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The past decade has demonstrated increasing interests in using optimal control based methods
within coherent quantum controllable systems. The versatility of such methods has been
demonstrated with particular elegance within nuclear magnetic resonance �NMR� where natural
separation between coherent and dissipative spin dynamics processes has enabled coherent quantum
control over long periods of time to shape the experiment to almost ideal adoption to the spin system
and external manipulations. This has led to new design principles as well as powerful new
experimental methods within magnetic resonance imaging, liquid-state and solid-state NMR
spectroscopy. For this development to continue and expand, it is crucially important to constantly
improve the underlying numerical algorithms to provide numerical solutions which are optimally
compatible with implementation on current instrumentation and at same time are numerically stable
and offer fast monotonic convergence toward the target. Addressing such aims, we here present a
smoothing monotonically convergent algorithm for pulse sequence design in magnetic resonance
which with improved optimization stability lead to smooth pulse sequence easier to implement
experimentally and potentially understand within the analytical framework of modern NMR
spectroscopy. © 2010 American Institute of Physics. �doi:10.1063/1.3328783�

I. INTRODUCTION

Optimal control theory �OCT� is a powerful method for
control and design of processes within quantum dynamics.
Originally, the method was applied for problems within en-
gineering and economics.1,2 During the past decade or so,
optimal-control-based methods have been increasingly used
for a development of new experiments within optical
spectroscopy,3–8 quantum information processing,9–14 liquid-
and solid-state nuclear magnetic resonance �NMR�
spectroscopy,15–29 magnetic resonance imaging �MRI�,30–36

and dynamic nuclear polarization �DNP� hybrids between
electron and NMR.37–40 Such applications have not only
been useful for the specific disciplines taking advantage of
new efficient design procedures and improved experimental
methods, but it has also stimulated mathematical investiga-
tions in quantum OCT.41–47 The latter addresses fundamental
questions concerned with controllability, convergence, and
the establishment of powerful numerical methods for optimal
control in quantum systems.

So far, the vast majority of optimal control applications
within magnetic resonance have taken advantage of gradient-
based methods, such as the gradient ascent pulse engineering
�GRAPE� algorithm introduced for NMR applications by
Khaneja et al.,19 and recently further developed and distrib-

uted for general use by Nielsen and co-workers in an optimal
control version21,29 of the open-source NMR simulation soft-
ware SIMPSON.48,49 In combination with conjugated gradient
algorithms, this method19,21,24,29 proves to be very powerful,
as demonstrated by numerous applications in which NMR
methods with improved experimental sensitivity, robustness
toward variations in instrumental or spin system parameters,
reduction of the undesirable effects from dissipative pro-
cesses �i.e., relaxation�, and experiments with lower radio-
frequency �rf� power requirements and thereby reduced risks
for sample heating have been developed. More recently, it
has been demonstrated38 that a monotonic convergent variant
of optimal control method based on the algorithms of
Krotov2 represents an interesting alternative to the gradient-
based approaches for efficient experiment design.3,4,6 Our
initial work with this algorithm, in a density operator formu-
lation, exposed important computational properties of opti-
mal control methods such as global extremum searching, fast
convergence, algorithmic simplicity, and independence on
time discretization in terms of convergence.

Despite increasing use, it is apparent that current meth-
ods face serious challenges in the practical realization, which
needs to be addressed to exploit the full potential of optimal
control based methods for design of optimal experiments.
This applies not least for the most challenging purposes in-
volving large spin systems, optimizations ensuring broad-
band or band-selective operation with respect to certain spin
system parameters �e.g., chemical shifts�, and powder
samples in solid-state NMR spectroscopy. For example,
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looking at the many optimal control pulse sequences pro-
posed so far, it appears that many of these display quite wild
oscillations in phase and amplitude of the rf control fields
�see, e.g., Refs. 18 and 20–29�, which may complicate imple-
mentation on available instrumentation with limitations on
the speed and accuracy of phase and amplitude switching.
Furthermore, it turns out that GRAPE displays a quite strong
dependence on the initial guess of the pulse sequence, depen-
dence on the applied time discretization �i.e., the number of
pulse variables and their duration�, as well as unpredictable
convergence to local extremum points. Along the same lines,
the monotonic Krotov-based algorithm faces problems with
numerical instability and difficulties in a selection of param-
eters controlling the flow of operations and balance of nec-
essary running costs.38 These problems have introduced un-
desired needs for intuition, experience, and repetition of
optimizations with a very large set of different initial guesses
in the usage of these methods as replacement for stronger
mathematical recipes. Although part of these problems have
been overpassed in recent adoptions for wave function for-
malism in optical spectroscopy,44 a strong need for solutions
to the problems still exists for magnetic resonance applica-
tions typically performed within a density operator formal-
ism.

