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ANALYSIS OF A GREEDY RECONSTRUCTION ALGORITHM\ast 

S. BUCHWALD\dagger , G. CIARAMELLA\ddagger , AND J. SALOMON\S 

Abstract. A novel and detailed convergence analysis is presented for a greedy algorithm that
was introduced in [Y. Maday and J. Salomon, Joint Proceedings of the 48th IEEE Conference on
Decision and Control and the 28th Chinese Control Conference, 2009, pp. 375--379] for operator re-
construction problems in the field of quantum mechanics. This algorithm is based on an offline/online
decomposition of the reconstruction process and on an ansatz for the unknown operator obtained by
an a priori chosen set of linearly independent matrices. The presented convergence analysis focuses
on linear-quadratic (optimization) problems governed by linear differential systems and reveals the
strong dependence of the performance of the greedy algorithm on the observability properties of the
system and on the ansatz of the basis elements. Moreover, the analysis allows us to use a precise (and
in some sense optimal) choice of basis elements for the linear case and led to the introduction of a new
and more robust optimized greedy reconstruction algorithm. This optimized approach also applies
to nonlinear Hamiltonian reconstruction problems, and its efficiency is demonstrated by numerical
experiments.
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1. Introduction. The identification of Hamiltonian operators plays a funda-
mental role in the fields of quantum physics and quantum chemistry; see, e.g., [7, 9,
10, 11, 19, 21, 22, 23, 24, 25] and references therein. Even though the overall litera-
ture about Hamiltonian identification problems is quite extensive, the mathematical
contribution to this area is rather limited. Important mathematical theoretical con-
tributions can be found in [2, 4] and in [8, 13], where uniqueness results for quantum
inverse problems are proved by exploiting controllability arguments. Other techniques,
based on the so-called Carleman's estimate, are used in [2] to deduce uniqueness re-
sults for inverse problems governed by Schr\"odinger-type equations in the presence
of discontinuous coefficients. Excluding these few theoretical results, the literature
rather focuses on numerical algorithms.

The term Hamiltonian identification often refers to two distinct problems. On the
one hand, it sometimes indicates the inverse problem associated with the identification
of a Hamiltonian operator obtained by a numerical fitting of simulated and given
experimental data. On the other hand, it occasionally refers to both the problem of
designing experimental parameters (allowing an optimized production of experimental
data) and the subsequent inverse identification problem. In general, the design of
experimental parameters includes the computation of control functions allowing an
efficient numerical solving of the inverse problem.

In the latter problem, the algorithms proposed in the literature often combine the
computation of control functions with the production of new synthetic (simulated)
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4512 S. BUCHWALD, G. CIARAMELLA, AND J. SALOMON

data or experimental data. Mathematically, this framework has given rise to two dif-
ferent approaches. The first one [13] consists in a procedure that alternately updates a
(shrinking) set of admissible Hamiltonian operators and the trial control field used to
generate new data. The second approach [14] is based on a full offline/online decom-
position and is inspired by the greedy strategy emerged in the field of approximation
theory in the 2000s; see, e.g., [1] and references therein. Even though some mathe-
matical investigations of the first approach can be found in the literature (see [8, 13]),
much less is known about the second strategy, for which only preliminary numerical
results were presented in [14].

The goal of the present work is to provide a first detailed convergence analysis of
the Hamiltonian reconstruction strategy defined in [14]. As a byproduct, this analy-
sis allows us to introduce a new more efficient and robust numerical reconstruction
algorithm.

The numerical strategy presented in [14] is based on the ansatz that the unknown
operator can be written as a linear combination of a priori given linearly independent
matrices. The set of these matrices is denoted by \scrB \mu . The reconstruction process is
then decomposed in an offline phase and an online phase. In the offline phase, a fam-
ily of control functions is built iteratively in a greedy manner in order to maximize
the distinguishability of the system. This phase exploits only the quantum model
without any use of laboratory information. The algorithm proposed in [14] for the
offline phase, which we call in this paper the greedy reconstruction (GR) algorithm,
consists of a sweep over the elements of \scrB \mu . At every iteration of the GR algorithm,
one new element of \scrB \mu is considered and a new control function is computed with the
goal of splitting the states generated by the new element and the ones already consid-
ered in the previous iterations. The computed control functions are experimentally
implemented in the online phase to produce laboratory data. These are in turn used
to define and solve an identification inverse problem, aiming at fitting the numerical
simulations with the corresponding experimental data.

In [14] the heuristic motivation for the offline phase is that this attempts to
produce a set of control functions that make the online identification problem uniquely
solvable (and easier to be solved) in a neighborhood of the true solution. Starting
from this idea we develop a detailed convergence analysis for linear problems (linear-
quadratic in the least-squares sense). The analysis of the algorithm for linear problems
corresponds to a local analysis performed on linearized equations and provides a
first fundamental step toward the study of full nonlinear problems. Our analysis
relates very clearly the iterations of the offline phase, and the corresponding computed
control functions, to the solvability of the online identification problem. Moreover, the
obtained theoretical results will reveal the strong dependence of the performance of the
GR algorithm on the observability properties of the system and on the ansatz of the
basis elements used to reconstruct the unknown operator. These observations allow
us to improve the GR algorithm and introduce a new optimized greedy reconstruction
(OGR) algorithm which shows a very robust behavior not only for the linear-quadratic
reconstruction problems but also for nonlinear Hamiltonian reconstruction problems.

The paper is organized as follows. In section 2, the notation used throughout
this paper is fixed. Section 3 describes the Hamiltonian reconstruction problem and
the original GR algorithm introduced in [14]. The GR algorithm is then adapted to
linear-quadratic problems in section 4, and the corresponding convergence analysis
is presented in section 5. In section 6, we introduce some improvements of the GR
algorithm that lead to an OGR algorithm. The OGR algorithm is presented first for
linear-quadratic problems and then extended to nonlinear Hamiltonian reconstruction
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ANALYSIS OF A GREEDY RECONSTRUCTION ALGORITHM 4513

problems. Within section 6, results of numerical experiments are shown to demon-
strate the efficiency and the improved robustness of the new proposed algorithm.
Finally, we present our conclusions in section 7.

2. Notation. Consider a positive natural number N . We denote by
\bigl\langle 
v,w

\bigr\rangle 
:=

v\top w, for any v,w \in \BbbC N the usual complex scalar product on \BbbC N , and by \| \cdot \| 2
the corresponding norm. Further, | z | is the modulus of a complex number z and
i is the imaginary unit. The space of Hermitian matrices in \BbbC N\times N is denoted by
Her(N).1 For any A \in \BbbC N\times N , [A]j,k denotes the j, k (with j, k \leq N) entry of A, and
the notation A[1:k,1:j] indicates the upper left submatrix of A of size k \times j, namely,
[A[1:k,1:j]]\ell ,m := [A]\ell ,m for \ell = 1, . . . , k and m = 1, . . . , j. Similarly, A[1:k,j] denotes

the column vector in \BbbC k corresponding to the first k elements of the column j of
A, namely, [A[1:k,j]]\ell := [A]\ell ,j for \ell = 1, . . . , k. Finally, the usual inner product of

L2(0, T ;\BbbC N ) is denoted by
\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
L2 , and L

2 := L2(0, T ;\BbbR ).

3. Hamiltonian reconstruction and a GR algorithm. Consider the finite-
dimensional Schr\"odinger equation

i \.\psi \psi \psi (t) = [H + \epsilon (t)\mu  \star ]\psi \psi \psi (t), t \in (0, T ], \psi \psi \psi (0) = \psi \psi \psi 0,(3.1)

governing the time evolution of the state of a quantum system \psi \psi \psi \in \BbbC N , N \in \BbbN +.
The internal Hamiltonian H is assumed to be known, and the goal is to identify the
unknown dipole moment operator \mu  \star that couples the quantum system to a time-
dependent external laser field \epsilon \in L2, which acts as a control function on the system.
Both internal Hamiltonian H and dipole operator \mu  \star belong to Her(N), and \psi \psi \psi (t) lies
in \BbbC N . The initial condition is \psi \psi \psi 0 \in \BbbC N which satisfies \| \psi \psi \psi 0\| 2 = 1.

The true dipole operator \mu  \star is unknown and assumed to lie in a space spanned by
K linearly independent matrices \mu 1, . . . , \mu K , forming the set \scrB \mu = (\mu j)

K
j=1 \subset Her(N),

where K \in \BbbN + satisfies 1 \leq K \leq dimHer(N) = N2. Hence, we write \mu  \star = \mu (\alpha \alpha \alpha  \star )

with \mu (\alpha \alpha \alpha ) :=
\sum K

j=1\alpha \alpha \alpha j\mu j for any \alpha \alpha \alpha \in \BbbR K .

To identify the true operator \mu  \star one uses a set of control fields (\epsilon m)Km=1 \subset L2 to
perform K laboratory experiments and obtain the experimental data

(3.2) \varphi (\mu  \star , \epsilon 
m) :=

\bigl\langle 
\psi \psi \psi 1,\psi \psi \psi T (\mu  \star , \epsilon 

m)
\bigr\rangle 
for m = 1, . . . ,K.

Here, \psi \psi \psi T (\mu  \star , \epsilon ) denotes the solution to (3.1) at time T > 0, corresponding to the
dipole operator \mu  \star and a laser field \epsilon . The value \psi \psi \psi 1 \in \BbbC N is a fixed state with
\| \psi \psi \psi 1\| 2 = 1 and acts on a state of the quantum system as an observer operator. The
measurements are assumed not to be affected by any type of noise.

Using the set of control fields (\epsilon m)Km=1 and the corresponding experimental data
(\varphi (\mu  \star , \epsilon 

m))Km=1 \subset \BbbC , one solves the nonlinear least-squares problem

min
\alpha \alpha \alpha \in \BbbR K

K\sum 

m=1

| \varphi (\mu  \star , \epsilon 
m) - \varphi (\mu (\alpha \alpha \alpha ), \epsilon m)| 2,(3.3)

where \varphi (\mu (\alpha \alpha \alpha ), \epsilon m) :=
\bigl\langle 
\psi \psi \psi 1,\psi \psi \psi T (\mu (\alpha \alpha \alpha ), \epsilon 

m)
\bigr\rangle 
, with \psi \psi \psi T (\mu (\alpha \alpha \alpha ), \epsilon 

m) the solution to (3.1)
evaluated at time T corresponding to the dipole operator \mu (\alpha \alpha \alpha ) and the laser field \epsilon m.
Clearly \alpha \alpha \alpha  \star is a global solution to (3.3).

1Notice that the set of Hermitian matrices forms a (real) vector space if the scalar multiplication
is defined with respect to scalars belonging to \BbbR . In fact, if A \in Her(N), then cA \in Her(N) for
any c \in \BbbR . However, this is not true for c \in \BbbC , since choosing, e.g., c = i, the imaginary unit, the
transpose conjugate of iA is  - iA.
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4514 S. BUCHWALD, G. CIARAMELLA, AND J. SALOMON

In the presented reconstruction problem, several variables are used. Let us clarify
their roles in plain words:

\bullet The elements of the basis \scrB \mu can be arbitrarily chosen as data.
\bullet Given a basis \scrB \mu , the true unknown of the problem is \alpha \alpha \alpha  \star (or equivalently \mu  \star ).
\bullet The control functions are needed to produce the laboratory data (3.2), which
are necessary to assemble the (final) inverse problem (3.3). These control
functions are computed (optimized) by the numerical strategy discussed below
with the goal of optimizing the conditioning of problem (3.3).

If the control functions (\epsilon m)Km=1 and the data (\varphi (\mu  \star , \epsilon 
m))Km=1 are given, problem

(3.3) is a standard parameter-identification inverse problem written in a minimization
form. The choice of the laser fields (\epsilon m)Km=1 can affect significantly the properties of
(3.3) and the corresponding solutions. To design an optimized set of control func-
tions, in particular with the goal of improving local convexity properties of (3.3),
Maday and Salomon introduced in [14] a numerical strategy which separates the re-
construction process of \mu  \star in offline and online phases. In the offline phase, a GR
algorithm computes a set of optimized laser fields (\epsilon m)Km=1 by exploiting only the
quantum model (3.3) and without using any laboratory data. In the online phase, the
computed control fields (\epsilon m)Km=1 are used experimentally to produce the laboratory
data \varphi (\mu  \star , \epsilon 

m) :=
\bigl\langle 
\psi \psi \psi 1,\psi \psi \psi T (\mu  \star , \epsilon 

m)
\bigr\rangle 
and to define the nonlinear problem (3.3).

