
This article was downloaded by: [University of Hong Kong Libraries]
On: 12 November 2014, At: 20:22
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

A monotonic method for nonlinear optimal control
problems with concave dependence on the state
Julien Salomon a & Gabriel Turinici a
a CEREMADE, UMR CNRS 7534, Université Paris IX, Place du Marechal de Lattre de Tassigny ,
75775 Paris, Cedex 16, France
Published online: 09 May 2011.

To cite this article: Julien Salomon & Gabriel Turinici (2011) A monotonic method for nonlinear optimal control problems
with concave dependence on the state, International Journal of Control, 84:3, 551-562, DOI: 10.1080/00207179.2011.562548

To link to this article:  http://dx.doi.org/10.1080/00207179.2011.562548

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2011.562548
http://dx.doi.org/10.1080/00207179.2011.562548
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control
Vol. 84, No. 3, March 2011, 551–562

A monotonic method for nonlinear optimal control problems with concave

dependence on the state
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Initially introduced in the framework of quantum control, the so-called monotonic algorithms have demonstrated
very good numerical performance when dealing with bilinear optimal control problems. This article presents a
unified formulation that can be applied to more general nonlinear settings compatible with the hypothesis
detailed below. In this framework, we show that the well-posedness of the general algorithm is related to a
nonlinear evolution equation. We prove the existence of the solution to the evolution equation and give
important properties of the optimal control functional. Finally we show how the algorithm works for selected
models from the literature. We also compare the algorithm with the gradient algorithm.

Keywords: monotonic algorithms; nonlinear control; optimal control; non-convex optimisation

1. Introduction

This article presents a unified formulation of several
algorithms that were proposed in different areas of
nonlinear control (see works in Tannor, Kazakov, and
Orlov 1992; Zhu and Rabitz 1998b; Lachapelle,
Salomon, and Turinici 2010; Salomon and Carlier
2008). Given a cost functional J(v) to be minimised by
control input v, and a system X(t) represented by
evolution equation (4), these algorithms iteratively
construct a sequence of solution vk with the monotonic
behaviour J(vkþ1)� J(vk). Thus, the algorithms were
named ‘monotonic’ algorithms. A computational
advantage of these procedures is that the monotonicity
does not require any additional computational effort,
but results from the definition of the procedure itself.

The monotonic algorithms have first been used in
the field of quantum control where the dynamics is
controlled by a laser field. In this framework the
function that maps a control v to the corresponding
state X is highly nonlinear. This results in poor
performance of standard, gradient-based algorithms.
The ‘monotonic schemes’ introduced in Tannor et al.
(1992), Bartana and Kosloff (1997) and Zhu and
Rabitz (1998b) were found to perform very well in this
setting. These schemes were used in bilinear situations
i.e. when the operator A(t, v(t)) is linear in v(t) and for a
cost functional J(v)¼G(X(T ))þC(v), that is, sum of a
part G(X(T )) is quadratic in the final state X(T ) and a
part C(v) quadratic in the control v. Zhu et al. present

variants of the monotonic scheme in Sugawara and

Fujimura (1993), Zhu, Botina, and Rabitz (1998), Zhu

and Rabitz (1998a), Schirmer, Girardeau, and Leahy

(2000), Sugawara (2003) that included situations where

G(X ) has negative semi-definite Hessian but C(v) was

still quadratic in the control and, most importantly,

A(t, v) was linear in v. In the works cited up to now, the

function G(X(T )) depends only on the final state X(T )

but adaptations were proposed in Ohtsuki, Turinici,

and Rabitz (2004) and Ohtsuki, Teranishi, Turinici,

and Rabitz (2007) to deal with the case where G

depends on the whole dynamics of the control process

X(t) at intermediary times or when the dynamics

involve bilinear integro-differential equations.
Some similar procedures were also proposed in

different control applications where the evolution

equation is of parabolic type (Salomon and Carlier

2008; Lachapelle et al. 2010) or mixed hyperbolic–

parabolic (Ohtsuki, Zhu, and Rabitz 1999; Ohtsuki

2003).
All works presented above considered bilinear

situations, i.e. the evolution equation is linear in the

state X(t) and A(t, v) is linear in the control v. Recently,

different cases are documented in the literature where

A(t, v) is a polynomial in the control v up to power

three; in Salomon, Dion, and Turinici (2005) and

Lapert, Tehini, Turinici, and Sugny (2008) specific

monotonic procedures were proposed that were shown

to work in this setting. Ohtsuki and Nakagami (2008)
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presented an adaptation when A(t, v) depends poly-

nomially on a one-dimensional control v(t)2R. A

model where the system is a nonlinear Bose–Einstein

condensate was given in Sklarz and Tannor (2002).
In this article, we deal with an arbitrary nonlinear

A(t, v) under the requirement that the explicit depen-

dence of J on X be concave (see the hypothesis detailed

in this article). In all situations where monotonic
algorithms were introduced, the well-posedness of the

algorithms (i.e. the existence of vkþ1 given vk) was

proved by ad-hoc techniques although the algebraic

computations share similar points. The contribution of

this article is to identify and exploit the similarities

present in all these situations, and present a general

setting of the ‘monotonic’ algorithms. This allows to
tackle a large class of nonlinear situations that cannot

be solved by the previous work in the literature. We

prove the existence and convergence of a procedure

that from a control vk constructs a control vkþ1 such

that the cost functional is monotonic. The question of

whether such a procedure exists has never been

addressed before in the literature because until now
the authors considered only particular cost functionals

J and particular evolution equations. For each case,

they proposed explicit analytic formulae for vkþ1

applicable to their situation. On the contrary, we

show in this article that for all problems that satisfy the

hypothesis a control vkþ1 can always be found to

ensure J(vkþ1)� J(vk). In addition, we give a construc-
tive procedure to compute it.

This article is structured as follows. Section 2

defines the general framework in which our procedure

applies. The algorithm is presented in Section 3. We

then show that the well-posedness of the algorithm is

related to a nonlinear evolution equation. We prove

the existence of the solution to the equation. We also
give important properties of the optimal control

functional. Numerical examples are presented in

Section 4 to illustrate the performance of the

algorithm.