In this paper, we present a modified monotonic algo-
rithm that stabilizes convergence and smooths the resulting
NMR pulses sequences through the use of a frequency trun-
cation technique in course of the optimization. The latter
aspect is practically important realizing that most optimal
control sequences presented so far within NMR spectroscopy
display quite significant and fast amplitude and phase modu-
lations, which may cause unnecessary problems upon imple-
mentation on available spectrometer hardware. This work
builds on related techniques introduced in the field of the
laser control of alignment and rotation50 for an unique con-
trolling field.

II. THE OPTIMAL CONTROL PROBLEM

The most typical setup for optimal control pulse se-
quence design in NMR spectroscopy involves systematic
generation of optimal rf pulse sequences which in a given
spin system either �i� accomplish the most efficient transfer
of coherence or polarization from a given initial spin state �0

to a desired target spin state C �often referred to as state-to-
state transfer� or �ii� synthesize a specific effective �or aver-
age� Hamiltonian51,52 emphasizing or suppressing certain
parts of the internal nuclear spin interactions to tailor the
Hamiltonian for evolution under desired interactions. These
interactions may provide a desired state-to-state coherence/
polarization transfer, specific information, or provide spectral
simplification, e.g., in the form of improved spectral reso-
lution.

In absence of dissipative processes, the dynamics of the
nuclear spin system may be described by the Liouville–von
Neumann equation

d��t�
dt

= − i�H�t�,��t�� , �1�

where ��t� is the density matrix �initial state: ��0�=�0� and
H�t� is a Hamiltonian of the spin system. In the high-field
approximation, the latter takes the form

H�t� = H0 + �
k

�k�t�Hk, �2�

with the first term collecting all internal nuclear spin inter-
actions �chemical shifts as well as J, dipole-dipole, and quad-
rupole couplings� and the latter describing external rf ma-
nipulations with the amplitude �k�t� �in angular frequency
units� for the spin operator Hk �typically Hk= Ix , Iy ,Sx ,Sy for
an I-S two-spin system� being our control fields. The solution
to the equation of motion in Eq. �1� is typically expressed as

��t� = U�t��0U†�t� , �3�

where the unitary operator �or propagator� U�t�
= D̂ exp�−i�0

t H�t��dt�� links the unitary evolution with the

Hamiltonian in Eq. �2�. D̂ is the so-called Dyson time-
ordering operator.

Optimal control relies on optimization of a functional of
the type

Ji��� = �i − �
k

�k�
0

T

�k
2�t�dt , �4�

with the first term denoting the final cost �or the objective�
and the latter term the running cost considering the collected
energy/power used to reach the optimum. The influence of
the running cost is scaled by a so-called penalty factor �k

�which may be constant, as assumed here, or time-dependent
if, e.g., specific rise and fall time behavior of the pulses are
desired�. This convex running cost improves the convergence
of the optimization methods. Furthermore, it facilitates de-
velopment of pulse sequences without too excessive rf power
consumption.