While the online phase consists (mathematically) in solving a classical parameter-
identification inverse problem, the offline phase requires the GR algorithm introduced
in [14]. The ideal goal of this offline/online framework is to find a good approxima-
tion of the unknown operator for which the difference at time T between observed
experimental data and numerically computed data is the smallest for any control. In
other words, one aims at finding a matrix \mu that solves

min
\mu \in span\scrB \mu 

sup
\epsilon \in L2

| \varphi (\mu  \star , \epsilon ) - \varphi (\mu , \epsilon )| 2,(3.4)

or equivalently an \alpha \alpha \alpha that solves

min
\alpha \alpha \alpha \in \BbbR K

sup
\epsilon \in L2

| \varphi (\mu (\alpha \alpha \alpha  \star ), \epsilon ) - \varphi (\mu (\alpha \alpha \alpha ), \epsilon )| 2.(3.5)

Therefore, the goal of the GR algorithm is to generate a set of K control functions
such that a computed solution to (3.3) is also a solution to (3.4)--(3.5). To do so, the
heuristic argument used in [14] is that the GR algorithm must attempt to distinguish
numerical data for any two \mu (\widetilde \alpha \alpha \alpha ), \mu (\widehat \alpha \alpha \alpha ) \in span\scrB \mu , \mu (\widetilde \alpha \alpha \alpha ) \not = \mu (\widehat \alpha \alpha \alpha ) without performing any
laboratory experiment. Following this idea, Maday and Salomon defined the GR al-
gorithm as an iterative procedure that performs a sweep over the linearly independent
matrices (\mu k)

K
k=1 and computes a new control field \epsilon k+1 at each iteration. Suppose

that the control fields \epsilon 1, . . . , \epsilon k are already computed; the new control function \epsilon k+1

is obtained by two substeps: one first solves the identification problem

(3.6) min
\alpha \alpha \alpha 1,...,\alpha \alpha \alpha k

k\sum 

m=1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\varphi 

\left( 
 

k\sum 

j=1

\alpha \alpha \alpha j\mu j , \epsilon 
m

\right) 
  - \varphi (\mu k+1, \epsilon 

m)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

2

,

which gives the coefficients \alpha \alpha \alpha k
1 , . . . ,\alpha \alpha \alpha 

k
k, and then computes the new field as

(3.7) \epsilon k+1 \in argmax\epsilon \in L2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\varphi (\mu k+1, \epsilon ) - \varphi 

\left( 
 

k\sum 

j=1

\alpha \alpha \alpha k
j\mu j , \epsilon 

\right) 
 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

2

.
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Algorithm 3.1. Greedy Reconstruction Algorithm

Require: A set of K linearly independent matrices \scrB \mu = (\mu 1, . . . , \mu K).
1: Solve the initialization problem

(3.8) max
\epsilon \epsilon \epsilon \in L2

| \varphi (\mu 1, \epsilon ) - \varphi (0, 0)| 2,

which gives the field \epsilon 1, and set k = 1.
2: while k \leq K  - 1 do
3: Fitting step: Find (\alpha \alpha \alpha k

j )j=1,...,k that solve the problem

(3.9) min
\alpha \alpha \alpha \in \BbbR k

k\sum 
m=1

| \varphi (\mu k+1, \epsilon 
m) - \varphi (\mu (k)(\alpha \alpha \alpha ), \epsilon m)| 2.

4: Discriminatory step: Find \epsilon k+1 that solves the problem

(3.10) max
\epsilon \in L2

| \varphi (\mu k+1, \epsilon ) - \varphi (\mu (k)(\alpha \alpha \alpha k), \epsilon )| 2.

5: Update k \leftarrow k + 1.
6: end while

The step of solving Problem (3.6) is called fitting step, since one attempts to com-

pute a vector \alpha \alpha \alpha k := [\alpha \alpha \alpha k
1 , . . . ,\alpha \alpha \alpha 

k
k]

\top that fits the quantities \varphi (
\sum k

j=1\alpha \alpha \alpha 
k
j\mu j , \epsilon 

m) and
\varphi (\mu k+1, \epsilon 

m). In other words, the new basis element \mu k+1 is considered, and one

identifies an element \mu (k)(\alpha \alpha \alpha k) :=
\sum k

j=1\alpha \alpha \alpha 
k
j\mu j such that none of the already computed

control functions \epsilon 1, . . . , \epsilon k is capable of distinguishing the observations \varphi (\mu (k)(\alpha \alpha \alpha k), \epsilon )
and \varphi (\mu k+1, \epsilon ) (namely, \varphi (\mu (k)(\alpha \alpha \alpha k), \epsilon m) \not = \varphi (\mu k+1, \epsilon 

m) for m = 1, . . . , k). The step of
solving problem (3.7) is called a discriminatory step because one computes a control
function \epsilon k+1 that is capable of distinguishing (discriminating) \varphi (\mu (k)(\alpha \alpha \alpha k), \epsilon k+1) from
\varphi (\mu k+1, \epsilon 

k+1).
The full GR algorithm is stated in Algorithm 3.1.2 Notice how the algorithm

is obtained by a sequence of minimization and maximization problems, mimicking
exactly the structure of the min-max problem (3.4)--(3.5).

Notice also that, since the goal of the GR algorithm is to compute control func-
tions that allow one to distinguish between the states of the system corresponding to
any possible dipole matrix, the algorithm implicitly attempts to compute control func-
tions that make the online identification problem (3.3) locally strictly convex (hence
uniquely solvable). This is an important observation that we will use to begin our
convergence analysis.

A general analysis of the GR algorithm in a full nonlinear setting is a very com-
plicated task. As a first step in this direction, we propose in the next section to
focus on a linear model. On the one hand, this choice allows us to provide a first
detailed analysis of the algorithm. On the other hand, this study corresponds to a lo-
cal analysis performed on linearized models. Note that linearizing (3.1) around \epsilon \epsilon \epsilon = 0
gives

i \.\delta \psi \psi \psi (t) = H\delta \psi \psi \psi (t) + [\delta \epsilon (t)\mu  \star ]\psi \psi \psi (t), t \in (0, T ], \delta \psi \psi \psi (0) = 0,(3.11)

2Notice that the initialization problem (3.8) is different from the one considered in [14], which
was stated anyway to be arbitrary. The reason for our choice is that (as we will see in the next
sections) this slightly modified initialization problem (3.8) will be essential to obtain convergence.
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where \psi is a solution of (3.1). Focusing on the case where \psi \psi \psi (0) is an eigenvector of
H, i.e., H\psi \psi \psi (0) = \lambda \psi \psi \psi (0), we obtain \psi \psi \psi (t) = e - i\lambda t\psi \psi \psi (0) so that the control term reads
as [\delta \epsilon (t)\mu  \star ]\psi \psi \psi (t) = [\lambda \mu  \star \psi \psi \psi (0)]e

 - i\lambda t\delta \epsilon (t). It follows that this framework corresponds to
a linear model of the form \.yyy(t) = Ayyy(t) + B\epsilon \epsilon \epsilon (t) (as (4.1) in section 4) with yyy = \delta \psi \psi \psi ,
A = H, B = \lambda \mu  \star \psi \psi \psi (0), yyy0 = 0, and \epsilon \epsilon \epsilon (t) = e - i\lambda t\delta \epsilon (t). Let us also remark that
this setting is often used to study theoretically the controllability of Schr\"odinger-type
equations; see, e.g., [3], and the references therein. Furthermore, we wish to remark
that it is always possible to rewrite a system of complex differential equations (like
(3.11) and (3.1)) into a real (but augmented) system by separating real and imaginary
components. For this reason, the analysis presented in section 4 focuses, without loss
of generality, on systems of real differential equations.

We conclude this section with a final remark about the laboratory measurements.
Throughout this paper, these are assumed to be not affected by any type of noise,
even though noise is a significant factor that has to be dealt with; see [13, Remark 1]
and references therein. However, the main goal of the present work is the numerical
and convergence analysis of the computational framework and the GR algorithm
introduced in [14], where noisy effects in taking measurements are also neglected.

4. Linear-quadratic reconstruction problems. Consider a state yyy whose
time evolution is governed by the (real) ordinary differential equation

\.yyy(t) = Ayyy(t) +B \star \epsilon \epsilon \epsilon (t), t \in (0, T ], yyy(0) = yyy0,(4.1)

where A \in \BbbR N\times N is a given matrix for N \in \BbbN +, the initial condition is yyy0 \in \BbbR N , and
\epsilon \epsilon \epsilon \in Ead denotes a control function belonging to Ead, a nonempty and weakly compact
subset of L2(0, T ;\BbbR M ) (e.g., a closed, convex, and bounded subset of L2(0, T ;\BbbR M )).
The control matrix B \star \in \BbbR N\times M , for M \in \BbbN +, is unknown and assumed to lie in the
space spanned by a set of linearly independent matrices \scrB = \{ B1, . . . , BK\} \subset \BbbR N\times M ,

1 \leq K \leq NM , and we write B \star =
\sum K

j=1\alpha \alpha \alpha  \star ,jBj =: B(\alpha \alpha \alpha  \star ).
As in the case of the Hamiltonian reconstruction problem, to identify the un-

known matrix B \star one can consider a set of control functions (\epsilon \epsilon \epsilon m)Km=1 \subset Ead and use
it experimentally to obtain the data CyyyT (B \star , \epsilon \epsilon \epsilon 

m), m = 1, . . . ,K. Here, yyyT (B \star , \epsilon \epsilon \epsilon )
denotes the solution of (4.1) at time T and corresponding to a control function \epsilon \epsilon \epsilon and
to the control matrix B \star . Further, C \in \BbbR P\times N is a given observer matrix.

As in section 3, the reconstruction process is split into online and offline phases.
In the offline phase, the GR algorithm computes the control functions (\epsilon \epsilon \epsilon m)Km=1. These
are then used in the online phase, in which the laboratory data

(4.2) CyyyT (B \star , \epsilon \epsilon \epsilon 
m), m = 1, . . . ,K,

are obtained and one solves the identification problem

min
\alpha \alpha \alpha \in \BbbR K

K\sum 

m=1

\| CyyyT (B \star , \epsilon \epsilon \epsilon 
m) - CyyyT (B(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)\| 22 .(4.3)

As in section 3, several variables are used in the presented reconstruction problem:
\bullet The elements of the basis \scrB can be arbitrarily chosen as data.
\bullet Given a basis \scrB , the true unknown of the problem is \alpha \alpha \alpha  \star (or equivalently B \star ).
\bullet The control functions are needed to produce the laboratory data (4.2), which
are necessary to assemble the (final) inverse problem (4.3).
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Algorithm 4.1. Greedy Reconstruction Algorithm (linear-quadratic case)

Require: A set of K linearly independent matrices \scrB = (B1, . . . , BK).
1: Solve the initialization problem

(4.5) max
\epsilon \epsilon \epsilon \in Ead

\| CyyyT (B1, \epsilon \epsilon \epsilon ) - CyyyT (0, 0)\| 22 ,

which gives the field \epsilon \epsilon \epsilon 1, and set k = 1.
2: while k \leq K  - 1 do
3: Fitting step: Find (\alpha \alpha \alpha k

j )j=1,...,k that solve the problem

(4.6) min
\alpha \alpha \alpha \in \BbbR k

k\sum 
m=1

\bigm\| \bigm\| \bigm\| CyyyT (Bk+1, \epsilon \epsilon \epsilon 
m) - CyyyT (B

(k)(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)
\bigm\| \bigm\| \bigm\| 2

2
,

where B(k)(\alpha \alpha \alpha ) :=
\sum k

j=1\alpha \alpha \alpha jBj .

4: Discriminatory step: Find \epsilon \epsilon \epsilon k+1 that solves the problem

(4.7) max
\epsilon \epsilon \epsilon \in Ead

\bigm\| \bigm\| \bigm\| CyyyT (Bk+1, \epsilon \epsilon \epsilon ) - CyyyT (B
(k)(\alpha \alpha \alpha k), \epsilon \epsilon \epsilon )

\bigm\| \bigm\| \bigm\| 2

2
.

5: Update k \leftarrow k + 1.
6: end while

As for the Hamiltonian reconstruction problem, the ideal goal of the offline/online
framework is to find a good approximation of the unknown operator for which the
norm difference at time T between observed experimental data and numerically com-
puted data is the smallest for any control function. In other words, we wish to find a
matrix B of the form B(\alpha \alpha \alpha ) :=

\sum K
j=1\alpha \alpha \alpha jBj that solves

min
\alpha \alpha \alpha \in \BbbR K

max
\epsilon \epsilon \epsilon \in Ead

\| CyyyT (B \star , \epsilon \epsilon \epsilon ) - CyyyT (B(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon )\| 22 .(4.4)

The GR algorithm generates a set of K controls that attempt to distinguish
numerical data for any two B(\widehat \alpha \alpha \alpha ) \not = B(\widetilde \alpha \alpha \alpha ), without performing any laboratory exper-
iment. The GR algorithm for linear-quadratic reconstruction problems is given in
Algorithm 4.1.