2. Problem formulation

Let E, H and V be Hilbert spaces with V densely
included in H. We denote by �E and h�, �iV the scalar

product associated with E and V. For any vector

spaces A and B, we denote by L(A,B) the space of

linear continuous operators between A and B.
Given a real-valued function ’, we denote by rx’

its gradient with respect to the variable x. We

also denote by Dx and Dx,x the first and the

second derivative of vectorial functionals in the
Fréchet sense.1

We consider the following optimal control
problem:

min
v

JðvÞ, ð1Þ

where

JðvÞ ¼
4

Z T

0

F
�
t, vðtÞ,XðtÞ

�
dtþ G

�
XðT Þ

�
: ð2Þ

The functions F :R�E�V!R and G :V!R are
assumed to be differentiable and integral are assumed
to exist. The state function X(t)2V satisfies the
following evolution equation:

@tXþ Aðt, vðtÞÞX ¼ Bðt, vðtÞÞ ð3Þ

Xð0Þ ¼ X0, ð4Þ

where v : [0,T ]!E is the control. The operator
A(t, v) :R�E�H!H is not required to be bounded
and is such that for almost all t2 [0,T ] the domain of
A(t, v)1/2 includes V; furthermore, we take B(t, v) such
that for almost all t2 [0,T ] and all v2E we have
B(t, v)2L(H,H)\L(V,V*).2 Please refer to Section 3
for the precise (cf. Lemma 3.9, Theorem 3.11)
formulation of additional regularity assumptions to
be imposed on A, B, F and G.

Remark 2.1: E is not required to be 1-D.
Furthermore, E may not be finite-dimensional (cf.
Section 4.2). This implies that the control can not only
be a set of several time-dependent functions but also a
distributed control depending on a spatial variable.

We want to emphasise that although the equation is
linear in X (for v fixed), the mapping v � X is not
linear; the term A(t, v(t)) multiplies the state X and as
such the mapping is highly nonlinear (of non-
commuting exponential type).

Remark 2.2: Most of the previous works considered
a bilinear operator A(t, v) i.e. A(t, v)X¼ vX; the only
exceptions (cf. discussion in Section 1) were of the
polynomial type (at most of order 3 in Salomon et al.
(2005) and Lapert et al. (2008) and polynomial with
E¼R

1 in Ohtsuki and Nakagami (2008). The techni-
ques presented in the above papers cannot be used for
general operators A(t, v) and control sets E. On the
contrary, the results in this work can not only handle
all the situations considered in the bibliography but
also apply to nonlinearities in v compatible with the
hypothesis of Lemma 3.9 and Theorem 3.11.

The following concavity with respect to X will be
assumed throughout this article:

8X,X 0 2V, GðX 0Þ � GðX Þ � hrXGðX Þ,X
0 � X iV,

ð5Þ

552 J. Salomon and G. Turinici
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8t2R, 8v2E, 8X,X 0 2V,

Fðt, v,X 0Þ � Fðt, v,X Þ � hrX F ðt, v,X Þ,X 0 � X iV: ð6Þ

Remark 2.3: Unlike the more technical hypothesis
that will be assumed later, the properties (5), (6) and
the linearity of (3) are crucial to the existence of the
monotonic algorithms. Nevertheless, some comments
on ways to avoid these assumptions are given in
Appendix 1.

3. Monotonic algorithms

We now present the structure of our optimisation
procedure together with the general algorithm.

3.1 Tools for monotonic algorithms

The general idea of the monotonic algorithms is to
exploit a specific factorisation, that is the consequence
of the results described in this section. To simplify
notations, we will make explicit the dependence of X on
v, i.e. we will write Xv instead of X in Equations (3)–(4).

We define the adjoint state Yv (Lions 1971;
Gabasov, Kirillova, and Prischepova 1995) which is
the solution of the following evolution equation:

@tYv � A�
�
t, vðtÞ

�
Yv þ rXF

�
t, vðtÞ,XvðtÞ

�
¼ 0 ð7Þ

YvðT Þ ¼ rXG
�
XvðT Þ

�
: ð8Þ

A first estimate about the variations in J can be
obtained by the following lemma.

Lemma 3.1: For any v0, v : [0,T ]!E denote

�
�
t,XvðtÞ, vðtÞ, v

0ðtÞ,YvðtÞ,Xv0 ðtÞ
�
¼
4
�hYvðtÞ,�

A
�
t, v0ðtÞ

�
� A

�
t, vðtÞ

��
Xv0 ðtÞi

hYvðtÞ,B
�
t, v0ðtÞ

�
� B

�
t, vðtÞ

�
i þ F

�
t, v0ðtÞ,Xv0 ðtÞ

�
� F

�
t, vðtÞ,Xv0 ðtÞ

�
: ð9Þ

Then

Jðv0Þ � JðvÞ �

Z T

0

�
�
t,XvðtÞ, vðtÞ, v

0ðtÞ,YvðtÞ,Xv0 ðtÞ
�
dt:

ð10Þ

Proof: Using successively (5), (6), (3) and finally (8),
we find that

Jðv0Þ � JðvÞ ¼

Z T

0

F
�
t, vðtÞ,Xv0 ðtÞ

�
� F

�
t, vðtÞ,XvðtÞ

�
þ F

�
t, v0ðtÞ,Xv0 ðtÞ

�
� F

�
t, vðtÞ,Xv0 ðtÞ

�
dt

þ G
�
Xv0 ðT Þ

�
� G

�
XvðT Þ

�

�

Z T

0

hrXF
�
t, vðtÞ,XvðtÞ

�
,Xv0 ðtÞ � XvðtÞiV

þ F
�
t, v0ðtÞ,Xv0 ðtÞ

�
� F

�
t, vðtÞ,Xv0 ðtÞ

�
dt

þ hYvðT Þ,Xv0 ðT Þ � XvðT ÞiV

�

Z T

0

�
@

@t
YvðtÞ � A

�
t, vðtÞ

��
YvðtÞ

þ rXF
�
t, vðtÞ,XvðtÞ

�
,Xv0 ðtÞ � XvðtÞ

�
V

� YvðtÞ,
�
A
�
t, v0ðtÞ

�
� A

�
t, vðtÞ

��
Xv0 ðtÞ

D E
V

þ hYvðtÞ,Bðt, v
0ðtÞÞ � Bðt, vðtÞÞiV

þ F
�
t, v0ðtÞ,Xv0 ðtÞ

�
� F

�
t, vðtÞ,Xv0 ðtÞ

�
dt:

By (7), the first term of the right-hand side of this last

inequality cancels and the result follows. œ

Remark 3.2: The purpose of Lemma 3.1 is not to

obtain an estimation of the increment J(v0)� J(v) via

the adjoint (which is well documented in optimal

control theory, cf. Lions (1971) and Gabasov et al.