For state-to-state transfers between Hermitian operators
C and �0, the final cost �i.e., the overall transfer efficiency�
may be expressed as

�1 = Tr�C��T�� , �5�

where T is the overall duration of the experiment. For trans-
fers between non-Hermitian operators the final cost may be
formulated as29,38

�2 = �Tr�C†��T���2. �6�

For synthesis of a desired propagator UD, the final cost is
given by

�3 = Re�Tr�U�T�UD
† �� . �7�

We note that the objectives �i given above is by no means
exclusive, and other variants for the target functions may be
used. For example, instead of Eq. �7� one may use the
squared expression �3�= �Tr�UD

† U�T���2. The preferential form
of the target function typically depends strongly on the given
optimization problem.15,19,24,28,29
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III. MONOTONIC CONVERGENCE

The aim of optimal control experiment design is for a
given period of time T and a given time discretization �i.e.,
number of pulses, typically taken equidistantly over the time
T� to find rf control fields �i.e., �k�t��, which lead to the
maximum of the functional in Eq. �4�. The Krotov-based
monotonic algorithms accomplish this using a Lagrange ap-
proach with an adjoint propagator B�t�, or a Lagrange mul-
tiplier for an unconstrained functional as described in Ref.
38, using a combination of forward propagation with U�t�
�Eq. �3�� and backward propagation using a conjugated equa-
tion for B�t�. We note that different formulations exist for
such calculations, including that of Tannor et al.3 closely
following the original formulations of Krotov, a different
variant by Zhu and Rabitz,4 and a more general approach
�embracing the methods of Tannor and Zhu� as described by
Maday and Turinici6 in context of waveforms and Maximov
et al.38 in context of density operators. For simplicity, we
here restrict to the original Krotov approach as formulated by
Tannor et al.3 �corresponding to �=1 and �=0 in Refs. 6 and
38�, while noting that the more general formulation with ar-
bitrary � and � parameters may readily be implemented at
the expense of slightly more complicated formulas.

A prerequisite for monotonic convergence is that the tar-
get operator C is positive semidefinite. While this condition
is obviously fulfilled for optimization of effective
Hamiltonians, it will, for example, for optimization of
transfer between Hermitian operators require the final cost
function to be modified to �̃=�+� Tr�U�T�U†�T�� as
proposed previously.38

The proof for monotonic convergence, in the case of
Hermitian operators, may readily be established considering
the following decomposition of the variation in the cost func-
tional values between arbitrary rf pulses controls � and ��
�in a discrete representation�:

J���� − J���

= Tr��UN� − UN��UN�
† − UN

† �� + Tr�C�UN� − UN�

��0�UN�
† − UN

† �� + 2�
j=2

N+1

Re�Tr	�ei	t�k�k,j−1Hk

�e−i	t�k��k,j−1Hk − E�AUj−1� Bj−1A†
�
− 	t��

k

��k,j−1� − �k,j−1���k,j−1� + �k,j−1� , �8�

where we have applied the second-order Strang method to
evolve the propagator Uj and the Lagrange multiplier Bj.

44

The time step 	t is defined through the number of bins N and
the overall time T=N	t, while the matrix exponent A is de-
fined as A=e−0.5i	tH0. E is the identity operator. We assume
all functions to be constant during the time step 	t rendering
computation of the matrix exponents straightforward.

The discrete set of propagators �Uj� and Lagrange mul-
tipliers �Bj� may be obtained using the following equations:

Uj+1 = Ae−i	t�k�kjHkAUj ,

�9�
U0 = E ,

Bj = Bj+1Ae−i	t�k�kjHkA ,

�10�
BN = 
�C� ,

with the operator 
�C� defined by Eqs. �5�–�7� and the de-
sired efficiency. For example, for Hermitian state-to-state
transfer