Since the convergence analysis performed in the next sections focuses on Al-
gorithm 4.1, we wish to explain it in more detail. The idea is to generate con-
trols that separate the observations of system (4.1) at time T for the different ele-
ments B1, . . . , BK , making possible the identification of their respective coefficients
\alpha \alpha \alpha  \star 
1, . . . ,\alpha \alpha \alpha 

 \star 
K when solving (4.3). The initialization is performed by solving the optimal

control problem (4.5), which aims at maximizing the distance (at time T ) between the
observed state of the uncontrolled system (namely, yyyT (0, 0) corresponding to \epsilon \epsilon \epsilon = 0)
and the observed state of the system

\.yyy(t) = Ayyy(t) +B1\epsilon \epsilon \epsilon (t), yyy(0) = yyy0.

The numerical solution of this maximization problem provides the first control func-
tion \epsilon \epsilon \epsilon 1.

Assume now that the control functions \epsilon \epsilon \epsilon 1, . . . , \epsilon \epsilon \epsilon k are computed. The new element
\epsilon \epsilon \epsilon k+1 is obtained by performing a fitting step (namely, solving problem (4.6)) and a
discriminatory step (namely, solving problem (4.7)). In the fitting step, one compares
the two systems
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\Biggl\{ 
\.yyy(t) = Ayyy(t) +Bk+1\epsilon \epsilon \epsilon 

m(t),

yyy(0) = yyy0,

\left\{ 
 
 

\.yyy(t) = Ayyy(t) +

\biggl( \sum k
j=1\alpha \alpha \alpha jBj

\biggr) 
\epsilon \epsilon \epsilon m(t),

yyy(0) = yyy0,

with B(k)(\alpha \alpha \alpha ) :=
\sum k

j=1\alpha \alpha \alpha jBj and form \in \{ 1, . . . , k\} , and looks for an \alpha \alpha \alpha \in \BbbR k for which
their observed solutions at time T are as similar as possible (ideally the same, hence
indistinguishable). We denote by \alpha \alpha \alpha k = [\alpha \alpha \alpha k

1 , . . . ,\alpha \alpha \alpha 
k
k]

\top the vector computed by solving
(4.6). This vector is used in the subsequent discriminatory step, which consists in
solving the optimal control problem (4.7). Here, we compute a control function \epsilon \epsilon \epsilon k+1

that maximizes the distance (at time T ) between the solutions of the two systems

\Biggl\{ 
\.yyy(t) = Ayyy(t) +Bk+1\epsilon \epsilon \epsilon (t),

yyy(0) = yyy0,

\Biggl\{ 
\.yyy(t) = Ayyy(t) +

\sum k
j=1\alpha \alpha \alpha 

k
jBj\epsilon \epsilon \epsilon (t),

yyy(0) = yyy0,

where now \alpha \alpha \alpha k
j are fixed coefficients and the optimization variable is the control func-

tion \epsilon \epsilon \epsilon . Notice that this maximization problem is well posed, as we will discuss in
Lemma 5.2 in section 5.

We wish to remark again that, since the goal of the GR algorithm is to compute
control functions that permit us to distinguish between the states of the system corre-
sponding to any possible control matrix, the algorithm implicitly attempts to compute
control functions that make the online identification problem locally uniquely solvable.

With these preparations, we are ready to present our convergence analysis.

5. Convergence analysis. Our analysis is based on a reformulation of the algo-
rithm that highlights the link between convergence and observability. We present the
reformulation of the algorithm in a matrix-vector form in section 5.1, where the main
idea of our convergence analysis and its relation with the observability properties of
the system are first presented. Detailed analyses for fully observable and non-fully
observable systems are provided in section 5.2 and section 5.3, respectively.

5.1. Matrix-vector formulation and convergence of the algorithm. The
convergence analysis presented in this section begins by recalling that one of the goals
of the GR algorithm is to compute a set of control functions that makes the online
identification problem (4.3) strictly convex in a neighborhood of the solution \alpha \alpha \alpha  \star (and
hence locally uniquely solvable). It is then natural to begin with problem (4.3) and
prove the following lemma, which gives us an equivalent matrix-vector formulation.

Lemma 5.1 (online identification problem in matrix form). Problem (4.3) is
equivalent to

min
\alpha \alpha \alpha \in \BbbR K

\bigl\langle 
\alpha \alpha \alpha  \star  - \alpha \alpha \alpha ,\widehat W (\alpha \alpha \alpha  \star  - \alpha \alpha \alpha )

\bigr\rangle 
,(5.1)

where \widehat W \in \BbbR K\times K is defined as

(5.2) \widehat W :=

K\sum 

m=1

W (\epsilon \epsilon \epsilon m)

with W (\epsilon \epsilon \epsilon m) \in \BbbR K\times K given by

[W (\epsilon \epsilon \epsilon m)]\ell ,j :=
\bigl\langle 
\gamma \gamma \gamma \ell (\epsilon \epsilon \epsilon 

m), \gamma \gamma \gamma j(\epsilon \epsilon \epsilon 
m)
\bigr\rangle 

for \ell , j = 1, . . . ,K,(5.3)

\gamma \gamma \gamma \ell (\epsilon \epsilon \epsilon 
m) :=

\int T

0

Ce(T - s)AB\ell \epsilon \epsilon \epsilon 
m(s)ds for m, \ell = 1, . . . ,K.(5.4)
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Proof. Define J(\alpha \alpha \alpha ) :=
\sum K

m=1 \| CyyyT (B \star , \epsilon \epsilon \epsilon 
m) - CyyyT (B(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)\| 22, and notice that

yyyT (B \star , \epsilon \epsilon \epsilon 
m) = eTAyyy0 +

\int T

0

e(T - s)AB(\alpha \alpha \alpha  \star )\epsilon \epsilon \epsilon 
m(s)ds,

yyyT (B(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m) = eTAyyy0 +

\int T

0

e(T - s)AB(\alpha \alpha \alpha )\epsilon \epsilon \epsilon m(s)ds.

Recalling that B(\alpha \alpha \alpha ) =
\sum K

j=1\alpha \alpha \alpha jBj , the function J(\alpha \alpha \alpha ) can be written as

J(\alpha \alpha \alpha ) =

K\sum 

m=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A
\Bigl( K\sum 

j=1

(\alpha \alpha \alpha  \star ,j  - \alpha \alpha \alpha j)B\ell 

\Bigr) 
\epsilon \epsilon \epsilon m(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

=

K\sum 

m=1

K\sum 

\ell =1

K\sum 

j=1

(\alpha \alpha \alpha  \star ,\ell  - \alpha \alpha \alpha \ell )(\alpha \alpha \alpha  \star ,j  - \alpha \alpha \alpha j)
\bigl\langle 
\gamma \gamma \gamma \ell (\epsilon \epsilon \epsilon 

m), \gamma \gamma \gamma j(\epsilon \epsilon \epsilon 
m)
\bigr\rangle 
,

where the vectors \gamma \gamma \gamma \ell (\epsilon \epsilon \epsilon 
m) are defined in (5.4). We can now write

J(\alpha \alpha \alpha ) =

K\sum 

\ell =1

K\sum 

j=1

(\alpha \alpha \alpha  \star ,\ell  - \alpha \alpha \alpha \ell )(\alpha \alpha \alpha  \star ,j  - \alpha \alpha \alpha j)

K\sum 

m=1

\bigl\langle 
\gamma \gamma \gamma \ell (\epsilon \epsilon \epsilon 

m), \gamma \gamma \gamma j(\epsilon \epsilon \epsilon 
m)
\bigr\rangle 

=

\Biggl\langle 
\alpha \alpha \alpha  \star  - \alpha \alpha \alpha ,

K\sum 

m=1

W (\epsilon \epsilon \epsilon m)(\alpha \alpha \alpha  \star  - \alpha \alpha \alpha )

\Biggr\rangle 
=
\bigl\langle 
\alpha \alpha \alpha  \star  - \alpha \alpha \alpha ,\widehat W (\alpha \alpha \alpha  \star  - \alpha \alpha \alpha )

\bigr\rangle 
,

and the result follows.

Notice that the matrices W (\epsilon \epsilon \epsilon m) defined in (5.3) can be written as W (\epsilon \epsilon \epsilon m) =
\Gamma (\epsilon \epsilon \epsilon m)\top \Gamma (\epsilon \epsilon \epsilon m), where \Gamma (\epsilon \epsilon \epsilon m) = [\gamma \gamma \gamma 1(\epsilon \epsilon \epsilon 

m) \cdot \cdot \cdot \gamma \gamma \gamma K(\epsilon \epsilon \epsilon m)]. Hence, W (\epsilon \epsilon \epsilon m) are Hermitian and

positive semidefinite. This guarantees that \widehat W is also Hermitian and positive semi-
definite. Therefore, problem (5.1) is uniquely solved by \alpha \alpha \alpha = \alpha \alpha \alpha  \star if and only if \widehat W is
positive definite, meaning that the GR algorithm actually aims at computing a set
of control functions (\epsilon \epsilon \epsilon m)Km=1 that makes \widehat W positive definite. We then need to study

how the positivity of \widehat W evolves during the iteration of the algorithm. To do so, the
first step is to rewrite the problems (4.5), (4.6), and (4.7) also in a matrix form.

Lemma 5.2 (the GR Algorithm 4.1 in matrix form). Consider Algorithm 4.1. The
following hold:

\bullet The initialization problem (4.5) is equivalent to

(5.5) max
\epsilon \epsilon \epsilon \in Ead

[W (\epsilon \epsilon \epsilon )]1,1.

\bullet The fitting-step problem (4.6) is equivalent to

(5.6) min
\alpha \alpha \alpha \in \BbbR k

\bigl\langle 
\alpha \alpha \alpha ,\widehat W k

[1:k,1:k]\alpha \alpha \alpha 
\bigr\rangle 
 - 2
\bigl\langle \widehat W k

[1:k,k+1],\alpha \alpha \alpha 
\bigr\rangle 
,

where \widehat W k =
\sum k

m=1W (\epsilon \epsilon \epsilon m), and (recalling section 2) \widehat W k
[1:k,1:k] \in \BbbR k\times k denotes

the k \times k upper-left block of \widehat W k and \widehat W k
[1:k,k+1] \in \BbbR k is a vector containing the

first k components of the (k + 1)th column of \widehat W k.
\bullet The discriminatory-step problem (4.7) is equivalent to

(5.7) max
\epsilon \epsilon \epsilon \in Ead

\bigl\langle 
vvv, [W (\epsilon \epsilon \epsilon )][1:k+1,1:k+1]vvv

\bigr\rangle 
,

where W (\epsilon \epsilon \epsilon ) is defined in (5.3) and vvv := [(\alpha \alpha \alpha k)\top ,  - 1]\top .
Moreover, problems (4.5)--(5.5), (4.6)--(5.6), and (4.7)--(5.7) are well posed.
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Proof. The equivalences between (4.5), (4.6), (4.7) and (5.5), (5.6), and (5.7),
respectively, can be proved by similar calculations to the one used in the proof of
Lemma 5.1. We omit them for brevity.

Problem (4.6)--(5.6) is a quadratic minimization problem with quadratic function
bounded from below by zero. Hence the existence of a minimizer follows.

Problems (4.5)--(5.5) and (4.7)--(5.7) are two classical optimal control problems.
Since the admissible set Ead is a weakly compact subset of L2(0, T ;\BbbR M ), the existence
of a maximizer follows by standard arguments based on maximizing sequences and
weak compactness; see, e.g., [5] and references therein.

Using the matrix representation given in Lemma 5.2, we can now sketch the
mathematical meaning of the iterations of the GR algorithm. Assume that at the
kth iteration the submatrix \widehat W k

[1:k,1:k] is positive definite, but
\widehat W k

[1:k+1,1:k+1] has a non-

trivial (one-dimensional) kernel. The GR algorithm first tries to identify (by solving

problem (5.6)) the kernel of \widehat W k
[1:k+1,1:k+1], and then attempts to compute (by solving

problem (5.7)) a new control function \epsilon \epsilon \epsilon k+1 such that the matrix W[1:k+1,1:k+1](\epsilon \epsilon \epsilon 
k+1)

is positive on the kernel \widehat W k
[1:k+1,1:k+1]. If these happen, then the new updated matrix

\widehat W k+1 = \widehat W k +W (\epsilon \epsilon \epsilon k+1) has a positive definite upper-left block \widehat W k+1
[1:k+1,1:k+1]. More-

over, if these two steps hold for any k, then the convergence follows since after the
(K  - 1)th iteration the matrix \widehat W = \widehat WK is positive definite. Hence, two questions
clearly arise:

1. Does the fitting step of the algorithm always compute the nontrivial kernel
of \widehat W k

[1:k+1,1:k+1] (in case it is truly nontrivial)?
2. Does the discriminatory step of the algorithm always compute a control func-

tion \epsilon \epsilon \epsilon k+1 that makes \widehat W k+1
[1:k+1,1:k+1] positive definite?

The first question can be answered with the help of the following technical lemma.