(1995)); we rather emphasise that the evaluation of the

integrand � at time t requires information on the

control v(s) for all s2 [0,T ] (in order to compute Xv(T )

then Yv(t)) but on the second control v0(s) only for

s2 [0, t] (because this is enough to compute Xv0(t)). This

estimate can be useful to decide at time t if the current

value of the control v0(t) will imply an increase or

decrease of J(v0). This localisation property is a

consequence of the concavity of F and G (in X ) and

bilinearity induced by A. The purpose of this article is

to construct and theoretically support a general

numerical algorithm that exploits this remark.

Remark 3.3: We can intuitively note that � has the

factorised form

�
�
t,XvðtÞ, vðtÞ, v

0ðtÞ,YvðtÞ,Xv0 ðtÞ
�

¼ Dðv, v0ÞðtÞ �E
�
v0ðtÞ � vðtÞ

�
, ð11Þ

with �E the E scalar product. Thus v0 can always be

chosen so as to make it negative (in the worse case set it

null by the choice v0 ¼ v). We will come back with a

formal definition of D(v, v0)(t) and a proof of the

previous relation in Section 3.3.

A more general formulation can be obtained if we

assume that the backward propagation of the adjoint

state is performed with the intermediate fieldev (cf. also
Maday and Turinici 2003), i.e. according to the

equation:

@

@t
Y ~v � A�

�
t,evðtÞ�Y ~v þ rXF

�
t, vðtÞ,XvðtÞ

�
¼ 0

Y ~vðT Þ ¼ rXG
�
XvðT Þ

�
:

International Journal of Control 553
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Note that because of its final condition,Y ~v also depends
on v. Nevertheless, for the sake of simplicity, we keep
the previous notation. We then obtain the following
lemma whose proof we leave as exercise for the reader.

Lemma 3.4: For any v0,ev, v : ½0,T � ! E,

Jðv0Þ � JðvÞ

�

Z T

0

� Y ~vðtÞ,
�
A
�
t, v0ðtÞ

�
� A

�
t,evðtÞ��Xv0 ðtÞ

D E
V

þ Y ~vðtÞ,B
�
t, v0ðtÞ

�
� B

�
t,evðtÞ�� 	

V

þ F
�
t, v0ðtÞ,Xv0 ðtÞ

�
� F

�
t,evðtÞ,Xv0 ðtÞ

�
dt

þ

Z T

0

� Y ~vðtÞ,
�
A
�
t,evðtÞ�� A

�
t, vðtÞ

��
XvðtÞ

D E
V

þ Y ~vðtÞðtÞ,B
�
t,evðtÞ�� B

�
t, vðtÞ

�� 	
V

þ F
�
t,evðtÞ,X ~vðtÞ

�
� F

�
t, vðtÞ,X ~vðtÞ

�
dt:

In this lemma, the variation in the cost functional J
is expressed as the sum of two terms, and can be
considered as factorised with respect to v0 �ev andev� v.

Remark 3.5: Lemmas 3.1 and 3.4 are generalisations
of previous results that were proved in the bilinear
case. To the best of our knowledge, only specific
corollaries requiring additional assumptions have
appeared in the literature up to now.

3.2 The algorithms

The factorisation (11) that will be proved in Lemma 3.8
enables to design various ways to ensure that J(v0)�
J(v), i.e. guarantee the monotonicity resulting from the
update v0  v. This allows to present a general
structure for our class of optimisation algorithms.
We focus on the one that results from Lemma 3.1.

Algorithm 3.6 (Monotonic algorithm): Given an
initial control v0, the sequence (vk)k2N is computed
iteratively by:

(i) Compute the solution Xvk of (4–5) with v¼ vk.
(ii) Compute the solution Yvk of (8–9) with v¼ vk

backward in time from

YvkðT Þ ¼
4
rXG

�
XvkðT Þ

�
:

(iii) Define (as explained later) vkþ1 together with
Xvkþ1 such that for all t�T the following
monotonicity condition be satisfied:

Dðvkþ1, vkÞðtÞ �E
�
vkþ1ðtÞ � vkðtÞ

�
� 0: ð12Þ

Lemma 3.1 then guarantees that J(vkþ1)� J(vk).
Several strategies can be used to ensure (12); we will
present one below. Its importance stems from the fact

that no further optimisation is necessary once this
condition is fulfilled. In order to guarantee (12), many
authors (Tannor et al. 1992; Zhu and Rabitz 1998b;
Maday and Turinici 2003) consider an update formula
of the form:

vkþ1ðtÞ � vkðtÞ ¼ �
1

�
Dðvkþ1, vkÞðtÞ, ð13Þ

where � is a positive number that can also depend on k
and t. In what follows, we focus on the existence of
solution of (13), and on practical methods to compute
it. If vkþ1 satisfies (13), the variations in J satisfy

Jðvkþ1Þ � JðvkÞ � ��

Z T

0

ðvkþ1ðtÞ � vkðtÞÞ2 dt:

Note that (13) reads as an update formula combining
on the one hand a gradient method:

vkþ1ðtÞ � vkðtÞ ¼ �
1

�
Dðvk, vkÞðtÞ,

and on the other hand the so-called proximal
algorithm (as described in Attouch and Bolte (2009))
which prescribes

vkþ1ðtÞ � vkðtÞ ¼ �
1

�
Dðvkþ1, vkþ1ÞðtÞ:

Remark 3.7: When F¼ 0 and A is independent of v,
i.e. linear control with final objective, (13) coincides
with a gradient method.