�C� = �UN + CUN�0, �11�

where � is an insignificant scaling factor.38

To ensure positiveness of the functional difference
J����−J��� at each time step, we need to maximize the last
string of Eq. �8�. Following the approach previously de-
scribed for wave functions,44 it appears convenient to re-
express the two last terms of Eq. �8� as a function f j�� j��
depending on a vector variable � j� of dimension k relating to
the time step j,

f j�� j�� = 2 Re�Tr	�ei	t�k�k,j−1Hke−i	t�k�k,j−1� Hk − E�
�AUj−1� Bj−1A†
� − 	t��

k

��k,j−1� − �k,j−1�

���k,j−1� + �k,j−1� . �12�

In this formulation, the updated control fields �k,j� should
be found locally �in time� through a minimization problem of
dimension k for the vector function −f j�� j�� �corresponding
to maximization of f j�� j�� and the corresponding functional
in Eq. �8��, which due to the noncommutative relationships
of the operators Hk in the matrix exponents cannot straight-
forwardly be simplified further.6,44 The minimization may be
conducted starting with an appropriate initial guess, using
routines such as conjugated gradients or quasi-Newton.53

The iteration equation for the rf controls � j� may be ex-
pressed as

� j
new = arg min

�j�
	− f j�� j��
 , �13�

with the rf fields � j from a previous iteration step used as an
initial guess for the minimization problem Eq. �13�.

Equation �13� guarantees monotonic convergence of the
functional J��� for all time steps in each iteration step
through solution of an unconstrained nonlinear optimization
problem. Indeed, f j�� j�=� j�=0, so that −f�� j

new��0. In
other words, there exist a pulse sequence � j

new such that
J�� j

new��J�� j�. Moreover, note that if the algorithm finds
that J�� j

new�=J�� j� then every local optimization procedure
has failed to find a strictly better control. In this case, a local
maximum has been found. Note also that the previous ap-
proach is independent of the optimization method used in the
local optimization problems in Eq. �13�.

IV. FREQUENCY CONSTRAINING AND SMOOTHING

Direct application of the monotonic algorithm outlined
above, as well as previous gradient-based algorithms, often
lead to optimal pulse sequences with significant oscillations
in the rf field amplitudes and phases.18,20,23,25,29,38,40 These
variations not only hamper analytical understanding of the
function of optimal pulse sequences but may also complicate
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practical implementation on available instrumentation. To
stimulate generation of smoother solutions, we here demon-
strate that the optimal control algorithms may be combined
with standard frequency truncation techniques with a regu-
larization substep that retains monotonic convergence.

Given �, an arbitrary control, suppose that a better con-
trol �new has been obtained, i.e., J����J��new�. A way to
define a smoother improving control �smooth is to consider an
interpolation between �new �i.e., those typically displaying
significant oscillations� and a regularized version of it
�cf., Ref. 50�. In this way define for all k

�k
smooth = �1 − 
��k

new + 
F��k
new� , �14�

where 
 is a regularization parameter and F��� defines the
frequency truncation. The frequency truncation may be ac-
complished in many ways, e.g., using built-in functions in
MATLAB

54 or simply by Fourier transforming the pulse se-
quence, removing high-frequency components, and trans-
forming it back to the time domain using an inverse Fourier
transformation.

Following the proofs in the previous section, it is obvi-
ous that 
=0 ensure monotonic behavior and thereby
J��
=0

smooth��J���. The same is almost true when 
→0 as
well. Accordingly, an iterative subalgorithm may be estab-
lished which generates a smooth and monotonic solution:

�1� start from 
=1;
�2� test J��smooth��J���?;
�3� if not, decrease 
, for example, halving the value and

go to step 2.

With this ingredient and the formula in Eqs. �9�–�11�, we
can formulate the overall algorithm. Consider a parameter
Tol�0.

�1� Set the initial random guess �0= �� j,k
0 �; j=1, . . ,N;

k�0.
�2� Compute the corresponding state U0 and B0 according

to Eqs. �9� and �10�.
�3� Set �=+�, �=0.
�4� While ��Tol do

�a� Do forward propagation and search new rf field
�̃�+1 according to the procedure in Sec. III

�b� Apply the frequency truncation sub-algorithm
with regularization to find 
� that preserves the
monotonicity, i.e., J��1−
���̃�+1+
�F��̃�+1��
�J����

�c� Define ��+1= �1−
���̃�+1+
�F��̃�+1�
�d� Set �=J���+1�−J����
�e� Do backward propagation to compute B�+1 the

solution of Eq. �10� with �=��+1

�f� Do �=�+1
End While.

