe also that, if one knows the number of sufficient control 
functions 𝐾 = 𝐾 , then even completely random control fields can be 
able to perform similarly to GRA and OGRA controls. However, while 
OGRA finds automatically 𝐾 (reduces the number of control fields to 
a sufficient amount), there is no indicator for a sufficient amount of 
random controls in general. Additionally, the corresponding condition 
numbers are in many cases worse than for GRA and OGRA, as seen in 
Tables 6 and 7, meaning that they are more likely to show numerical 
instabilities. Thus, the recommended strategy is clearly OGRA, since 
it is able to reduce the number of control fields by up to 50%, while 
accurately reconstructing the probability distributions.

Lastly, we remark that making the tolerance tol2 smaller can gen-

erally lead to even fewer controls being computed by OGRA. However, 
this in turn can lead to less accurate results in the reconstructed solu-

tion, meaning the user has to decide for themselves if such a trade-off 
is desirable.

7. Conclusion

In conclusion, we introduce SPIRED, a Greedy reconstruction algo-

rithm to estimate spin distribution in NMR. We show that this approach 
can be used to jointly find the distribution of two Hamiltonian parame-

ters, namely the offset term and the magnetic field inhomogeneity. We 
discuss the accuracy and limitations of this method through experimen-

tally relevant numerical simulations. We provide and describe the codes 
allowing to reproduce the results of this paper. A proof of the algorithm 
convergence is also given.

This paper opens the way to a series of interesting questions in 
quantum control. A first step is to apply this algorithm to other ar-

eas in which an ensemble of quantum systems is used. Among others, 
we mention Bose Einstein Condensates in an optical lattice [40,11] or 
molecular rotational dynamics in gas phase [10,41]. The greedy recon-

struction algorithm can in principle be applied to these examples, but 
specific constraints related to the corresponding experimental setups 
would be to take into account and would require adaptations of the

SPIRED code. A final stage concerns the experimental implementation 
of this approach which seems realistic in the near future in view of the 
current state of the art.
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Table 6

Condition number of 𝑊 for different control sets, maximum control times 𝑡𝑓 and widths 4𝜋Δ1 of the Δ-

interval. The total number of mesh points is 𝐾 = 100 and the bound on the control is 𝑢𝑚 = 10. Bold numbers 
indicate that the condition number is smaller than 1𝑒15.

GRA OGRA random control set

Δ1

𝑡𝑓 8 16 24 32 8 16 24 32 8 16 24 32

0.1 3𝑒16 5𝑒075𝑒075𝑒07 7𝑒037𝑒037𝑒03 6𝑒036𝑒036𝑒03 3𝑒15 3𝑒083𝑒083𝑒08 7𝑒057𝑒057𝑒05 7𝑒067𝑒067𝑒06 1𝑒18 1𝑒091𝑒091𝑒09 1𝑒061𝑒061𝑒06 3𝑒063𝑒063𝑒06
0.2 7𝑒097𝑒097𝑒09 4𝑒064𝑒064𝑒06 3𝑒033𝑒033𝑒03 1𝑒031𝑒031𝑒03 5𝑒095𝑒095𝑒09 1𝑒081𝑒081𝑒08 1𝑒081𝑒081𝑒08 1𝑒061𝑒061𝑒06 7𝑒127𝑒127𝑒12 1𝑒091𝑒091𝑒09 4𝑒044𝑒044𝑒04 9𝑒039𝑒039𝑒03
0.4 1𝑒111𝑒111𝑒11 5𝑒035𝑒035𝑒03 1𝑒031𝑒031𝑒03 1𝑒031𝑒031𝑒03 2𝑒112𝑒112𝑒11 3𝑒063𝑒063𝑒06 1𝑒071𝑒071𝑒07 1𝑒071𝑒071𝑒07 1𝑒16 7𝑒047𝑒047𝑒04 9𝑒039𝑒039𝑒03 1𝑒031𝑒031𝑒03
0.8 1𝑒061𝑒061𝑒06 2𝑒032𝑒032𝑒03 1𝑒031𝑒031𝑒03 1𝑒031𝑒031𝑒03 3𝑒073𝑒073𝑒07 8𝑒058𝑒058𝑒05 2𝑒052𝑒052𝑒05 2𝑒052𝑒052𝑒05 7𝑒107𝑒107𝑒10 3𝑒033𝑒033𝑒03 2𝑒032𝑒032𝑒03 1𝑒031𝑒031𝑒03
1.6 2𝑒042𝑒042𝑒04 9𝑒029𝑒029𝑒02 1𝑒031𝑒031𝑒03 8𝑒028𝑒028𝑒02 2𝑒062𝑒062𝑒06 4𝑒074𝑒074𝑒07 1𝑒051𝑒051𝑒05 7𝑒077𝑒077𝑒07 5𝑒095𝑒095𝑒09 1𝑒041𝑒041𝑒04 2𝑒032𝑒032𝑒03 1𝑒031𝑒031𝑒03

Table 7

Same as Table 6 but for a total number of mesh points 𝐾 = 400.