3.3 Well-posedness of the algorithm

In this section, we focus on the procedure obtained
when using Algorithm 3.6 with the update formula
(13). To the best of our knowledge, no theoretical
result exists in the literature to prove the existence of a
solution to Equation (13) for general choices of A(t, v)
and general space of controls E because previous
works only dealt with particular choices of functionals
F, G, operators A, B and managed to obtain in each
case an analytic solution; we provide here such a proof
together with a convergent procedure to compute it.
Since this procedure involves the resolution of an
implicit equation, the proof is non-trivial and has been
split in three parts: two preparatory lemmas (Lemmas
3.8 and 3.9) and the final result in Theorem 3.11. As a
by-product, we obtain a proof of the monotonicity of
the algorithm.

Lemma 3.8: Suppose that for any t2 [0,T ] such that

. A :R�V�V�E!R defined by A(t,X,
Y, v)¼hY,A(t, v)XiV is of C1 class with respect
to v for any X, Y, v;

554 J. Salomon and G. Turinici
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. B :R�V�E!R with B(t,Y, v)¼

hY,B(t, v)iV is of C1 class with respect to v for

any Y, v;
. F is of C1 class with respect to v2E for any

X,Y, v.

Then there exists D(�, �; t,X,Y )2C0(E2,E ) such that,

for all v, v0 2E,

Dðv0, v; t,X,Y Þ �E
�
v0 � v

�
¼ � Y,

�
Aðt, v0Þ � Aðt, vÞ

�
Xþ Bðt, v0Þ � Bðt, vÞ

D E
V

þ Fðt, v0,X Þ � Fðt, v,X Þ: ð14Þ

Moreover, D(�, �; t,X,Y ) can be defined through the

explicit formula

Dðv0, v; t,X,Y Þ

¼

Z 1

0

�rw

�
Y,Aðt,wÞX� Bðt,wÞ
� 	

V

�



w¼vþ�ðv0�vÞ

þ rvFðt, vþ �ðv
0 � vÞ,X Þd�: ð15Þ

Proof: We denote by k�k the norm associated with E.

Since A, B, F are Fréchet differentiable with respect to

v, the full expression in Equation (15) is of the form

�(v0)��(v) with �(v)¼�A(t,X,Y, v)þB(t,Y, v)�

F(t, v,X ) differentiable with respect to v;

Equation (16) is an application of the identity

�ðv0Þ ��ðvÞ ¼

Z 1

0

rv�ðvþ �ðv
0 � vÞÞd� �E ðv

0 � vÞ:

The continuity is obtained from rv�. œ

Lemma 3.9: Suppose that

. A, B, F are of (Fréchet) C2 class with respect to

v with DvvA,DvvB uniformly bounded as soon as

X, Y are in a bounded set;
. rvF is of C1 class with respect to X;
. DvvF(t, �,X ) is bounded by a positive, contin-

uous, increasing function X � k(kXk).

Then given that "4 0, (t, v,X,Y )2R�E�V�V

and a bounded neighbourhood W of (t, v,X,Y ), there

exists �?4 0 depending only on ", W, kvk, kXk and kYk

such that, for any �4 �?,

(i) D(v0, v; t,X,Y )¼��(v0 � v) has a unique solu-

tion v0 ¼ V�(t, v,X,Y )2E;
(ii) V�(t, v,X,Y )¼ v implies that

� rv

�
Y,Aðt, vÞX
� 	

V

�
ðvÞ

þ rv

�
Y,Bðt, vÞ
� 	

V

�
ðvÞ þ rvFðt, v,X Þ ¼ 0; ð16Þ

(iii) kV�ðt, v,X,Y Þ � vk � kXkkYkþkYkþkðkXkÞ� fM0ðtÞþ

M1kvkg with M0(t) and M1 independent of v,

X, Y. If the dependence of A, B, F with

respect to t is smooth then M0(t) is bounded

on [0,T ];
(iv) V�(t, v,X,Y ) is continuous on W;
(v) Let X belong to a bounded set, then

X � V�(t, v,X,Y ) is Lipschitz with the

Lipschitz constant smaller than ".

Proof:

(i) Denote h¼ v0 � v and define Gt,v,X,YðhÞ ¼
�Dðvþh, v;t,X,Y Þ

� . When the dependence is clear,

we will write simply G(h) instead of Gt,v,X,Y(h).

We thus look for a solution to the following

fixed point problem: G(h)¼ h. For � large

enough, the mapping G is a (strict) contraction

and we obtain the conclusion by a Picard

iteration. The uniqueness is a consequence of

the contractivity of G.
(ii) If v0 ¼ v then h¼ 0, thus G(h)¼ 0 which gives

(16) after using (15).
(iii) For � large enough, the mapping G is not only

a contraction but also has its Lipschitz

constant less than, say, 1/2. Because of the

contractivity of G, we have khk � kGð0Þk �

kh� Gð0Þk ¼ kGðhÞ � Gð0Þk � 1
2 khk, which

amounts to khk� 2kG(0)k. Next, we note that

kGð0Þk �

kDðv, v, t,X,Y Þ � Dð0, 0, t,X,Y Þk

þ kDð0, 0, t,X,Y Þk

( )
�

�M2kvk þM3ðtÞ

and the estimate follows.
(iv) Formula (16) shows that D depends continu-

ously on t, v, v0,X, Y. Consider converging

sequences tn! t, vn! v, Xn!X,Yn!Y and

define hn ¼
4
V�(tn, vn,Xn,Yn) and h ¼

4

V�(t, v,X,Y ).

GivenW and �4 0, consider a large enough

value of � such that:

. for any (t0, v0,X0,Y0)2W, Gt0, v0,X 0,Y 0 is a

contraction with Lipschitz constant less

than 1/2.
. for any (t0, v0,X0,Y0), (t00, v00,X00,

Y00)2W,

kDðv00 þ h, v00, t00,X 00,Y 00Þ

� Dðv0 þ h, v0, t0,X 0,Y 0Þk � �:

This last property implies kGtn,vn,Xn,Yn
�

ðhÞ � Gt,v,X,YðhÞk �
�
� for n large enough.
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On the other hand,

khn � hk ¼ kGtn,vn,Xn,Yn
ðhnÞ � Gt,v,X,YðhÞk

� kGtn,vn,Xn,Yn
ðhnÞ � Gtn,vn,Xn,Yn

ðhÞk

þ kGtn,vn,Xn,Yn
ðhÞ � Gt,v,X,YðhÞk

�
1

2
khn � hk þ

�

�
:

We have thus obtained that for n large

enough : 12 khn � hk � �
� and the continu-

ity follows.
(v) Subtracting the two equalities

DðV1, v; t,X1,Y Þ ¼ ��ðV1 � vÞ,

DðV2, v; t,X2,Y Þ ¼ ��ðV2 � vÞ

and using that D(V, v; t,X,Y ) is C1 in X and v

gives to first-order

DVð. . .ÞðV1 � V2Þ þ DXð. . .ÞðX1 � X2Þ

¼ ��ðV1 � V2Þ:

For � large enough the operator DV(. . .)þ � � Id
is invertible and the conclusion follows. œ

Remark 3.10: Note that �? is proportional to

(kXkVkYkVþkYkVþ k(kXkV)).