It is important to note that frequency truncation tech-
nique with regularization could equally well be applied to
other known optimal control approaches, such as GRAPE and
different variants of Krotov-based optimal control.

V. DESIGN OF SMOOTH NMR EXPERIMENTS

While the overall applicability of optimal control for
NMR experiment design has been demonstrated and verified
numerically and experimentally in numerous previous
papers,15–17,19–22,24,26–29 we will demonstrate numerically in
this paper the implication of our smoothing procedure and
monotonic convergence in optimal control design of a set of
simple NMR experiments. We address specifically spin-state
selective, non-Hermitian coherence transfer through J cou-
plings for liquid-state NMR applications and excitation of
the central transition of 23Na for applications in MRI. Lists
containing rf amplitudes and phases for the optimal control
pulse sequences as well as MATLAB scripts used to generate
these can be found in the supplementary material.55

A. Coherence-order and spin-state-selective
coherence transfer

For a two-spin, J-coupled spin systems in the context of
liquid-state NMR, the internal Hamiltonian may in the high-
field approximation be cast as

H0 = �J2IzSz, �15�

where Iz or Sz represent z-components of the spin operators
for the I and S spins in the present example coupled through
a scalar coupling of size J=140 Hz. To exemplify transfer
between non-Hermitian operators, we assume the initial state
to be represented by +1-quantum coherence on the S spin
�i.e., �0=S+� and to further demonstrate spin-state-selective
transfer,56–59 we assume that the destination operator is �1-
quantum coherence on the I spin with the S spin being in the

-state corresponding to only one of the lines in the
J-coupled doublet excite �i.e., C= I−S
�.

In this case of transfer between non-Hermitian operators,
we use the target function in Eq. �6� modified to ensure our
target being positive semidefinite. This leads to the modified
objective �̃ and the operator 
�C�:

�̃ = �2 + Tr�U�T�U†�T�� , �16�


�C� = U†�T� + �0U†�T�C† Tr�U†�T��0
†U�T�C�

+ �0
†U†C Tr�U�T��0U†�T�C†� , �17�

where we, relative to the expression in Eq. �11�, assumed the
scaling factor to be ��1 for the sake of simplicity. Our
control fields are represented by the amplitudes �angular fre-
quencies� �k�t� of x- and y-phase rf irradiation on the spins I
�operators Ix �k=1� and Iy �k=2�� and S �operators Sx

�k=3� and Sy �k=4��. According to unitary bounds on spin
dynamics,15,60 the maximum achievable transfer efficiency in
this case is 1. For the optimizations, we set the excitation
period to T=7.14 ms �corresponding to 1 /J� and the number
of pulses to N=200.

Addressing this specific optimization problem, Fig. 1
compares pulse sequences �i.e., I and S spin rf field
strengths� obtained on basis of a random initial pulse se-
quence using the gradient-based optimal control algorithm
GRAPE,19 the monotonic Krotov-based optimal control algo-
rithm of Maximov et al.,38 and the latter combined with
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smoothing as described in this paper. It is quite evident that
the pulse sequences developed using the two former methods
display quite significant oscillations, for which the appear-
ance depends very much on the specific optimization. In the
present case, it looks like the GRAPE algorithm produces a
more smooth, albeit still oscillating a lot in the “waves,”
pulse sequence than the Krotov-based algorithm. Slight
variation in parameters, such as the number of steps in the
waves, may radically change this pictures and in a later ex-
ample we will see the opposite picture. The same variability
will be seen upon inspection of the many optimal control
NMR pulse sequences presented in literature so far. What is
clear, however, is that the Krotov-based algorithm �as se-
lected in this paper, but it could just as well be GRAPE� com-
bined with frequency-truncation smoothing leads to much
smoother sequences, which may easier be analyzed analyti-
cally and which put less demands on the spectrometer hard-
ware upon practical implementation. Apart from this, the se-
quences display only relatively modest variations with
respect to rf power consumption �root-mean-square �rms� av-
erage rf powers �I and S spin values separated by /� of 141/71
Hz for GRAPE, 92/91 Hz for Krotov, and 12/102 Hz for
smoothing Krotov� and are essentially identical with respect
to coherence transfer efficiency �99% of the theoretical maxi-
mum for all methods�.