Lemma 5.3 (on the kernel of Hermitian positive semidefinite matrices). Consider

a symmetric positive semidefinite matrix \widetilde G \in \BbbR n\times n of the form

\widetilde G =

\biggl[ 
G bbb
bbb\top c

\biggr] 
,

where G \in \BbbR (n - 1)\times (n - 1) is symmetric and positive definite, and bbb \in \BbbR n - 1 and c \in \BbbR 
are such that the kernel of \widetilde G is nontrivial. Then

ker( \widetilde G) = span

\biggl\{ \biggl[ 
G - 1bbb
 - 1

\biggr] \biggr\} 
.

Proof. Since the kernel of \widetilde G is nontrivial, there exists a nonzero vector uuu = [ vvvd ] \in 
\BbbR n \setminus \{ 0\} (with vvv \in \BbbR n - 1 and d \in \BbbR ) such that \widetilde Guuu = 0. Moreover, since G is positive

definite, the kernel of \widetilde G must be one-dimensional and equal to the span of \{ uuu\} . Using

the structure of uuu, we write \widetilde Guuu = 0 as

(5.8)

\Biggl\{ 
Gvvv + d bbb = 0,

bbb\top vvv + dc = 0,

G invertible\Leftarrow \Rightarrow 
\Biggl\{ 
vvv =  - dG - 1bbb,

 - d bbb\top G - 1bbb+ dc = 0.

Now, suppose that d = 0. This implies that vvv =  - dG - 1bbb = 0, which in turn implies
that uuu = 0. However, this is a contradiction to the fact that uuu \not = 0. Hence d \not = 0. The
result follows by the right equations in (5.8) (divided by  - d).
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Recalling the equivalent form (5.6) of the fitting-step problem (4.6), one can

clearly see that if \widehat W k
[1:k,1:k] is positive definite, then the unique solution to (5.6) is

given by \alpha \alpha \alpha k = (\widehat W k
[1:k,1:k])

 - 1\widehat W k
[1:k,k+1]. On the other hand, if we set

\widetilde G = \widehat W k
[1:k+1,1:k+1], G = \widehat W k

[1:k,1:k], bbb =
\widehat W k

[1:k,k+1], c =
\widehat W k

[k+1,k+1],

then Lemma 5.3 guarantees that the vector vvv := [(\alpha \alpha \alpha k)\top ,  - 1]\top spans the kernel of
\widehat W k

[1:k+1,1:k+1], if this is nontrivial. Therefore, we have

ker(\widehat W k
[1:k+1,1:k+1]) = span

\Biggl\{ \Biggl[ 
(\widehat W k

[1:k,1:k])
 - 1\widehat W k

[1:k,k+1]

 - 1

\Biggr] \Biggr\} 
= span

\biggl\{ 
vvv :=

\biggl[ 
\alpha \alpha \alpha k

 - 1

\biggr] \biggr\} 
.

This means that if \widehat W k
[1:k+1,1:k+1] has a rank defect, then the GR algorithm finds this

defect by the fitting step.
The answer to the second question posed above is more complicated. In order to

formulate it properly, we need to recall the definition of observability of an input/out-
put dynamical system of the form

\.yyy(t) = Ayyy(t) +B\epsilon \epsilon \epsilon (t), yyy(0) = yyy0,

zzz(t) = Cyyy(t)
(5.9)

with A \in \BbbR N\times N , B \in \BbbR N\times M , C \in \BbbR P\times N ; see, e.g., [18].

Definition 5.4 (observable input-output linear systems). The input-output lin-
ear system (5.9) is said to be observable if the initial state yyy(0) = yyy0 can be uniquely
determined from input/output measurements. Equivalently, (5.9) is observable if and
only if the observability matrix

(5.10) \scrO N (C,A) :=

\left[ 
    

C
CA
...

CAN - 1

\right] 
    

has full column rank.

Notice that the matrix B does not affect the observability of system (5.9).
We now analyze the convergence of the algorithm in the case of fully observ-

able systems (namely, rank \scrO N (C,A) = N) in section 5.2 and in case of non-fully
observable systems (namely, rank \scrO N (C,A) < N) in section 5.3.

5.2. The case of fully observable systems. Let us assume that the system is
observable, namely, that rank \scrO N (C,A) = N . We show in this section that this is a

sufficient condition for the GR algorithm to make the matrix \widehat W positive definite. To
do so, we first prove the following lemma regarding the discriminatory step. Notice
that the proof of this result is inspired by classical Kalman controllability theory; see,
e.g., [6].

Lemma 5.5 (discriminatory-step problem for fully observable systems). Assume
that the matrices A \in \BbbR N\times N and C \in \BbbR P\times N are such that rank \scrO N (C,A) = N . Let
\widehat W k

[1:k,1:k] be positive definite, \alpha \alpha \alpha k the solution to the fitting-step problem (4.6), and
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vvv = [(\alpha \alpha \alpha k)\top , - 1]\top . Then any solution \epsilon \epsilon \epsilon k+1 of the discriminatory-step problem (4.7)
satisfies

\bigl\langle 
vvv,W[1:k+1,1:k+1](\epsilon \epsilon \epsilon 

k+1)vvv
\bigr\rangle 
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A

\left( 
 Bk+1  - 

k\sum 

j=1

\alpha \alpha \alpha k
jBj

\right) 
 \epsilon \epsilon \epsilon k+1(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

> 0

for k = 0, 1, . . . ,K  - 1.

Proof. Let us define \widetilde B := Bk+1  - 
\sum k

j=1\alpha \alpha \alpha 
k
jBj . Since the matrices B1, . . . , Bk+1

are assumed to be linearly independent, \widetilde B is nonzero.
Now, we consider an arbitrary \delta \in (0, T ) and define a control function \widetilde \epsilon \epsilon \epsilon \in Ead as

\widetilde \epsilon \epsilon \epsilon (s) :=
\Biggl\{ 
0, 0 \leq s < \delta ,

eeei, \delta \leq s \leq T,

where eeei \in \BbbR M is the ith canonical vector for some index 1 \leq i \leq M . Further, we

denote by \widetilde bbbi the ith column of \widetilde B. Since \widetilde B is nonzero, we can choose the index i such

that \widetilde bbbi \not = 0. Now, we compute

\int T

0

Ce(T - s)A \widetilde B\widetilde \epsilon \epsilon \epsilon (s)ds =
\int T

\delta 

Ce(T - s)A\widetilde bbbids =
\int T

\delta 

C

\left[ 
 

\infty \sum 

j=0

(T  - s)jAj

j!

\right] 
 \widetilde bbbids

( \star )
=

\left[ 
 

\infty \sum 

j=0

\int T

\delta 

(T  - s)j

j!
ds CAj

\right] 
 \widetilde bbbi =

\left[ 
 

\infty \sum 

j=0

(T  - \delta )j+1

(j + 1)!
CAj

\right] 
 \widetilde bbbi

=

\infty \sum 

j=0

\beta j(\delta )CA
j\widetilde bbbi,

where \beta j(\delta ) :=
(T - \delta )j+1

(j+1)! and we used the dominated convergence theorem (see, e.g.,

[16, Theorem 1.34]) to interchange integral and infinite sum and obtain the equality

( \star ). Since the observability matrix \scrO N (C,A) has full rank and \widetilde bbbi \not = 0, there exists

an index 0 \leq j \leq N  - 1 such that CAj\widetilde bbbi \not = 0. Hence, f(\delta ) :=
\sum \infty 

j=0 \beta j(\delta )CA
j\widetilde bbbi

is an analytic function for \delta \in (0, T ) and such that f \not = 0.3 We also know that
(nonconstant) analytic functions have isolated roots; see, e.g., [16, Theorem 10.18].

Therefore we can find a \delta \in (0, T ) such that
\sum \infty 

j=0 \beta j(\delta )CA
j\widetilde bbbi \not = 0 and obtain the

existence of an \widetilde \epsilon \epsilon \epsilon \in Ead such that

\int T

0

Ce(T - s)A \widetilde B\widetilde \epsilon \epsilon \epsilon (s)ds \not = 0.

3To see it, recall that \beta j(\delta ) =
(T - \delta )j+1

(j+1)!
, consider a function g(x) =

\sum \infty 
j=0

xj+1

(j+1)!
\gamma j , and assume

that there exists at least one integer k such that \gamma k \not = 0. Now, if we pick the minimum integer \widehat k such

that \gamma \widehat k \not = 0, we have that g(x) = x
\widehat k+1

(\widehat k+1)!
\gamma \widehat k +

\sum \infty 
j=\widehat k+1

xj+1

(j+1)!
\gamma j . For x \rightarrow 0, the first term behaves as

O(x
\widehat k+1), while the second term as O(x

\widehat k+2). Hence, there exists a point y > 0 such that g(y) \not = 0.
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This implies that

\bigl\langle 
vvv,W[1:k+1,1:k+1](\epsilon \epsilon \epsilon 

k+1)vvv
\bigr\rangle 
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A

\Biggl( 
Bk+1  - 

k\sum 

\ell =1

\alpha \alpha \alpha k
\ell B\ell 

\Biggr) 
\epsilon \epsilon \epsilon k+1(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

\geq 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A

\Biggl( 
Bk+1  - 

k\sum 

\ell =1

\alpha \alpha \alpha k
\ell B\ell 

\Biggr) 
\widetilde \epsilon \epsilon \epsilon (s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A \widetilde B\widetilde \epsilon \epsilon \epsilon (s)ds
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

> 0,

where we have used that \epsilon \epsilon \epsilon k+1 is a maximizer for problem (4.7).

Now, we can prove our first main convergence result.

Theorem 5.6 (convergence of the GR algorithm for fully observable systems).
Assume that the matrices A \in \BbbR N\times N and C \in \BbbR P\times N are such that rank \scrO N (C,A) =
N . Let K \in \{ 1, . . . ,MN\} be arbitrary, and let \{ \epsilon \epsilon \epsilon 1, . . . , \epsilon \epsilon \epsilon K\} \subset Ead be a family of

controls generated by the GR Algorithm 4.1. Then the matrix \widehat W defined in (5.2) is
positive definite, and online identification problem (4.3) is uniquely solvable by \alpha \alpha \alpha = \alpha \alpha \alpha  \star .

Proof. By Lemma 5.1 it is sufficient to show that the matrix \widehat W corresponding to
the controls \epsilon \epsilon \epsilon 1, . . . , \epsilon \epsilon \epsilon K generated by the algorithm is positive definite. The proof of
this claim proceeds by induction.

Lemma 5.5 guarantees that there exists an \epsilon \epsilon \epsilon 1 such that [W (\epsilon \epsilon \epsilon 1)]1,1 > 0. Now, we

assume that \widehat W k
[1:k,1:k] is positive definite, and we show that \widehat W k+1

[1:k+1,1:k+1] is positive

definite as well.
If \widehat W k

[1:k+1,1:k+1] is positive definite, then

\widehat W k+1
[1:k+1,1:k+1] =

\widehat W k
[1:k+1,1:k+1] +W (\epsilon \epsilon \epsilon k)[1:k+1,1:k+1]

is positive definite as well, since W (\epsilon \epsilon \epsilon k)[1:k+1,1:k+1] is positive semidefinite.

Assume now that the submatrix \widehat W k
[1:k+1,1:k+1] has a nontrivial kernel. Since

\widehat W k
[1:k,1:k] is positive definite (induction hypothesis), problem (5.6) is uniquely solvable

with solution \alpha \alpha \alpha k. Then, by Lemma 5.3 the (one-dimensional) kernel of \widehat W k
[1:k+1,1:k+1]

is the span of the the vector vvv = [(\alpha \alpha \alpha k)\top ,  - 1]\top . Finally, using Lemma 5.5 we obtain
that the solution \epsilon \epsilon \epsilon k+1 to the discriminatory-step problem satisfies

0 <
\bigl\langle 
vvv, [W (\epsilon \epsilon \epsilon k+1)][1:k+1,1:k+1]vvv

\bigr\rangle 
.

Hence, the matrix [W (\epsilon \epsilon \epsilon k+1)][1:k+1,1:k+1] is positive definite on the span of vvv. Therefore
\widehat W k+1

[1:k+1,1:k+1] =
\widehat W k

[1:k+1,1:k+1] + [W (\epsilon \epsilon \epsilon k+1)][1:k+1,1:k+1] is positive definite.

Remark 5.7 (uniqueness of solution of the min-max problem (4.4)). Under the
assumption that the system is fully observable, the min-max problem (4.4) is also
uniquely solvable with \alpha \alpha \alpha = \alpha \alpha \alpha  \star . To see this, we first note that (4.4) can be written in
terms of W (\epsilon \epsilon \epsilon ):
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\| CyyyT (B \star , \epsilon \epsilon \epsilon ) - CyyyT (B(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon )\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A

\left( 
 

K\sum 

j=1

(\alpha \alpha \alpha j  - \alpha \alpha \alpha  \star ,j)Bj

\right) 
 \epsilon \epsilon \epsilon (s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

=
\bigl\langle 
(\alpha \alpha \alpha  - \alpha \alpha \alpha  \star ),W (\epsilon \epsilon \epsilon )(\alpha \alpha \alpha  - \alpha \alpha \alpha  \star )

\bigr\rangle 
.