We are now able to construct a procedure such that

the existence of vkþ1(t) satisfying (12) is guaranteed.

Theorem 3.11: Suppose that A, B and F satisfy the

hypothesis of Lemma 3.9. Also suppose that the

operators A, B are such that Equations (3)–(4) and

(7)–(8) have solutions for any v2L1(0,T;E ) with

v � X, v � Y locally Lipschitz. Then:

(i) For any v2L1(0,T;E ), there exists �?4 0

such that for any �4 �?, the (nonlinear)

evolution system

@tXv0 ðtÞ þ Aðt, v0ÞXv0 ðtÞ ¼ Bðt, v0Þ ð17Þ

v0ðtÞ ¼ V�ðt, vðtÞ,Xv0 ðtÞ,YvðtÞÞ ð18Þ

Xv0 ð0Þ ¼ X0 ð19Þ

has a solution. Here Yv is the adjoint state

defined by (7) and (8) and corresponding to

control v.
(ii) There exists a sequence (�k)k2N such that the

Algorithm 3.6 (cf. Section 3.2)

a/ initialization v02L1(0,T; E ),
b/ vkþ1ðtÞ ¼ V�kðt, v

kðtÞ,Xvkþ1ðtÞ,Yvk ðtÞÞ is

monotonic and satisfies

Jðvkþ1Þ � JðvkÞ � ��kkv
kþ1 � vkk2L2ð½0,T �Þ:

(iii) With the notations above, if for all t2 [0, T ]
vkþ1(t)¼ vk(t) (i.e. algorithm stops) then vk is a
critical point of J: rvJ(v

k)¼ 0.

Proof: Some part of the proof is contained in the
previous lemmas. The part that still has to be proved is
the existence of a solution to (17)–(19).

Given that v2L1(0,T; E ), consider the following
iterative procedure:

v0 ¼ v, vlþ1ðtÞ ¼ V�ðt, vðtÞ,XvlðtÞ,YvðtÞÞ:

We take a spherical neighbourhood Bv(R) of v of
radius R and suppose that 8k� l, vk2Bv(R). Since the
correspondence v � Xv is continuous, it follows that
the set of solutions Sv,R ¼

4
{Xw; w2Bv(R)} of (4) is

bounded. In particular, for w¼ vl by the item (iii) of
Lemma 3.9 the quantity kV�ðt, vðtÞ,Xvl ðtÞ,YvðtÞÞ � vk
will be bounded by R for � large enough (depending on
R, independent of l ), i.e. vlþ12Bv(R). Thus vl2Bv(R)
for all l� 1.

Since Sv,R is bounded, recall that by item (v) of
Lemma 3.9 the mapping X � V�(t, v(t),X,Yv(t)) has
on Sv,R a Lipschitz constant as small as desired. Since
the mapping w � Xw is Lipschitz, for � large enough,
w2Bv(R) � V�(t, v(t),Xw,Yv(t)) is a contraction. By a
Picard argument, the sequence vl is converging. The
limit will be the solution of (17) and (18). œ

4. Examples

We now present three examples that fit into the setting
of Theorem 3.11. Due to space limit, we do not treat
different variants (cf. references in Section 1).

Within the framework of control theory, nonlinear
formulations prove useful nowadays in domains as
diverse as the laser control of quantum phenomena
(Warren, Rabitz, and Dahleh 1993; Weinacht, Ahn,
and Bucksbaum 1999; Rabitz, de Vivie-Riedle,
Motzkus, and Kompa 2000; Rice and Zhao 2000;
Levis, Menkir, and Rabitz 2001; Rabitz, Hsieh, and
Rosenthal 2004) or the modelling of an equilibrium (or
again social beliefs, product prices, etc.) of a game with
an infinite numbers of agents (Lasry and Lions 2006a,
b, 2007). Yet, other applications arise from modern
formulations of the Monge–Kantorovich mass transfer
problem (Benamou and Brenier 2001, 2000; Salomon
and Carlier 2008).

In the following, we present some examples from
these fields of application. We also present the
corresponding monotonic algorithm resulting from
Theorem 3.11. Concerning the time-discretisation, we
use the approach described in Appendix 2.
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4.1 (I): Quantum control

4.1.1 Setting

The evolution of a quantum system is described by the

Schrödinger equation

@tXþ iHðtÞX ¼ 0

Xð0, zÞ ¼ X0ðzÞ,

where i ¼
ffiffiffiffiffiffiffi
�1
p

, H(t) is the Hamiltonian of the system

and z2R
� the set of internal degrees of freedom.

We assume that the Hamiltonian is a self-adjoint

operator over L2(R�; C), i.e. H(t)*¼H(t).3 Note

that this implies the following norm conservation

property:

kXðt, �ÞkL2ðR� ;CÞ ¼ kX0kL2ðR� ;CÞ 8t4 0, ð20Þ

so that the state (also called wave-) function X(t, z),

evolves on the (complex) unit sphere S¼
4

X2L2ðR
�;

�
CÞ : Xk kL2ðR� ;CÞ¼ 1g.