GRA OGRA random control set

Δ1

𝑡𝑓 8 16 24 32 8 16 24 32 8 16 24 32

0.1 2𝑒20 1𝑒19 1𝑒20 2𝑒15 3𝑒19 2𝑒19 9𝑒19 3𝑒15 4𝑒19 2𝑒19 2𝑒19 3𝑒18
0.2 1𝑒19 1𝑒19 1𝑒141𝑒141𝑒14 4𝑒134𝑒134𝑒13 6𝑒19 5𝑒19 2𝑒142𝑒142𝑒14 1𝑒141𝑒141𝑒14 2𝑒19 2𝑒19 6𝑒19 3𝑒18
0.4 8𝑒19 2𝑒19 1𝑒141𝑒141𝑒14 1𝑒041𝑒041𝑒04 5𝑒19 8𝑒18 1𝑒141𝑒141𝑒14 4𝑒074𝑒074𝑒07 6𝑒19 4𝑒19 8𝑒15 2𝑒062𝑒062𝑒06
0.8 3𝑒19 2𝑒132𝑒132𝑒13 1𝑒041𝑒041𝑒04 9𝑒039𝑒039𝑒03 3𝑒19 2𝑒142𝑒142𝑒14 1𝑒071𝑒071𝑒07 5𝑒075𝑒075𝑒07 5𝑒19 4𝑒18 1𝑒081𝑒081𝑒08 1𝑒051𝑒051𝑒05
1.6 6𝑒20 1𝑒101𝑒101𝑒10 2𝑒042𝑒042𝑒04 6𝑒036𝑒036𝑒03 1𝑒20 4𝑒114𝑒114𝑒11 8𝑒078𝑒078𝑒07 2𝑒082𝑒082𝑒08 3𝑒19 6𝑒18 1𝑒081𝑒081𝑒08 2𝑒042𝑒042𝑒04

Fig. 6. Same as Fig. 2 but for 𝐾 = 400 and including the reconstructed distribution for 400 random control fields. In brackets are the number of control fields for 
each set.

Fig. 7. Same as Fig. 6 but for a step distribution with three peaks. In brackets are the number of control fields for each set.
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Appendix A. Numerical stability of the matrix 𝑾

We study in this section the numerical stability of 𝑊 . Notice that 
for constant controls the solution to the dynamical equation (1) can be 
written as

Xu,(Δ,𝛼)(𝑡) = 𝑒𝑡(Δ𝐴+𝛼(u𝑥𝐵𝑥+u𝑦𝐵𝑦))X0.

Recall that for two matrices 𝑋 and 𝑌 , we have‖𝑒𝑌 − 𝑒𝑋‖ ≤ ‖𝑌 −𝑋‖𝑒‖𝑌 ‖𝑒‖𝑋‖.
Now, consider two parameter pairs (𝛼𝓁 , Δ𝓁) and (𝛼𝓁+1, Δ𝓁+1), and 
define 𝐷𝓁 ∶= 𝑡(Δ𝓁𝐴 + 𝛼𝓁(u𝑥𝐵𝑥 + u𝑦𝐵𝑦)) and 𝐷𝓁+1 ∶= 𝑡(Δ𝓁+1𝐴 +
𝛼𝓁+1(u𝑥𝐵𝑥+u𝑦𝐵𝑦)). Since ‖X0‖ = 1, |u𝑥| ≤ 𝑢𝑚 and |u𝑦| ≤ 𝑢𝑚, we obtain

‖Xu,(𝛼𝓁 ,Δ𝓁 )(𝑡)−Xu,(𝛼𝓁+1 ,Δ𝓁+1)(𝑡)‖≤ 𝑒‖𝐷𝓁‖𝑒‖𝐷𝓁+1‖‖𝑡(Δ𝓁𝐴+𝛼𝓁(u𝑥𝐵𝑥+u𝑦𝐵𝑦))

− 𝑡(Δ𝓁+1𝐴+ 𝛼𝓁+1(u𝑥𝐵𝑥 + u𝑦𝐵𝑦))‖
≤ 𝑒‖𝐷𝓁‖𝑒‖𝐷𝓁+1‖𝑡𝑓(|(Δ𝓁 −Δ𝓁+1)|‖𝐴‖)

+ |𝛼𝓁 − 𝛼𝓁+1|𝑢𝑚(‖𝐵𝑥‖+ ‖𝐵𝑦‖) .
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Since the exponential mapping is continuous, we have 𝑒‖𝐷𝓁+1‖ → 𝑒‖𝐷𝓁‖
for Δ𝓁+1 → Δ𝓁 and 𝛼𝓁+1 → 𝛼𝓁 . Thus, the norm of the difference be-

tween the two solutions Xu,(𝛼𝓁 ,Δ𝓁 )(𝑡𝑓 ) and Xu,(𝛼𝓁+1 ,Δ𝓁+1)(𝑡) is bounded 
by the differences |Δ𝓁 − Δ𝓁+1|, |𝛼𝓁 − 𝛼𝓁+1|, the bound to the control 
𝑢𝑚 and the maximum control time 𝑡𝑓 . Recalling (14) and that 𝜙𝑗 = 𝑒𝑒𝑒𝑗
in our example, the matrix entries of 𝑊 are given by

𝑊𝓁,𝑗 =
∑
𝑘

⟨Yu𝑘,(𝛼𝓁 ,Δ𝓁 )(𝑡𝑘)|Yu𝑘,(𝛼𝑗 ,Δ𝑗 )(𝑡𝑘)⟩.
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