Now, similarly as in the proof of Lemma 5.5 and using the full observability of the
system, one can show that for any \widehat \alpha \alpha \alpha \in \BbbR NM with \widehat \alpha \alpha \alpha \not = \alpha \alpha \alpha  \star there exists a control \epsilon \epsilon \epsilon (\widehat \alpha \alpha \alpha )
such that

\bigl\langle 
(\widehat \alpha \alpha \alpha  - \alpha \alpha \alpha  \star ),W (\epsilon \epsilon \epsilon (\widehat \alpha \alpha \alpha ))(\widehat \alpha \alpha \alpha  - \alpha \alpha \alpha  \star )

\bigr\rangle 
> 0. Therefore the unique solution to (4.4) is

\alpha \alpha \alpha = \alpha \alpha \alpha  \star .

Notice that Theorem 5.6 does not require any particular assumption on the matri-
ces B1, . . . , BK , which can be arbitrarily chosen with the only constraint to be linearly
independent. Moreover, the number K \in \{ 1, . . . ,MN\} can be fixed arbitrarily, and
the GR algorithm will compute control functions that permit the exact reconstruction
of the coefficients of the linear combination of the first K components of B \star in a basis
\{ B1, . . . , BMN\} . To be more precise, if the unknown B \star belongs to the span of K
the linearly independent matrices B1, . . . , BK used by the algorithm, then, using the
control functions generated by the GR algorithm, the unknown B \star can be fully recon-
structed. If B \star lies in the span of \widetilde K \in \{ K + 1,K + 2, . . . ,MN\} linearly independent
matrices B1, . . . , B \widetilde K , but only the first K of these are used by the algorithm (and
in the online identification problem), then one reconstructs exactly the K coefficients
corresponding to the first elements B1, . . . , BK . Furthermore, the ordering of the K
considered matrices does not affect the convergence result of Theorem 5.6.

5.3. The case of non-fully observable systems. The observations and re-
sults of section 5.2 are no longer true if the system is non-fully observable, that is,
rank\scrO N (C,A) = \scrR < N . In this case, the choice of the linearly independent matrices
B1, . . . , BK and their ordering become crucial for the algorithm. In particular, we are
going to show that the method can recover at most K = \scrR M components of the
unknown vector \alpha \alpha \alpha  \star if appropriate matrices B1, . . . , BK are chosen. Moreover, we will
see that an inappropriate choice of matrices B1, . . . , BK can lead to completely wrong
results corresponding to an arbitrarily large error.

For our analysis, we begin by choosing a set of K = NM matrices by exploiting
the kernel of the observability matrix. In particular, recalling that rank\scrO N (C,A) =
\scrR < N , the rank-nullity theorem allows us to consider a basis \{ vvvj\} Nj=1 \subset \BbbR N of \BbbR N

such that

vvvj /\in ker \scrO N (C,A), j = 1, . . . ,\scrR ,(5.11)

vvvj \in ker \scrO N (C,A), j = \scrR + 1, . . . , N,(5.12)

where span\{ vvvj\} Nj=\scrR +1 = ker \scrO N (C,A). We now define a basis \{ B\scrO 
k \} NM

k=1 of \BbbR N\times M as

B\scrO 
1 = vvv1eee

\top 
1 , B

\scrO 
2 = vvv1eee

\top 
2 , . . . , B

\scrO 
M = vvv1eee

\top 
M ,

B\scrO 
M+1 = vvv2eee

\top 
1 , B

\scrO 
M+2 = vvv2eee

\top 
2 , . . . , B

\scrO 
2M = vvv2eee

\top 
M ,

...
...

...

B\scrO 
(N - 1)M+1 = vvvNeee

\top 
1 , B

\scrO 
(N - 1)M+2 = vvvNeee

\top 
2 , . . . , B

\scrO 
NM = vvvNeee

\top 
M ,

(5.13)

where eee\ell \in \BbbR M , for \ell = 1, . . . ,M , are the canonical vectors in \BbbR M . Notice that, since
the vectors (vvvj)

N
j=1 are linearly independent, the set \{ B\scrO 

k \} NM
k=1 is a basis of \BbbR N\times M .
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From a computational point of view, the vectors vvvj can be obtained by a singular
value decomposition (SVD) of the observability matrix \scrO N (C,A) = U\Sigma V \top , where
the columns of V form a basis of \BbbR N and the last N  - \scrR columns of V span the
kernel of \scrO N (C,A); see, e.g., [20, Theorem 5.2]. Therefore, one can set vvvj = V[:,j],
j = 1, . . . , N .

Our first result for non-fully observable systems says that, if the basis \{ B\scrO 
k \} NM

k=1

is considered, then we can reduce the reconstruction of B \star =
\sum MN

j=1 \alpha \alpha \alpha  \star ,jB
\scrO 
j only to

the first \scrR M coefficients \alpha \alpha \alpha 1, . . . ,\alpha \alpha \alpha \scrR M . This is proved in the next lemma, where we
use the notation

(5.14) B\scrR (\alpha \alpha \alpha  \star ) :=

\scrR M\sum 

j=1

\alpha \alpha \alpha  \star ,jB
\scrO 
j .

Lemma 5.8 (online identification problem for non-fully observable systems).
Consider the basis \{ B\scrO 

k \} NM
k=1 constructed as in (5.13) (with vectors vvvj, j = 1, . . . , N ,

as in (5.11)--(5.12)). The online least-squares problem (4.3) (with K =MN) is equiv-
alent to

min
\alpha \alpha \alpha \in \BbbR \scrR M

NM\sum 

m=1

\| CyyyT (B \star , \epsilon \epsilon \epsilon 
m) - CyyyT (B\scrR (\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)\| 22 .

Proof. Notice that, for any \ell \in \{ 1, 2, . . . , NM\} and s \in [0, T ], there exist N

functions \widetilde \beta j such that

Ce(T - s)AB\scrO 
\ell = C

\infty \sum 

j=0

(T  - s)j

j!
AjB\scrO 

\ell 

( \star )
= C

\left[ 
 
N - 1\sum 

j=0

\widetilde \beta j(s)Aj

\right] 
 B\scrO 

\ell 

=
\Bigl[ 
\widetilde \beta 0(s)IN , \widetilde \beta 1(s)IN , . . . , \widetilde \beta N - 1(s)IN

\Bigr] 
\scrO N (C,A)B\scrO 

\ell ,

where we have used the Cayley--Hamilton theorem (see, e.g., [12, page 109]) to obtain
the equality ( \star ). If \ell \in \{ \scrR M + 1, . . . , NM\} , then B\scrO 

\ell = vvvjeee
\top 
i with j \geq \scrR + 1; hence

vvvj \in ker \scrO N (C,A) and therefore

\scrO N (C,A)B\scrO 
\ell = \scrO N (C,A)vvvj\underbrace{}  \underbrace{}  

=0

eee\top i = 0.

Hence, Ce(T - s)AB\scrO 
\ell = 0 for all \ell \in \{ \scrR M + 1, . . . , NM\} and s \in [0, T ]. Thus

\int T

0

Ce(T - s)AB\scrO 
\ell \epsilon \epsilon \epsilon (s)ds = 0

for any control function \epsilon \epsilon \epsilon \in Ead. Now, recalling the definition of J(\alpha \alpha \alpha ) from the proof
of Lemma 5.1, our claim follows by writing the least-squares problem (4.3) as

J(\alpha \alpha \alpha ) =

NM\sum 

m=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

NM\sum 

j=1

(\alpha \alpha \alpha  \star ,j  - \alpha \alpha \alpha j)

\int T

0

Ce(T - s)AB\scrO 
j \epsilon \epsilon \epsilon 

m(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

=

NM\sum 

m=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\scrR M\sum 

j=1

(\alpha \alpha \alpha  \star ,j  - \alpha \alpha \alpha j)

\int T

0

Ce(T - s)AB\scrO 
j \epsilon \epsilon \epsilon 

m(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

.
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Lemma 5.8 implies that the coefficients \alpha \alpha \alpha \scrR M+1, . . . ,\alpha \alpha \alpha MN do not affect the cost
function to be minimized. Therefore, as shown in Corollary 5.11, any vector \alpha \alpha \alpha \in \BbbR MN

of the form

\alpha \alpha \alpha = [\alpha \alpha \alpha  \star 
1, \cdot \cdot \cdot ,\alpha \alpha \alpha  \star 

\scrR M , \gamma \scrR M+1, \cdot \cdot \cdot , \gamma MN ]\top 

is a global solution to (4.3) for any \gamma j \in \BbbR , j = \scrR M + 1, . . . ,MN . This means that
one uses really only the first \scrR M elements of the basis. In fact, as we are going to
show in Lemma 5.9 and Theorem 5.10, only their corresponding coefficients can be
reconstructed, while no information can be obtained for the remaining ones. It is
therefore natural, for rank\scrO N (C,A) = \scrR < N , to use the GR algorithm with only
the first \scrR M basis elements B\scrO 

1 , . . . , B
\scrO 
\scrR M . In this case, the proof of convergence for

the GR algorithm is analogous to what we have done to obtain Theorem 5.6. We first
prove a version of Lemma 5.5 adapted to non-fully observable systems.

Lemma 5.9 (discriminatory-step problem for non-fully observable systems). As-
sume that rank\scrO N (C,A) = \scrR < N and that the GR algorithm is run until the kth
iteration, with k < \scrR M , using the linearly independent matrices B\scrO 

1 , . . . , B
\scrO 
\scrR M de-

fined in (5.13). Let \widehat W k
[1:k,1:k] be positive definite, and let \alpha \alpha \alpha k be the solution to the

fitting-step problem (4.6). Then any solution \epsilon \epsilon \epsilon k+1 of the discriminatory-step problem
(4.7) satisfies, for k = 1, . . .\scrR M  - 1,

\bigl\langle 
vvv,W[1:k+1,1:k+1](\epsilon \epsilon \epsilon 

k+1)vvv
\bigr\rangle 
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\int T

0

Ce(T - s)A

\left( 
 B\scrO 

k+1  - 
k\sum 

j=1

\alpha \alpha \alpha k
jB

\scrO 
j

\right) 
 \epsilon \epsilon \epsilon k+1(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

2

> 0,

where vvv := [(\alpha \alpha \alpha k)\top ,  - 1]\top for k = 0, 1, . . . ,K  - 1.

Proof. Notice that, since the matrices B\scrO 
1 , . . . , B

\scrO 
\scrR M are linearly independent and

defined as in (5.13), we have that \scrO N (C,A)(B\scrO 
k+1  - 

\sum k
j=1\alpha \alpha \alpha 

k
jB

\scrO 
j ) \not = 0.

With this observation, the result can be proved exactly as Lemma 5.5.

Using Lemma 5.9, we can prove convergence for the GR Algorithm 4.1 in case
the matrices B\scrO 

1 , . . . , B
\scrO 
\scrR M defined in (5.13) are used.

Theorem 5.10 (convergence of the GR algorithm for non-fully observable sys-
tems). Let (\epsilon \epsilon \epsilon m)\scrR M

m=1 \subset Ead be a family of controls generated by the GR Algorithm 4.1
with K = \scrR M and using the matrices B\scrO 

1 , . . . , B
\scrO 
\scrR M defined in (5.13). Then the

least-squares problem

(5.15) min
\alpha \alpha \alpha \in \BbbR \scrR M

\scrR M\sum 

m=1

\| CyyyT (B \star , \epsilon \epsilon \epsilon 
m) - CyyyT (B\scrR (\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)\| 22 ,

where B\scrR (\alpha \alpha \alpha ) is defined in (5.14), is uniquely solvable with \alpha \alpha \alpha j = \alpha \alpha \alpha  \star ,j, j = 1, . . . ,\scrR M .

Proof. The proof is the same as that of Theorem 5.6, where one should use Lemma
5.9 instead of Lemma 5.5.

Theorem 5.10 allows us to prove the next corollary, which characterizes the result
of the GR algorithm when more than \scrR M basis elements of (5.13) are used.