The Hamiltonian is composed of two parts: a free

evolution Hamiltonian H0 and a part that describes the

coupling of the system with an external laser source of

intensity v(t)2R, t� 0; a first-order approximation

leads to adding a time-independent dipole moment

operator �(z) resulting in the formula H(t)¼H0�

v(t)� and the dynamics:

@tXþ i H0 � vðtÞ�ð ÞX ¼ 0

Xð0Þ ¼ X0:

The purpose of control may be formulated as to

drive the system from its initial state X0 to a final state

Xtarget compatible with predefined requirements. Here,

the control is the laser intensity v(t). Because the

control is multiplying the state, this formulation is

called ‘bilinear’ control. The dependence v � X(T ) is

of course not linear.
The optimal control approach can be implemented

by introducing a cost functional. The following

functionals are often considered:

JðvÞ ¼
4
kXðT Þ � Xtargetk

2
L2ðR� ;CÞ þ

Z T

0

�ðtÞv2ðtÞdt, ð21Þ

eJðvÞ ¼4 �hXðT Þ,OXðT ÞiL2ðR� ;CÞ þ

Z T

0

�ðtÞv2ðtÞdt,

ð22Þ

where O is a positive linear operator defined on H,

characterising an observable quantity and �(t)4 0 is a

parameter that penalises large (in the L2 sense)

controls. The goal is to minimise these functionals

with respect to v. According to (20), the cost functional

J is equal to

JðvÞ ¼
4
2� 2RehXðT Þ,XtargetiL2ðR� ;CÞ þ

Z T

0

�ðtÞv2ðtÞdt,

ð23Þ

so that the functionals J and eJ satisfy assumptions (5)
and (6).

4.1.2 Mathematical formulation

We have

. A(t, v)¼H0þ v(t)� with (possibly) unbounded
v-independent operator H0 (but which gener-
ates a C0 semi group) and bounded operator
�. The dependence of A on v is smooth (linear)
and therefore all hypotheses on A are satisfied.

. E¼R, H¼L2(Rd; C), V ¼ domðH1=2
0 Þ (over

C), or their realifications H¼L2
�L2, V ¼

domðH1=2
0 Þ � domðH1=2

0 Þ (over R) as explained
in Ito and Kunisch (2007).

. B(t, v)¼ 0.

. F(t, v,X )¼ �(t)v(t)2 with �(t)2L1(R); here
the second derivative DvvF is obviously
bounded. Since it is independent of X, it will
be trivially concave.

. G is either (see e.g. Maday and Turinici 2003;
Maday, Salomon, and Turinici 2007)
2� 2RehXtarget,X(T )iV or �hX(T ),OX(T )iV
where O is a positive semi-definite operator;
both are concave in X.

. Here

Dðv0, v; t,X,Y Þ

¼ �RehY, i�X iV þ �ðtÞðv
0 þ vÞ ð24Þ

and the equation in v0 is D(v0, v; t,X,Y )¼
��(v0 � v) and has a unique solution v0 ¼
V�ðt, v,X,Y Þ ¼

4 ð���ðtÞÞvþRehY, i�X iV
�þ�ðtÞ for � large

enough.
. At the kþ 1-th iteration, Theorem 3.11

guarantees the existence of the solution Xkþ1

of the following nonlinear evolution equation:

i@tX
kþ1ðtÞ

¼ H0þ
ð���ðtÞÞvkþRehYvk , i�X

kþ1iV

�þ�ðtÞ
�


 �
Xkþ1ðtÞ:

ð25Þ

Then

vkþ1 ¼
ð���ðtÞÞvkþRehYvk , i�X

kþ1iV

�þ�ðtÞ
, Xvkþ1 ¼Xkþ1:

ð26Þ
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4.1.3 Numerical test

In order to test the performance of the algorithm, we

have chosen a case already treated in the literature

(Zhu and Rabitz 1998b). The system under considera-

tion is the O�H bond that vibrates in a Morse-type

potential V(z)¼D0(exp(��(z� z0))� 1)2�D0 andH0 ¼

�m @2

@z2
þ VðzÞ. The dipole moment operator of this

system is modelled by �ðzÞ ¼ �0 � ze
� z

z? . The objective

is to localise the wavefunction at time T¼ 1,31,000 at a

given location z0; this is expressed through the require-

ment that the functional eJ is maximised, with

the observable O defined by OðzÞ ¼ �0ffiffi
	
p e��

2
0
ðz�z0Þ

2

.

The numerical values we use are given below:

We consider a constant penalisation parameter

�¼ 1 and optimisation parameter �¼ 10�2. To com-

pare this procedure with a standard algorithm, we have

also minimised J(v) with an optimal step gradient

method. The line search is achieved through a golden

section search (cf. Press, Teukolsky, Vetterling, and

Flannery 2002). Results are presented in Figure 1. This

test shows that the gradient method fails in efficiently

solving the problem, whereas the monotonic procedure

ensures that the cost functional values rapidly decrease.

Note that the non-convexity of the problem renders

difficulty in the convergence of the gradient method.

On the other hand, the monotonic scheme fully

exploits the concavity of the cost functional with

respect to the state variable. In our implementation the

time of computation is about two times larger for the

gradient method as the line search requires about three

evaluations of the cost functional per iteration.

4.2 (II):Mean field games

4.2.1 Setting

Although the Nash equilibrium in game theory has
been initially formulated for a finite number of players,
modern results (Lasry and Lions 2006a, b, 2007)
indicate that it is possible to extend it to an infinite
number of players and obtain the equations that
describe this equilibrium; applications have already
been proposed in the economic theory and other are
expected in the behaviour of multi-agents ensembles
and decision theory.

The equations describe evolution of the density
X(t, z) of players at time t and position z2Q¼ [0, 1] in
terms of a control v(t, z) and a fixed parameter 
4 0:

@tX� 
DXþ divðvðt, zÞX Þ ¼ 0,

Xð0Þ ¼ X0:

The control v is chosen to minimise the cost
criterion (2). For reasons related to economic model-
ling, interesting examples include situations where F,G
are concave in X, e.g. as in Lachapelle et al. (2010)

G¼ 0, Fðt,z,X Þ ¼

Z
Q

pðtÞð1��zÞXðt,zÞþ
c0 � z �Xðt,zÞ

c1þ c2Xðt,zÞ

þ
v2ðtÞ

2
Xðt,zÞdz, ð27Þ

with positive constants �, c0, c1, c2 and p(t) a positive
function. Another example is given in Salomon and
Carlier (2008):

GðXðT ÞÞ ¼

Z
Q

VðzÞXðT, zÞdz,

Fðt, z,X Þ ¼

Z
Q

Xðt, zÞv2ðt, zÞdz, ð28Þ

where V encodes a potential. The interpretation of this
terminal cost is that the crowd aims at reaching zones
of low potential V at the terminal time T while
minimising the cost of changing state.