While rigid statements on the optimization speed and
convergence require a much more thorough analysis �to be
presented elsewhere�, examples such as the one in Fig. 1
provide the following crude estimate. Smooth Krotov is
computation-speed wise quite similar to GRAPE, while the
original Krotov approach is somewhat faster �in the order of
a factor 3–5, although this number highly depends on the
specific optimization�. Out of 1000 optimizations based on
random initial pulse sequences only 80%–90% of the GRAPE

and Krotov optimizations led to sequences with more than
90% of the nominal transfer efficiency, while all sequences
in this specific case passed this limit for the smooth Krotov

approach. The great benefit of smooth Krotov is that it pro-
vides smooth pulse sequences, and the benefit of both Krotov
variants is that they enable optimization with much more
coarse time discretization �longer and fewer pulses� than the
GRAPE algorithm due to its fundamentally different optimi-
zation strategy.

Figure 2 gives snapshots of pulse sequences throughout
optimization using the smoothing Krotov-based optimal con-
trol algorithm starting out from a random pulse sequence
�with maximum amplitude of 100 Hz�. The snapshots illus-
trate gradual adoption of the optimal sequence to a smooth
appearance. It is evident that already after five iterations, the
control fields on the I spin almost vanishes, leaving the major
action to the S spin control fields for the remaining optimi-
zation into the final pulse sequence. The final pulse sequence
have quite low rf-power consumption, due to the reducing
effect of the running cost ��1=10−4 s2 rad−2, �2=�1 for both
the I and S spins�, and the rf fields vary smoothly as an effect
of the smoothing algorithm. The progress of the cost function
and its constituents �the overall functional �cost�, the transfer
efficiency, and the running cost �penalty�� throughout the op-
timization is illustrated in Fig. 3, which also provide a nu-
merical demonstration of monotonic convergence. It is evi-
dent that the functional converges to a value which, when
considering the subtractive term from the running cost, is
equal to or close to the theoretical limit after a number of
iterations where the efficiency �final cost� and penalty �run-
ning cost� have displayed some exchanging oscillations be-
fore converge to the optimal values.

B. Optimal control for satellite and central transition
excitation in 23Na MRI

Optimal control mediated experiment design is by no
means restricted to spin-1/2 nuclei or systems of these. Many
challenging optimization examples may be found for NMR
spectroscopy or MRI in concern of quadrupolar nuclei, as
recently demonstrated by optimal control pulse sequences for
improved multiple-quantum magic-angle-spinning NMR
�Ref. 22� and for selective excitation of the central transition
of 23Na �spin I=3 /2� in presence of residual quadrupole cou-
plings for MRI purposes.34–36 The latter application may be
very important for 23Na MRI of, e.g., cartilage where the
sodium concentration may be considered a reporter for dis-
orders and degradation.34,61 In such applications, the ability
to separate 23Na ions with large and very small �vanishing�
residual quadrupolar couplings is regarded important as they
represent different populations of relevant ions.

In this section, we demonstrate the use of the smoothing
Krotov-based optimal control algorithm to design pulse
sequences which selective excites the central transition
�− 1

2 , 1
2

� or the satellite �− 3
2 , − 1

2 or 1
2 , 3

2 � transitions of 23Na
ions characterized by a residual quadrupole coupling fre-
quency of �Q /2�=60 Hz. In this case, the size of the quad-
rupole coupling and the rf irradiation fields are comparable
�often referred to as the intermediate regime� implying that
experiment design by standard analytical means is not
straightforward.
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FIG. 1. Pulse sequences for spin-state- and coherence-order-selective S+