Corollary 5.11 (more on the convergence for non-fully observable systems).
Let (\epsilon \epsilon \epsilon m)Km=1 \subset Ead, with K > \scrR M , be a family of controls generated by the GR
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Algorithm 4.1 using the matrices B\scrO 
1 , . . . , B

\scrO 
K defined in (5.13). Then the set of all

global minimum points for the least-squares problem,

min
\alpha \alpha \alpha \in \BbbR K

K\sum 

m=1

\bigm\| \bigm\| \bigm\| CyyyT (B \star , \epsilon \epsilon \epsilon 
m) - CyyyT (B

(K)(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)
\bigm\| \bigm\| \bigm\| 
2

2
,

is given by \{ \alpha \alpha \alpha \in \BbbR K : \alpha \alpha \alpha j = \alpha \alpha \alpha  \star ,j , j = 1, . . . ,\scrR M\} .
Proof. Theorem 5.10 (and Theorem 5.6) and its proof allow us to obtain that,

using the first \scrR M controls generated by the GR algorithm, the matrix \widehat W\scrR M \in 
\BbbR K\times K has a positive definite upper-left submatrix \widehat W\scrR M

[1:\scrR M,1:\scrR M ] and all the other

entries [\widehat W\scrR M ]\ell ,j are zero. Indeed, recalling the vectors \gamma \gamma \gamma k(\epsilon \epsilon \epsilon 
m) defined in (5.4), for

any B\scrO 
k with k \geq \scrR M + 1, we have that \scrO N (C,A)B\scrO 

k = 0 and thus

\gamma \gamma \gamma k(\epsilon \epsilon \epsilon 
m) =

\int T

0

Ce(T - s)AB\scrO 
k \epsilon \epsilon \epsilon 

m(s)ds = 0

for any T > 0 and any m = 1, . . . ,\scrR M . Similarly, the matrices W (\epsilon \epsilon \epsilon m) for m > \scrR M
have the same structure, namely, that their only nonzero components can be the
upper-left submatrices [W (\epsilon \epsilon \epsilon m)][1:\scrR M,1:\scrR M ]. Therefore, the matrix \widehat W = \widehat WK has a

positive definite upper-left submatrix \widehat W[1:\scrR M,1:\scrR M ], while all its other entries are
zero. Therefore, the result follows by Lemma 5.1.

Remark 5.12 (more about the kernel of \scrO N (C,A) and identifiability). Corollary
5.11 guarantees that, if the basis (B\scrO 

j )Kj=1 is used with K > \scrR M , then one can
reconstruct exactly \scrR M coefficients, while nothing can be said about the coefficients
\alpha j for j > \scrR M . This is due to the structure of the matrix \widehat W\scrR M , which has a positive

definite submatrix \widehat W\scrR M
[1:\scrR M,1:\scrR M ] and is zero elsewhere (as discussed in the proof of

Corollary 5.11).

Remark 5.13 (a priori error estimate). Let \alpha \alpha \alpha approx be the solution to (5.15).
Then we get the a priori error estimate

B \star  - B\scrR (\alpha \alpha \alpha approx) =

NM\sum 

j=\scrR M+1

\alpha \alpha \alpha  \star ,jB
\scrO 
j .

Remark 5.14 (min-max problem). Following the same arguments of the proof of
Lemma 5.8, one can show that the min-max problem (4.4) is equivalent to

(5.16) min
\alpha \alpha \alpha \in \BbbR \scrR M

max
\epsilon \epsilon \epsilon \in Ead

\| CyyyT (B \star , \epsilon \epsilon \epsilon ) - CyyyT (B\scrR (\alpha \alpha \alpha ), \epsilon \epsilon \epsilon )\| 22 .

Analogously to Remark 5.7, we can conclude that, using the matrices B\scrO 
1 , . . . ,

B\scrO 
\scrR M defined in (5.13), problem (5.16) is uniquely solvable with \alpha \alpha \alpha j = \alpha \alpha \alpha  \star ,j , j =

1, . . . ,\scrR M .

The results proved so far for a non-fully observable system are obtained for the
special basis (Bj)

MN
j=1 constructed in (5.13). However, it is natural to ask the following

questions:
\bullet Is there any basis that permits us to reconstruct more than \scrR M coefficients?
\bullet Can one reconstruct at least \scrR M coefficients for any arbitrarily chosen basis?

The answers to both questions are negative. The first one is given by Theorem 5.15.
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Theorem 5.15 (maximal number of identifiable elements). Let the observability
matrix \scrO N (C,A) be such that rank\scrO N (C,A) = \scrR < N . There exists no basis of
\BbbR N\times M for which one can exactly recover more than \scrR M coefficients.

Proof. Consider the basis \scrB = \{ B\scrO 
k \} NM

k=1 \subset \BbbR N\times M constructed as in (5.13) and

another arbitrarily chosen basis \widehat \scrB = \{ \widehat Bk\} NM
k=1 \subset \BbbR N\times M . Any element \widehat B \in \widehat \scrB can be

written as a linear combination of the elements of \scrB , that is, \widehat B =
\sum NM

j=1 \lambda jB
\scrO 
j , for

appropriate \lambda j \in \BbbR , j = 1, . . . ,MN . Multiplying \widehat B with \scrO N (C,A), we get

\scrO N (C,A) \widehat B = \scrO N (C,A)

\biggl[ NM\sum 

j=1

\lambda jB
\scrO 
j

\biggr] 
=

NM\sum 

j=1

\lambda j\scrO N (C,A)B\scrO 
j =

\scrR M\sum 

j=1

\lambda j\scrO N (C,A)B\scrO 
j ,

where we used that \scrO N (C,A)B\scrO 
j = 0, for j \in \{ \scrR + 1, . . . , N\} , to obtain the last

equality. Now define the set \scrD = \{ Dk\} NM
k=1 as Dk := \scrO N (C,A) \widehat Bk, k = 1, . . . , NM .

Hence, we can conclude that at most \scrR M elements of \scrD are linearly independent.
Recalling the proof of Lemma 5.5 and Remark 5.12, this means that for NM  - \scrR M
elements of \widehat \scrB there exists a linear combination of the other \scrR M elements such that
the observation at final time T is identical for any control \epsilon \epsilon \epsilon . Therefore, one can
reconstruct at most \scrR M coefficients for the basis \widehat \scrB .

Let us now explain why the answer to the second question is also negative. To
do so, we provide the following examples, which show that a wrong choice of a basis
leads to inconclusive results.

Example 5.16 (wrong bases lead to inconclusive results). Consider a simple sys-
tem with

A =

\biggl[ 
1 0
0 1

\biggr] 
, B \star =

\biggl[ 
1 1
1 1

\biggr] 
, C =

\biggl[ 
1 0
0 0

\biggr] 

and the basis of \BbbR 2\times 2

\widehat B1 =

\biggl[ 
1 0
0 0

\biggr] 
, \widehat B2 =

\biggl[ 
1 0
1 0

\biggr] 
, \widehat B3 =

\biggl[ 
0 1
0 0

\biggr] 
, \widehat B4 =

\biggl[ 
0 1
0 1

\biggr] 
.

Notice that in this case the observability condition does not hold, since one can
compute that \scrR = rank\scrO N (C,A) = rank[ 1 0 1 0

0 0 0 0 ]
\top = 1. Clearly we have that

B \star = 0 \cdot B1 + 1 \cdot B2 + 0 \cdot B3 + 1 \cdot B4 (hence \alpha \alpha \alpha  \star = [0 1 0 1]\top ).

We can now compute for an arbitrarily chosen control \epsilon \epsilon \epsilon \in Ead that

CyyyT (B \star , \epsilon \epsilon \epsilon ) - CyyyT (B(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon ) = C

\int T

0

e(T - s)AB \star \epsilon \epsilon \epsilon (s)ds - C

\int T

0

e(T - s)AB(\alpha \alpha \alpha )\epsilon \epsilon \epsilon (s)ds

=

\int T

0

Ce(T - s)A

\biggl( \biggl[ 
1 1
1 1

\biggr] 
 - 
\biggl[ 
\alpha \alpha \alpha 1 +\alpha \alpha \alpha 2 \alpha \alpha \alpha 3 +\alpha \alpha \alpha 4

\alpha \alpha \alpha 2 \alpha \alpha \alpha 4

\biggr] \biggr) 
\epsilon \epsilon \epsilon (s)ds

=

\int T

0

\biggl[ 
1 0
0 0

\biggr] \biggl[ 
eT - s 0
0 eT - s

\biggr] \biggl[ 
1 - (\alpha \alpha \alpha 1 +\alpha \alpha \alpha 2) 1 - (\alpha \alpha \alpha 3 +\alpha \alpha \alpha 4)

1 - \alpha \alpha \alpha 2 1 - \alpha \alpha \alpha 4

\biggr] 
\epsilon \epsilon \epsilon (s)ds

=

\int T

0

\biggl[ 
eT - s(1 - (\alpha \alpha \alpha 1 +\alpha \alpha \alpha 2)) eT - s(1 - (\alpha \alpha \alpha 3 +\alpha \alpha \alpha 4))

0 0

\biggr] 
\epsilon \epsilon \epsilon (s)ds,
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which is zero for any \alpha \alpha \alpha = [\alpha \alpha \alpha 1 \alpha \alpha \alpha 2 \alpha \alpha \alpha 3 \alpha \alpha \alpha 4]
\top \in \BbbR 4 with \alpha \alpha \alpha 1 + \alpha \alpha \alpha 2 = 1 and \alpha \alpha \alpha 3 + \alpha \alpha \alpha 4 = 1

(for any control \epsilon \epsilon \epsilon ). This means that any \alpha \alpha \alpha = [\alpha \alpha \alpha 1 \alpha \alpha \alpha 2 \alpha \alpha \alpha 3 \alpha \alpha \alpha 4] with \alpha \alpha \alpha 1 + \alpha \alpha \alpha 2 = 1 and
\alpha \alpha \alpha 3 + \alpha \alpha \alpha 4 = 1 solves the least-squares problem (4.3), independently on the control
functions \epsilon \epsilon \epsilon 1, . . . , \epsilon \epsilon \epsilon 4. Since the online least-squares problem has then infinitely many
solutions,4 one cannot conclude anything about the quality of a computed solution,
which has the form \widehat Bapprox = [ 1 1

\alpha \alpha \alpha 2 \alpha \alpha \alpha 4
], leading to the error

\| B \star  - B\scrR (\alpha \alpha \alpha approx)\| 2F = (1 - \alpha \alpha \alpha 2)
2 + (1 - \alpha \alpha \alpha 4)

2,

which can be arbitrarily large (here \| \cdot \| F denotes the Frobenius norm). Even if one
would by chance guess the right coefficients (in this case \alpha \alpha \alpha 2 = 1,\alpha \alpha \alpha 4 = 1), there
would be no way to verify them, since their effect is not observable. Notice also
that even if the entries \widehat Bapprox

1,1 and \widehat Bapprox
1,2 are correct, it is not possible to certify

this or to associate these correct entries to some precise elements of the chosen basis.
This example shows that for an arbitrarily chosen basis, one cannot conclude anything
about the quality of the computed coefficients or the difference between B(\alpha \alpha \alpha ) and B \star .

Example 5.17 (good bases lead to certified results). Consider the same system of
Example 5.16, but now let us use the SVD of the observability matrix,

\scrO 2(C,A) =

\left[ 
  
1 0
0 0
1 0
0 0

\right] 
  =

\left[ 
   

\surd 
2
2

0  - 
\surd 
2
2

0
0 1 0 0\surd 
2
2

0
\surd 
2

2
0

0 0 0 1

\right] 
   

\left[ 
  

\surd 
2 0
0 0
0 0
0 0

\right] 
  
\biggl[ 
1 0
0 1

\biggr] 
= U\Sigma V \top ,

which gives vvv1 = [ 10 ] /\in ker\scrO N (C,A), vvv2 = [ 01 ] \in ker\scrO N (C,A), leading to the basis

B1 =

\biggl[ 
1 0
0 0

\biggr] 
, B2 =

\biggl[ 
0 1
0 0

\biggr] 
, B3 =

\biggl[ 
0 0
1 0

\biggr] 
, B4 =

\biggl[ 
0 0
0 1

\biggr] 
,

constructed as in (5.13). In this case, we have \alpha \alpha \alpha  \star = [1 1 1 1]\top . Since the GR algorithm
considers only the first two basis elements, one gets the final result Bapprox = [ 1 1

0 0 ].

Similarly to Example 5.16, the two entries \widehat Bapprox
1,1 and \widehat Bapprox

1,2 are correct, but now
this is guaranteed by Theorem 5.10. Therefore, in this case, the results obtained are
accompanied by precise information on their correctness.

These examples show clearly that without an a priori knowledge about the observ-
ability of the system (and hence about the ``quality"" of the basis), the GR algorithm
leads to inconclusive results. Even though we have presented in this section a way
to construct a basis which permits a precise analysis of the obtained results, this
is generally not possible for nonlinear problems, like the Hamiltonian reconstruction
problem described in section 3. Is it then possible to modify the GR algorithm in
order to distinguish automatically between ``good"" and ``bad"" elements of a given set
of matrices? The answer is given in section 6, where we first introduce an improved
GR algorithm for linear-quadratic problems and then extend it to nonlinear problems.

6. Improvements of the algorithm. The previous section ended with two
examples showing clearly that a wrong choice of the basis elements and their ordering
can lead to inconclusive results. Even though this issue can be avoided for linear
problems by using the observability matrix (and constructing a basis as in (5.13)), this
strategy does generally not apply to nonlinear problems. For this reason, we introduce

4Notice that these solutions are also solutions to the min-max problem (4.4).
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an OGR algorithm, in which the basis elements are selected during the iterations (in a
greedy fashion) as the ones that maximize the discrimination functions. In particular,
we introduce in section 6.1 the OGR algorithm for linear-quadratic problems and show
by numerical experiments that this leads to an automatic appropriate selection of the
basis elements, even though the observability matrix is not considered at all. Once
the new algorithm is introduced for linear systems, it is then natural to extend it
to nonlinear problems. We consider this extension in section 6.2 for Hamiltonian
reconstruction problems and show the efficiency of our new OGR algorithm by direct
numerical experiments.