The numerical relevance of the monotonic algo-
rithms to this setting has been established in several
works (Salomon and Carlier 2008; Lachapelle et al.
2010).

4.2.2 Mathematical formulation

We have

. E¼W1,1(0, 1), H¼L2(0, 1), V¼H1(0, 1), see
Lachapelle et al. (2010) and Dautray and
Lions (1992, Chapter XVIII, Section 4.4).

. A(t, v)¼�
D � þ div(v�). The dependence of A
on v is smooth (linear) and therefore all
hypotheses on A are satisfied (DvvA¼ 0, . . .).

0 5 10 15 20 25 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

a

b

Figure 1. Numerical resolution of the example of
Section 4.1. The cost functional J(v) is optimised using the
monotonic algorithm (26) (green line) and the optimal step
gradient algorithm (blue line). Available in colour online.
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. B(t, v)¼ 0.

. With definitions in (27) Fðt, v,X Þ ¼
R
Q pðtÞð1�

�zÞXðt, zÞ þ c0�z�Xðt, zÞ
c1þc2Xðt, zÞ

þ
vðt, zÞ2

2 Xðt, zÞdz; F is con-
cave in X; the second differential DvvF has all
required properties.

. G¼ 0 (algorithm will apply in general when G
is concave with respect to X ).

. Here

Dðv0, v; t,X,Y Þ ¼ rYþ
v0 þ v

2
ð29Þ

and the equation in v0 is D(v0, v;
t,X,Y )¼��(v0 � v) and has a unique solution
v0 ¼ V�ðt, v,X,Y Þ ¼

4 ð��1=2Þv�rY
�þ1=2 for all �4 0.

. At the kþ 1-th iteration, Theorem 3.11
guarantees the existence of the solution Xkþ1

of the following nonlinear evolution equation:

@tX
kþ1ðtÞ � 
DXkþ1

þ div
ð� � 1=2Þvk � rYvk

� þ 1=2
Xkþ1


 �
¼ 0: ð30Þ

Then

vkþ1 ¼
ð� � 1=2Þvk � rYvk

� þ 1=2
, Xvkþ1 ¼ Xkþ1: ð31Þ

4.2.3 Numerical test

The algorithm is tested on the time interval [0, 1] with
p(t)¼ 1 and the numerical values �¼ 0.8, c0¼ c2¼ 1
and c1¼ 0.1. The same gradient method as in
Section 4.1.3 is also tested. Results are presented in
Figure 2. In this example, the gradient method gives
better results in the first iterations.

However, the monotonic algorithm converges

asymptotically faster.

4.3 Additional application

As a third example, we consider a nonlinear vectorial

case from Friedrich and Herschbach (1995) and Tehini
and Sugny (2008) which differs from that of Section 4.1

in that vðtÞ ¼ v1
v2

� �
2E ¼ R

2 and A(t, v)¼ i[H0þ

(v1(t)
2
þ v2(t)

2)�1þ v1(t)
2v2(t)�2]. Here, denoting �1¼

�RehY, i�1XiVþ�(t), �2¼�RehY, i�2XiV, we obtain

Dðv0, v; t,X,Y Þ ¼ �1
v1 þ v01

v2 þ v02

 !
þ �2

ðv1 þ v01Þv
0
2

ðv1Þ
2

 !
ð32Þ

and the equation in v0 is D(v0, v; t,X,Y )¼��(v0 � v)
and has a unique solution

v0 ¼ V�ðt, v,X,Y Þ ¼

ð� � �1Þv2 � �2v
2
1

� þ �1

�
� � �1 þ �2

ð���1Þv2��2v
2
1

�þ�1

� þ �1 þ �2
ð���1Þv2��2v21

�þ�1

v1

0BBBBB@

1CCCCCA
for � large enough. We leave the writing of the
equation for Xkþ1 and the formula for vkþ1 as an

exercise to the reader.
This model corresponds to the problem of control-

ling the orientation � of a molecule, considered as rigid

rotator.

4.3.1 Numerical test

To test our approach, we have used the parameters of
the molecule CO (Friedrich and Herschbach 1995;

Tehini and Sugny 2008), namely H0¼BJ2, where B is
the rotational constant and J is the angular momen-

tum. We consider the basis given by the spherical
harmonics; the corresponding matrix is diagonal with

diagonal coefficients given by (H0)k,k¼ k(kþ 1). The
controlled is performed over an interval of length

T ¼ 20Tper ¼ 20 	B. We consider constant penalisation
factor �¼ 10�1 and optimisation parameter �¼ 103.

The other parameters correspond to the polaris-

ability and the hyperpolarisability components of the
molecule. We have �1 ¼ �

1
2 �, and �2 ¼ �

3
4�, with

� ¼ 1
2 ð�k cos

2 � þ �? sin
2 �Þ, � ¼ 1

6 ðð�k � 3�?Þ cos
3 � þ

3�? cos �Þ: The matrix cos � is tridiagonal, with

ðcos �Þk,k ¼ 0,

ðcos �Þk,kþ1 ¼ ðcos �Þkþ1,k ¼
kþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2kþ 1Þð2kþ 3Þ
p :

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

a

b

Figure 2. Numerical resolution of the example of
Section 4.2. The cost functional J(v) is optimised using the
monotonic algorithm (31) (green line) and the optimal step
gradient algorithm (blue line). Available in colour online.
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We use the numerical values given in Friedrich and
Herschbach (1995) and Tehini and Sugny (2008):

A gradient method similar to the one that is used in
Section 4.1.3 is also performed. The results are
presented in Figure 3. The monotonic algorithm
shows a fast convergence whereas the gradient
method does not optimises efficiently the cost func-
tional values.