→ I−S
 coherence transfer in a J-coupled �J=140 Hz� heteronuclear two-
spin system designed using optimal control based on the GRAPE algorithm
�first row�, the original monotonic Krotov-based algorithm �second row�,
and the latter combined with frequency-truncation smoothing �third row�.
The red and green lines correspond to x- and y-phase rf control fields for the
spins I �left column� and S �right column�, respectively.
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The optimization involves the secular, high-field-
approximated first-order Hamiltonian

H =
�Q

2
�3Iz

2 − I�I + 1�� + �1�t�Ix + �2�t�Iy , �18�

where �Q is quadrupole coupling frequency while �1�t� and
�2�t� are control rf fields corresponding to the spin operators
Ix and Iy, respectively �all frequencies in angular units�. The
nature of the optimization will be a standard state-to-state
transfer with the final cost expressed by Eq. �5� with the
destination operator C representing x-phase coherence on ei-
ther the central transition or the satellite transitions. The ini-
tial state corresponds to the thermal equilibrium �0= Iz.

Figure 4 illustrates the performance of optimal control
pulse sequences designed to enhance the central transition
�in this case leading to efficient suppression of the satellite
transitions although not requested in the cost function used
for the optimization� or excite the satellite transitions while
suppressing the central transition �also here the suppression
was not specified in the cost function� relative to a hard
�infinitely strong� 90° pulse exciting both types of transi-
tions. The simulated spectra clearly reveal that �i� the central-
transition selective excitation optimal control sequence offers
a sensitivity enhancement, relative to standard single-pulse
excitation, by the maximal factor of 1.5 as discussed previ-
ously by Xu et al.,32 while ensuring reasonable suppression
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 coherence transfer with modest rf-power consumption and smooth rf variation. The red and green lines correspond to x- and y-phase
control fields for spin I while blue and pink lines represent x- and y-phases of the S-spin control fields.
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tonic Krotov-based optimal control design of the pulse sequence for S+

→ I−S
 coherence transfer, shown and analyzed in Figs. 1 and 2. The red
curve represents the functional J��� �defined by Eqs. �4� and �16�; for trans-
parency, we have subtracted the correction terms in Eq. �16� which other-
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green the efficiency �2, and blue the penalty cost �see text�. All ordinates
have been scaled by a factor Tr	CC†
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FIG. 4. Simulated 23Na NMR spectra of sodium with a residual quadrupole
coupling frequency of �Q /2�=60 Hz excited using a standard 90° hard
pulse �red line�, the optimal control pulse sequence in Fig. 5�a� designed to
excite exclusively the central transition �green line�, and the pulse sequence
in Fig. 5�b� designed to excite the satellite transitions only �blue line�.
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of the satellite transitions and �ii� the pulse sequence de-
signed to suppress the central transition lead to satellites with
unaltered intensity while the central transition is almost re-
moved.

The optimal control pulse sequences providing selective
excitation of the central transition and the satellite transitions
are shown in Figs. 5�a� and 5�b�, respectively. The sequences
have a overall length of 2.25 / fQ �with the peak splitting fQ

related to the quadrupole coupling as fQ=3�Q /2�� and ac-
commodates 200 pulses of equal length. The central transi-
tion excitation pulse sequence is characterized by a rms av-
erage rf power of 45 Hz and excites the central transition
with an efficiency of 99% and the satellites have been sup-
pressed to an efficiency of 1.4% �percentages relative to the
theoretical maximum�. The satellite transition sequence is
characterized by a rms rf power of 54 Hz, with the satellites
excited with an efficiency of 99% and the central transition
suppressed 72%.

It is clear from both sequences that the optimal pulse
sequence is found in the regime �rf ��Q for which experi-
ment design by standard analytical means is exceedingly dif-
ficult. It is also evident that the smoothing algorithm used
during optimization leads to smooth sequences offering
easier implementation on conventional MRI instrumentation,
than the corresponding sequences we obtained using previ-
ous optimal control formulations. The latter aspect is dem-
onstrated in Fig. 6�a� by central transition-selective excita-
tion sequences �corresponding to Fig. 5�a�� obtained using
GRAPE or in Fig. 6�b� using our previous Krotov-based opti-
mal control software. The latter pulse sequences involved
500 pulses for GRAPE and 200 pulses for the Krotov-based

approach to facilitate comparison with the pulse sequences
earlier proposed by Lee et al.34 for GRAPE. In the present
implementation, the GRAPE-derived sequence displays much
wilder oscillations than the Krotov-based sequence.