6.1. OGR for linear-quadratic problems. Consider an arbitrary set of lin-
early independent matrices (Bj)

K
j=1 \subset \BbbR N\times M . We wish to modify the GR Algorithm

4.1 in order to choose at every iteration one element Bj which leads to a control

function capable of improving the rank of the matrix \widehat W k
[1:k+1,1:k+1]. The idea is to

replace the sweeping process of the GR Algorithm 4.1 with a more robust and par-
allel testing of all the matrices. At each iteration, the element associated with the
maximal discriminating value is chosen and removed from the set (Bj)

K
j=1, while the

corresponding control function is added to the set of already computed control func-
tions. Therefore, the dimension of the set (Bj)

K
j=1 reduces by one at each iteration,

and the algorithm is stopped either if all the K matrices are chosen or as soon none of
the remaining ones can be discriminated by the others. This idea leads to the OGR
Algorithm 6.1.

In this algorithm, we clearly extended the greedy character of the original GR
algorithm to the choice of the next basis element. At each iteration, we consider all
remaining basis elements as the potential next one. We select the one which yields
the largest function value in the respective discrimination (maximization) step. In
other words, one computes the basis element for which one can split the observa-
tion the most from all previous basis elements. It is important to remark that at each
iteration one solves several fitting-step problems and several discriminatory-step prob-
lems. However, their solving can be performed in parallel, since the single problems
are independent one from another.

Notice that a selected element Bk+1 will not be linearly dependent on previously
chosen elements (after multiplication with the observability matrix). This is proven
in the next theorem, which also motivates the stopping criterion used in steps 2--4
and 11--13 of the algorithm.

Theorem 6.1 (linearly independence of selected basis elements). Assume that
the OGR Algorithm 6.1 selected already k linearly independent matrices Bj, j =
1, . . . , k. At iteration k+1, the new selected matrix Bk+1 is such that \scrO N (C,A)Bk+1

is linearly independent from the matrices \scrO N (C,A)Bj, j = 1, . . . , k, if and only if

\bigm\| \bigm\| \bigm\| CyyyT (B\ell k+1
, \epsilon \epsilon \epsilon k+1) - CyyyT (B

(k)(\alpha \alpha \alpha \ell k), \epsilon \epsilon \epsilon k+1)
\bigm\| \bigm\| \bigm\| 
2

2
> 0.

Proof. If the matrix \scrO N (C,A)Bk+1 is linearly independent from the other ma-
trices \scrO N (C,A)Bj , j = 1, . . . , k, then one can show as in the proof of Lemma 5.9
that \bigm\| \bigm\| \bigm\| CyyyT (B\ell k+1

, \epsilon \epsilon \epsilon k+1) - CyyyT (B
(k)(\alpha \alpha \alpha \ell k), \epsilon \epsilon \epsilon k+1)

\bigm\| \bigm\| \bigm\| 
2

2
> 0.

Now, we prove the other implication by contraposition. Assume that there exists
a vector \alpha \alpha \alpha \in \BbbR k such that \scrO N (C,A)(Bk+1  - 

\sum k
j=1\alpha \alpha \alpha jBj) = 0 holds. This vector \alpha \alpha \alpha is

a solution of the fitting-step problem with cost-function value equal to zero. However,
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the corresponding cost function of the discriminatory-step problem (6.2) is zero for
any control function \epsilon \epsilon \epsilon . The result follows by contraposition.

Notice that if Algorithm 6.1 stops at step 3, then the chosen basis does not allow
one to distinguish the states corresponding to controlled and uncontrolled systems. In
this case, entering in the while loop would be useless since the first discriminatory step
will certainly fail in producing a large enough discrimination value and the algorithm
will terminate at steps 11 and 12.

Theorem 6.1 shows exactly that the OGR algorithm manages to identify among
the elements of the given set (Bj)

K
j=1 the ones that do not lie in the kernel of\scrO N (C,A).

For instance, let us consider again the system of Example 5.16, for which we have
shown that the GR algorithm leads to inconclusive results. If we use instead the
OGR Algorithm 6.1, this performs two iterations and selects only two basis elements,
one among \widehat B1 and \widehat B2 and the other among \widehat B3 and \widehat B4. This can be shown by
performing calculations similar to the ones of Example 5.16. In particular, in the
initialization step the four matrices produce the same cost-function value. Hence,
any of them can be selected by the algorithm. Assume that the element \widehat B1 is picked
(hence \ell 1 = 1), and consider the first iteration of the algorithm (k = 1). At the

fitting step the algorithm computes a coefficient \alpha \alpha \alpha 2
1 = 1 for \widehat B2 and some coefficients

\alpha \alpha \alpha 3
1 and \alpha \alpha \alpha 4

1 corresponding to \widehat B3 and \widehat B4. Now, \alpha \alpha \alpha 2
1 = 1 leads to a cost function of

the discriminatory step which is zero for any control functions, while for \alpha \alpha \alpha 3
1 and \alpha \alpha \alpha 4

1

Algorithm 6.1. Optimized Greedy Reconstruction Algorithm (linear-quadratic case)

Require: A set of K linearly independent matrices \scrB = (B1, . . . , BK) and a tolerance
tol > 0.

1: Solve the initialization problem

max
\ell \in \{ 1,...,K\} 

max
\epsilon \epsilon \epsilon \in Ead

\| CyyyT (B\ell , \epsilon \epsilon \epsilon ) - CyyyT (0, 0)\| 22 ,

which gives the field \epsilon \epsilon \epsilon 1 and the index \ell 1.
2: if

\bigm\| \bigm\| CyyyT (B\ell 1 , \epsilon \epsilon \epsilon 
1) - CyyyT (0, 0)

\bigm\| \bigm\| 2

2
< tol then

3: stop and display ``Error: all basis elements have no observable effect.""
4: end if
5: Swap B1 and B\ell 1 in \scrB and set k = 1.
6: while k \leq K  - 1 do
7: for \ell = k + 1, . . . ,K do
8: Fitting step: Find (\alpha \alpha \alpha \ell 

j)j=1,...,k that solve the problem

(6.1) min
\alpha \alpha \alpha \in \BbbR k

k\sum 
m=1

\bigm\| \bigm\| \bigm\| CyyyT (B\ell , \epsilon \epsilon \epsilon 
m) - CyyyT (B

(k)(\alpha \alpha \alpha ), \epsilon \epsilon \epsilon m)
\bigm\| \bigm\| \bigm\| 2

2
.

9: end for
10: Extended discriminatory step: Find \epsilon \epsilon \epsilon k+1 and \ell k+1 that solve the problem

(6.2) max
\ell \in \{ k+1,...,K\} 

max
\epsilon \epsilon \epsilon \in Ead

\bigm\| \bigm\| \bigm\| CyyyT (B\ell , \epsilon \epsilon \epsilon ) - CyyyT (B
(k)(\alpha \alpha \alpha \ell ), \epsilon \epsilon \epsilon )

\bigm\| \bigm\| \bigm\| 2

2
.

11: if
\bigm\| \bigm\| \bigm\| CyyyT (B\ell k+1 , \epsilon \epsilon \epsilon 

k+1) - CyyyT (B
(k)(\alpha \alpha \alpha \ell k ), \epsilon \epsilon \epsilon k+1)

\bigm\| \bigm\| \bigm\| 2

2
< tol then

12: stop and return the selected (Bj)
k
j=1 and the computed (\epsilon \epsilon \epsilon m)km=1.

13: end if
14: Swap Bk+1 and B\ell k+1 in \scrB and update k \leftarrow k + 1.
15: end while
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there exists a control function leading to a nonzero value of the discriminatory cost.
Therefore, the algorithm selects either \widehat B3 or \widehat B4. Let us assume that \widehat B4 is picked (\ell 2 =

4) and hence the two elements \widehat B2 and \widehat B4 are swapped. In the fitting step of the second
iteration (k = 2), the algorithm computes \alpha \alpha \alpha 3 = [ 0 , 1 ]\top and \alpha \alpha \alpha 4 = [ 1 , 0 ]\top . Both of
these two vectors lead to a discriminatory cost that is zero for any control. Hence,
since the discriminatory step does not find any positive function value, the algorithm
stops and returns \widehat B\ell 1 = \widehat B1 and \widehat B\ell 2 = \widehat B4 and the corresponding controls. If one uses
the two selected basis elements and the corresponding control functions in the online
phase, then one obtains the result \alpha \alpha \alpha = [ 1 , 1 ]\top , which is not the exact solution shown
in Example 5.16. This is due to the non-full observability of the system, which implies
that \scrO N (C,A) \widehat B1 = \scrO N (C,A) \widehat B2 and \scrO N (C,A) \widehat B3 = \scrO N (C,A) \widehat B4. This means that

the observations generated by the elements \widehat B1 and \widehat B3 cannot be distinguished by
the ones created by \widehat B2 and \widehat B4. The non-full observability of the system cannot be
overcome by any numerical strategy. The OGR algorithm can nevertheless identify
automatically all the observable degrees of freedom of the considered system.

Let us now demonstrate the efficiency of our new OGR algorithm by direct nu-
merical experiments. We consider an experiment with two randomly chosen N \times N
full-rank real matrices A and C with N = 10. The unknown B \star is a randomly cho-
sen real N \times N matrix. In this case the system is fully observable; nevertheless, we
construct the basis elements to be used in the GR and OGR algorithm as in (5.13)
(by an SVD of the observability matrix), but we order the elements randomly. We

then run the GR Algorithm 4.1 and compute the rank of the matrix \widehat W k at every
iteration k. This leads to the results shown in Figure 6.1 by the blue curve. The
rank increases monotonically during the iterations and becomes full after about 30
iterations. However, the curve is not strictly monotonically increasing since the rank
does not increase at each iteration. If we repeat the same experiment (with the same
matrices) using the OGR Algorithm 6.1, we obtain the red curve in Figure 6.1. This
curve is strictly monotonically increasing in the first part and becomes constant only
once the rank has become full. In particular, at each iteration the rank increases by
10, and the OGR algorithm could be in principle stopped much earlier than the orig-
inal GR algorithm, and many fewer control functions (hence laboratory experiments)
are needed to fully reconstruct the unknown operator B \star . This experiment clearly
shows the high potential of the OGR algorithm, which is capable of choosing among
the elements B1, . . . , BK in an optimized fashion.A GREEDY RECONSTRUCTION ALGORITHM 23

0 50 100
0

20

40

60

80

100

GR algorithm

OGR algorithm

Fig. 6.1. Rank of the matrix Ŵk corresponding to the GR algorithm (blue curve) and OGR
algorithm (red curve) for a fully observable system. Both algorithms make use of a basis constructed
as in (5.13).

the elements B1, . . . , BK in an optimized fashion.758

Let us conclude this section with two important observations. First, the improve-759

ment proposed in Algorithm 6.1 allows one to even enrich the set (Bj)
K
j=1 used as760

input in Algorithm 6.1 with other new elements that can be linearly dependent on761

B1, . . . , BK . In this case, if we denote by (Bj)
K̃
j=1, for K̃ > K, the enriched set, then762

Theorem 6.1 guarantees that the OGR algorithm will automatically pick some ele-763

ments of the enriched set (Bj)
K̃
j=1, such that ON (C,A)Bj are linearly independent for764

all selected Bj . Hence, the corresponding discriminatory cost-function values will be765

strictly positive. Second, the OGR Algorithm can be extended to more general non-766

linear reconstruction problems, and we propose in Section 6.2 an efficient extension767

for the Hamiltonian reconstruction problem described in Section 3.768

6.2. Optimized greedy reconstruction for non-linear problems. The ex-769

tension of the OGR Algorithm 6.1 to the nonlinear Hamiltonian reconstruction prob-770

lem of Section 3 is formally rather straightforward and given by Algorithm 6.2. How-771

ever, there is one key addition represented by the Steps 7, 8 and 9. In these steps, each772

of the matrices B`, ` = k+ 1, . . . ,K, (that have not been selected in the first k itera-773

tions of the algorithm) is orthogonalized with respect to the already selected matrices774

B`, ` = 1, . . . , k. This can be achieved by a single Gram-Schmidt step for each B`,775

` = k+1, . . . ,K. The orthogonalization is required to avoid that the algorithms picks776

a new matrix Bk+1 such that either the angle between Bk+1 and (B1, . . . , Bk) is very777

small or (in the worst case) Bk+1 is linearly dependent from (B1, . . . , Bk). These two778

situations could lead to numerical problems in the final online identification phase.779

Moreover, by eliminating linearly dependent elements, one avoids the solves of several780

unnecessary fitting and discriminatory problems (even though solvable in parallel).781

A few more computational aspects must be discussed. First, the maximization782

problems characterizing the initialization step and the discriminatory steps are non-783

linear optimal control problems that we solve numerically by the monotonic scheme784

discussed in [15], in the setting described in [14]; see also [5, 14,15,17] and references785

therein. Second, the fitting step problems are highly nonlinear minimization problems786

having generally several local minima. Since not all local minima correspond to an787

effective defect (rank deficiency in the linear-quadratic case) to be compensated, every788

fitting-step problem is solved multiple times using different randomly chosen initial-789

izations. The solution corresponding to the smallest functional value is then chosen.790

Each fitting-step problem is solved by a BFGS descent-direction method. Third, all791

This manuscript is for review purposes only.