5. Conclusion

Motivated by a set of control algorithms that were
initially introduced in the specific context of quantum
control, we have presented an abstract formulation
that includes them all. We identified the theoretical
assumptions to ensure that the evolution equation is
well posed and has a solution. We provide an original
and constructive proof to serve as basis for numerical
approximations of the solution. We also proved several
properties concerning the algorithms. Examples are
provided to show how the proposed procedure solves
cases from not only the previous literature but also new
situation that were not previously considered.
Numerical simulations indicate that the procedures
have indeed the expected behaviour.
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Notes

1. Recall that, given H1 and H2 two Banach spaces and
U	H1 an open subset of H1, a function f :U!H2 is
said to be Fréchet differentiable at x2U if there exists a
continuous linear operator Ax2L(H1,H2) such that

lim
h!0

k f ðxþ hÞ � f ðxÞ � AxðhÞkH2

khkH1

¼ 0:

The operator Ax is then called the Fréchet differential
(or Fréchet derivative) of f at x and is denoted by Dx

f ¼
4
Ax. Let us also recall that given an open set �	R

�

and a Hilbert space H1, the set L
1(�; H1) is the space of

functions f from � with values in the Hilbert space H1

such that for almost all t2� the norm k f ðtÞkH1
is

bounded by the same constant (the lowest of which
is the L1(�; H1) norm of f ). One can likewise define
L2(�; H1):

L2ð�;H1Þ

¼ f : �! H1 such that

Z
�

k f ðtÞk2H1
dt51

� �
:

When the derivatives of f are considered, the Sobolev
spaces W1,1 have to be introduced. We refer to Yosida
(1995) and Adams and Fournier (2003) for further
details.

2. For a space V we denote by V* its dual space.
3. For any operator M, we denote by M* its adjoint.
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Appendix 1: Extension of the monotonic algorithms

In this section, we discuss the relaxation of some of the
assumptions concerning either the concavity of (parts of) J or
the linearity in Equation (3) (cf. Remark 2.3).

Relaxation of concavity assumptions for norm
preserving evolution

In some cases, Equation (3) is endowed with additional
properties that enable to relax the hypothesis of concavity of
the cost functional J. For instance, in Section 4.1 the L2 norm
of X is preserved. Thus, for any G whose second differential
with respect to X2L2 is bounded (e.g. by M), our algorithm
applies : in this case use G�M � Id instead of G (see, e.g.
Salomon et al. 2005). The same conclusions also hold for F.

General evolution equation

We consider a general form of the semi-group generator

@tXv þ Lðt, vðtÞ,XvðtÞÞ ¼ 0

Xvð0Þ ¼ X0:

For a given v, the corresponding adjoint state Yv is

@tYv �DXL
�ðt, vðtÞ,XvðtÞÞYv þ rXFðt, vðtÞ,XvÞ ¼ 0

YvðT Þ ¼ rXG
�
XvðT Þ

�
:

In the case of the cost functional J defined in (3), the
arguments of the proof of Lemma 3.1 apply, and we obtain
the following result.

Lemma A.1: For any v0, v : [0,T ]!E,

Jðv0Þ � JðvÞ �

Z T

0

Dðv, v0, tÞdt,

where

Dðv, v0, tÞ ¼ Fðt, v0ðtÞ,Xv0 Þ � Fðt, vðtÞ,Xv0 Þ

þ hYvðtÞ,Lðt, vðtÞ,XvðtÞÞ � Lðt, v0ðtÞ,Xv0 ðtÞÞiV

þ hYvðtÞ,DXLðt, vðtÞ,XvðtÞÞðXv0 ðtÞ � XvðtÞÞÞiV:

We note, however, that choosing at time t, v0(t)¼ v(t)
does not ensure in general that D(v, v0, t) is zero; thus the
factorisation of the form D(v, v0, t)¼DNL(v, v0) �E (v

0 � v) is
not true any more. In particular, we are not sure to be able to
find a v0(t) which sets this term negative. Manifestly the
reason is that the adjoint is not adapted; we do not want to
develop here on how to change the adjoint but we are lead to
propose the following procedure: advance in time v0(t) by
solving for v0(t) in the relation D(v, v0, t)¼��(v0(t)� v(t))2 for
as long as possible, say from t1¼ 0 to t2�T . Then one sets
v 1½0,t2 ½v

0ðtÞ þ 1½t2,T �vðtÞ, compute a new adjoint Yv and
advance again in time from t2 to t3, etc.

Appendix 2: Time discretised case

This section is devoted to the time-discretisation.

Setting

In order to reproduce at the discrete level the computation
involved in the monotonic algorithms, one has to define a
time discretised version of J and a scheme devoted to
numerical resolution of (3)–(4).

Note that our optimisation method does not impose any
restrictions thus any scheme with standard numerical
properties (consistency, stability, convergence) is compatible
with our procedure.

Since we only deal with optimisations problems, we
consider arbitrary time-discretisations of the functional (2):

JDtðvÞ ¼ Dt
XN�1
n¼0

Fðvn, xnÞ þ GðxNÞ,

together with the general numerical scheme

xnþ1 ¼ ADtðvnÞxn þ BDtðvnÞ, ð33Þ

where N is a positive integer, Dt¼T/N and v¼ (vn)n¼0. . .N�1.
We assume that the functions F and G have the same
properties as in Section 2.

Discrete adjoint and factorisation

As in the continuous case, the adjoint operator definition
directly follows from the state equation evolution. Given
a numerical solver (33), the discrete adjoint operator is
defined by

yn ¼ A�DtðvnÞ ynþ1 þ DtrxFðvn, xnÞ

yN ¼ rxG
�
xN
�
:

With this definition, a factorisation similar to Lemma 3.1 can
be obtained.

Lemma A.2: For any v0 ¼ ðv0nÞn¼0...N�1, v¼ (vn)n¼0. . .N�1,

JDtðv
0Þ � JDtðvÞ �

XN�1
n¼0

yn, ðADtðv
0
n�1Þ � ADtðvn�1ÞÞx

0
n�1

� 	
V

þ ynþ1,BDtðv
0
nÞ � BDtðvnÞ

� 	
V

þ Dt Fðv0n, x
0
nÞ � Fðvn, x

0
nÞ

� �
:

By means of this lemma, we obtain a discrete version of
monotonicity condition (12).

Depending on the way the functions A, B and F depend
on v, the computation of a v0n satisfying the discrete
monotonic condition may requires an inner iterative solver.

In many cases this computation can anyway be
parallelised. During an optimisation step, at a given time
step n, the terms of the previous sum can be factorised with
respect to each component of the vector v0n � vn and made
negative independently.

The fact that the computation of v0n requires x0n makes
anyway the time resolution sequential. To solve this problem,
some time parallelisations have been designed in the case of
quantum control (Maday et al. 2007).
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