C. Broadband optimization

In practical applications of OCT for experiment design,
it is often desirable to optimize the pulse sequences to be
robust toward variation in one or more spin system param-
eters, introducing the concepts of broadband or bandselective
excitation as described previously in the context of GRAPE

24

and Krotov-based38 methods. Such requests may readily be
incorporated into our optimal control algorithm through a
modified cost function

J��� = � Tr�U�T�U†�T�� + �
i

Tr�C†Ui�T��0Ui
†�T��

− ��
k
�

0

T

�k
2�t�dt , �19�

where each propagator Ui�T� corresponds to a specific con-
dition, such as different chemical shifts, couplings, or orien-
tations of the sample relative to the magnetic field �in solid-
state NMR�, where U is a common propagator of the system.
The additional targets in the functional Eq. �19� correspond-
ing to the broadband extension demands a modification of
the condition of a monotonic convergence and as conse-
quence changing the form of Eq. �12�. This leads to a modi-
fication of the target function f j�� j�� in Eq. �12� where the
part involving propagators and Lagrange matrices should be
replaced by a summation
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FIG. 5. Optimal control pulse sequences for 23Na MRI, which for the case
of a residual quadrupole coupling of 60 Hz offer selective and enhanced
excitation of the central transition �a� or excitation of the satellite transition
while suppressing the central peak of the 23Na NMR/MRI spectrum �b�. The
red curve represents x-phase control fields while the green curve represents
y-phase controls. The length of the pulse sequences are 12.5 ms.

0

80

160

0 3 6 9 12

ω
k/

2π
(H

z)

A

0

80

160

0 3 6 9 12

ω
k/

2π
(H

z)

Time (ms)

B

FIG. 6. Optimal control pulse sequence for excitation of the central peak of
the quadrupole spectrum of 23Na �a� �parameters as described in relation to
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. . . �
conditions i

AiUi,j−1� Bi,j−1Ai
†. . . �20�

with the propagator Ui and adjoint matrix Bi computed for
each individual condition when the pulse sequence �k is the
same for all propagators.

To demonstrate the application of broadband optimiza-
tion, we repeat our optimization of 23Na MRI central transi-
tion enhancement experiments for a range of quadrupole
coupling around �Q /2�=60 Hz with a deviation of �20
Hz. This leads to a pulse sequence with a central transition
excitation profile as function of the quadrupole coupling fre-
quency, as illustrated in Fig. 7, revealing very good excita-
tion in proximity of �Q /2�=60 Hz as requested in the op-
timization. We note that it is obviously possible to specify
specific regions of excitation and no excitations by entering
additional conditions in the target function and algorithm.

VI. CONCLUSION

In conclusion, we have presented a smoothing monotoni-
cally convergent optimal control algorithm for efficient de-
sign of pulse sequences for magnetic resonance applications.

The proposed frequency-truncation algorithm has been incor-
porated into a Krotov-based optimal control procedure and
demonstrated for a few of NMR examples where it leads to
much smoother optimal pulse sequences than obtained using
previous methods. We note that previous methods may even-
tually lead to smooth sequence by themselves, in particular
for simple optimizations without inhomogeneities and broad-
band performance request and in cases where educated
guesses are present to initiate the optimization. However, in
the most general case optimal control typically leads to pulse
sequences with significant oscillations in phase and ampli-
tude. In such cases our new algorithm offers a remedy to
incorporate smoothness in the optimization. The smooth se-
quences improves the possibilities for obtaining theoretical
insight for the optimal sequences and facilitates implementa-
tion on typical spectrometer hardware. We anticipate that the
methods will find widespread applications for design of ex-
periments within liquid- and solid-state NMR spectroscopy,
MRI, and DNP.
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