Fig. 6.1. Rank of the matrix \widehat Wk corresponding to the GR algorithm (blue curve) and OGR
algorithm (red curve) for a fully observable system. Both algorithms make use of a basis constructed
as in (5.13).
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Let us conclude this section with two important observations. First, the improve-
ment proposed in Algorithm 6.1 allows one to even enrich the set (Bj)

K
j=1 used as

input in Algorithm 6.1 with other new elements that can be linearly dependent on

B1, . . . , BK . In this case, if we denote by (Bj)
\widetilde K
j=1 for \widetilde K > K the enriched set, then

Theorem 6.1 guarantees that the OGR algorithm will automatically pick some ele-

ments of the enriched set (Bj)
\widetilde K
j=1 such that \scrO N (C,A)Bj are linearly independent for

all selected Bj . Hence, the corresponding discriminatory cost-function values will be
strictly positive. Second, the OGR algorithm can be extended to more general non-
linear reconstruction problems, and we propose in section 6.2 an efficient extension
for the Hamiltonian reconstruction problem described in section 3.

6.2. OGR for nonlinear problems. The extension of the OGR Algorithm 6.1
to the nonlinear Hamiltonian reconstruction problem of section 3 is formally rather
straightforward and given by Algorithm 6.2. However, there is one key addition
represented by steps 7, 8, and 9. In these steps, each of the matrices B\ell , \ell = k +
1, . . . ,K (that have not been selected in the first k iterations of the algorithm) is
orthogonalized with respect to the already selected matrices B\ell , \ell = 1, . . . , k. This
can be achieved by a single Gram--Schmidt step for each B\ell , \ell = k + 1, . . . ,K. The

Algorithm 6.2. Optimized Greedy Reconstruction Algorithm (Hamiltonian case)

Require: A set of K matrices \scrB \mu = (\mu \ell )\ell =1,...,K and a tolerance tol > 0.
1: Solve the initialization problem

(6.3) max
n\in \{ 1,...,K\} 

max
\epsilon \in L2

| \varphi (\mu n, \epsilon ) - \varphi (0, 0)| 2,

which gives the field \epsilon 1 and the index \ell 1.
2: if | \varphi (\mu \ell 1 , \epsilon 

1) - \varphi (0, 0)| 2 < tol then
3: stop and display ``Error: all basis elements have no observable effect.""
4: end if
5: Swap \mu 1 and \mu \ell 1 in \scrB \mu and set k = 1 and \widetilde K = K.
6: while k \leq K  - 1 do
7: Orthogonalize each matrix \mu \ell , \ell = k+ 1, . . . , \widetilde K, with respect to the set (\mu 1, . . . , \mu k).
8: Remove the zero elements from \scrB \mu and shift the indices of the remaining elements.
9: Update \widetilde K \leftarrow card\scrB \mu .

10: for \ell = k + 1, . . . , \widetilde K do
11: Fitting step: Find (\alpha \alpha \alpha \ell 

j)j=1,...,k that solve the problem

(6.4) min
\alpha \alpha \alpha \in \BbbR k

k\sum 
m=1

| \varphi (\mu \ell , \epsilon 
m) - \varphi (\mu (k)(\alpha \alpha \alpha ), \epsilon m)| 2.

12: end for
13: Extended discriminatory step: Find \epsilon k+1 and \ell k+1 that solve the problem

(6.5) max
\ell \in \{ k+1,..., \widetilde K\} 

max
\epsilon \in L2

| \varphi (\mu \ell , \epsilon ) - \varphi (\mu (k)(\alpha \alpha \alpha \ell ), \epsilon )| 2.

14: if | \varphi (\mu \ell k+1 , \epsilon 
k+1) - \varphi (\mu (k)(\alpha \alpha \alpha \ell k ), \epsilon k+1)| 2 < tol then

15: stop and return the selected (\mu j)
k
j=1 and the computed (\epsilon m)km=1.

16: end if
17: Swap \mu k+1 and \mu \ell k+1 in \scrB \mu and update k \leftarrow k + 1.
18: end while
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orthogonalization is required to avoid that the algorithms picks a new matrix Bk+1

such that either the angle between Bk+1 and (B1, . . . , Bk) is very small or (in the
worst case) Bk+1 is linearly dependent from (B1, . . . , Bk). These two situations could
lead to numerical problems in the final online identification phase. Moreover, by
eliminating linearly dependent elements, one avoids the solves of several unnecessary
fitting and discriminatory problems (even though solvable in parallel).

A few more computational aspects must be discussed. First, the maximization
problems characterizing the initialization step and the discriminatory steps are non-
linear optimal control problems that we solve numerically by the monotonic scheme
discussed in [15], in the setting described in [14]; see also [5, 14, 15, 17] and references
therein. Second, the fitting-step problems are highly nonlinear minimization problems
having generally several local minima. Since not all local minima correspond to an
effective defect (rank deficiency in the linear-quadratic case) to be compensated, every
fitting-step problem is solved multiple times using different randomly chosen initial-
izations. The solution corresponding to the smallest functional value is then chosen.
Each fitting-step problem is solved by a BFGS descent-direction method. Third, all
optimization problems that are solved in the fitting steps and in the discriminatory
steps are independent one from another. Therefore, they can be solved in parallel as
in the linear case.

Let us now show the efficiency of the OGR Algorithm 6.2 by direct numerical ex-
periments. We consider the same test case as in [14], where the unknown Hamiltonian
and the controlled Hamiltonian \mu are assumed to be real-symmetric. More precisely,
the matrix H and the randomly generated \mu  \star are

H = 10 - 2

\Biggl[ 
1 0 0
0 2 0
0 0 4

\Biggr] 
, \mu  \star =

\Biggl[ 
3.3617 3.4347 0.8416
3.4347 3.7763 4.7552
0.8416 4.7552 4.4226

\Biggr] 
.

The final time is T = 4000\pi . The states \psi 0 and \psi 1 are

\psi 0 =
\bigl[ 
1 0 0

\bigr] \top 
, \psi 1 =

\bigl[ 
0 0 1

\bigr] \top 
.

Now, we perform the following experiment. Since the unknown \mu  \star is a 3 \times 3
symmetric matrix, we choose for the set \scrB \mu the following K = 6 linearly independent
canonical matrices:

(6.6)

\Biggl[ 
1 0 0
0 0 0
0 0 0

\Biggr] 
,

\Biggl[ 
0 0 0
0 1 0
0 0 0

\Biggr] 
,

\Biggl[ 
0 0 0
0 0 0
0 0 1

\Biggr] 
,

\Biggl[ 
0 1 0
1 0 0
0 0 0

\Biggr] 
,

\Biggl[ 
0 0 1
0 0 0
1 0 0

\Biggr] 
,

\Biggl[ 
0 0 0
0 0 1
0 1 0

\Biggr] 
,

which form a basis for the space of 3 \times 3 symmetric matrices with real entries, and
compute 6 control functions by the OGR Algorithm 6.2. Once these functions are
obtained, one must reconstruct the unknown true dipole matrix by solving the on-
line nonlinear least-squares problem (3.3). To do so, we use the standard MATLAB
function fminunc (a BFGS descent-direction minimization algorithm) initialized by
a randomly chosen vector. To test the robustness of the control functions computed
by the OGR Algorithm 6.2, we consider a six-dimensional hypercube centered in the
global minimum point \mu  \star and given relative radius r and repeat the minimization
for 1000 initialization vectors randomly chosen in this hypercube. We then count
the number of times that the optimization algorithm converges to the global solution
\mu  \star = \mu (\alpha \alpha \alpha  \star ) up to a tolerance of Tol = 0.005 (half of the smallest considered radius),

meaning that \| \mu  \star  - \mu (\alpha \alpha \alpha 0)\| F

\| \mu  \star \| F
\leq Tol, where \| \cdot \| F denotes the Frobenius norm. Repeating

this experiment for different values of the radius r of the hypercube, we obtain the
results reported in the first row of Table 6.1.
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Table 6.1
Numbers of runs (over 1000) that converged to the true solution \mu  \star .

Hypercube radius r 0.01 0.10 0.50 1.00
GR (canonical basis) 814 0 0 0
GR (random basis) 655 3 0 0
OGR (extended random basis) 1000 134 15 5

These results show clearly the lack of robustness of the controls generated by the GR
algorithm: for the very small radius r = 0.01 of the hypercube, the minimization
converged to the true solution for only 80\% of the cases over the 1000 runs, and for
r > 0.01 in none of the cases the minimization converged to the solution.

Next, to test the effect of the chosen basis \scrB \mu , we repeat the same experiment
using 6 randomly chosen linearly independent symmetric matrices \mu \ell , \ell = 1, . . . , 6.
The obtained results of this second test are shown in the second row of Table 6.1.
These are clearly worse and very unsatisfactory.

Finally, we repeat the experiment using the OGR Algorithm 6.2 with a set of 12
matrices, namely, the 6 unit basis elements shown above and the 6 linearly indepen-
dent random matrices chosen for the second experiment. We obtain the results shown
in the third row of Table 6.1. These are much better results. For r = 0.01 all the
1000 runs converged to the solution \mu  \star . Even though the number of times that the
optimization algorithm converged to the true solution decays as the radius r increases,
in the case r = 0.10 more than 100 of runs converged to \mu  \star . These results show the
improved efficiency of the new proposed OGR algorithm. This improvement is even
more evident if we consider a more general example where the unknown matrix lies
in Her(N). In this case, the canonical basis for Her(3) is composed of the matrices
given (6.6) together with the three matrices

(6.7)

\Biggl[ 
0  - i 0
i 0 0
0 0 0

\Biggr] 
,

\Biggl[ 
0 0  - i
0 0 0
i 0 0

\Biggr] 
,

\Biggl[ 
0 0 0
0 0  - i
0 i 0

\Biggr] 
.

Let us now consider two examples. First, we choose an observer vector \psi 1 = [0 0 1]\top 

and a (randomly generated) matrix \mu  \star given by

\mu  \star =

\Biggl[ 
 - 0.3243  - 3.4790 + 0.7359i  - 0.5338 + 1.9254i

 - 3.4790 - 0.7359i  - 3.8342  - 1.1697 + 2.0256i
 - 0.5338 - 1.9254i  - 1.1697 - 2.0256i 1.0551

\Biggr] 
.

All the other data (namely, T , H, and \psi 0)
5 are the same as the ones considered in

the real-symmetric example. If we repeat the experiments of the real-symmetric case,
we obtain the results of Table 6.2.

Table 6.2
Numbers of runs (over 1000) that converged to the true solution \mu  \star .

Hypercube radius r 0.01 0.10 0.50 1.00
GR (canonical basis) 908 13 1 0
GR (random basis) 596 4 0 0
OGR (extended random basis) 1000 277 32 7

5Notice that one can always consider a (real) diagonal form of H. In fact, for any H \in Her(N)
one can always diagonalize it by a classical Schur decomposition and change the variable of the
system by using the orthogonal matrix of the eigenvectors of H.
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Table 6.3
Numbers of runs (over 1000) that converged to the true solution \mu  \star .

Hypercube radius r 0.01 0.10 0.50 1.00
GR (canonical basis) 1000 757 15 2
GR (random basis) 648 212 49 3
OGR (extended random basis) 1000 992 214 36

If one repeats the experiments for a different observer vector \psi 1 = 1\surd 
3
[1 1 1]\top , the

results shown in Table 6.3 are obtained.
Table 6.2 and Table 6.3 show very clearly the improved efficiency and robustness of
control functions generated by the OGR algorithm. These allow one to identify the
solution \mu  \star in a much larger number of statistical runs.

7. Conclusions. In this work, we provided a novel and detailed convergence
analysis for the GR algorithm introduced in [14] for Hamiltonian reconstruction prob-
lems in the field of quantum mechanics. The presented convergence analysis has
considered linear-quadratic (optimization, least-squares) problems and revealed the
strong dependence of the performance of the GR algorithm on the observability prop-
erties of the system and on the ansatz of the basis elements used to reconstruct the
unknown operator. This allowed us to introduce a precise (and in some sense opti-
mal) choice of the basis elements for the linear case and led to the introduction of an
OGR algorithm applicable also to the nonlinear Hamiltonian reconstruction problem.
Numerical experiments demonstrated the efficiency of the new proposed numerical
algorithm.
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