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Abstract
The rapid detection and treatment of bugs in operating
systems code is essential to maintain the overall security
and dependability of a computing system. A number of
techniques have been proposed for detecting bugs, but little
has been done to help developers analyze and treat them.
In this paper we propose to combine bug-finding rules with
transformations that automatically introduce bug-fixes or
workarounds when a possible bug is detected. This work
builds on our previous work on the Coccinelle tool, which
targets device driver evolution.

1. Introduction
Recent years have seen a surge of interest in the development
of bug-finding tools that are applicable to operating systems
code [4, 6, 11, 12]. One of the first such tools was Engler
et al.’s Metal [4], which used a control-flow based analysis,
tempered by some pragmatic choices, to find bugs in Linux
and OpenBSD. The choices made by Metal and similar
tools to provide scalability, however, have in practice implied
that such tools generate many false positives (reported code
fragments that are not actually bugs) and may misidentify
the source of a problem. The resulting bug reports thus
have to be carefully checked by a maintainer. This is often
a difficult task, both because of the large number of bug
reports and because of the subtlety of operating systems
code. These issues delay the deployment of protective and
corrective actions, ultimately reducing the practical impact
of bug-checking tools.

In previous work, we have considered the problem of
changing device driver code automatically to reflect changes
in the underlying Linux kernel driver APIs between different
versions [17, 18, 19]. For this, we have developed the Coc-
cinelle tool, which provides a language for describing code
evolutions and a transformation engine for applying these
evolutions automatically. The language is close to C code,
but describes control-flow paths, as used by Metal. Based
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on this similarity, we have thus conjectured that Coccinelle
could also be used for bug detection. Coccinelle, however, also
allows easily specifying code transformations. This makes it
possible to add bug fixes or logging code to matches found
during the bug finding process. When a bug fix is possible,
the system is protected immediately, with no user interven-
tion. Logging code can help the maintainer identify real
bugs more quickly, by providing access to information about
the dynamic behavior of the system that is not available
to static bug-finding tools. Furthermore, as recent research
suggests [20], inserting application specific goal-oriented log-
ging code can help improve forensic analysis of a breached
system. Both techniques can thus help improve the security
and dependability of operating systems.

In this paper we investigate how Coccinelle can be used
as a flexible and powerful tool for bug finding (Section 2) and
how the program transformation capabilities of Coccinelle
can be leveraged to automatically insert or change code for
proactive handling of a (potential) bug (Section 3). This
handling can include workaround code that fixes the bug,
prints useful logging/debugging messages, safely shuts down
the system, prevents the bug, mitigates the consequences of
the bug, or whatever is needed to handle a particular case.
Such functionality is particularly useful in situations where
a security vulnerability has been discovered but no official
patch has yet been released. We then provide preliminary
benchmarks comparing the preciseness of Coccinelle to the
results of Engler et al. [4] (Section 4) and discuss work in
progress to improve the preciseness and flexibility of our
approach (Section 5). Finally, we present some related work
(Section 6) and conclude (Section 7).

2. Finding Bugs with Coccinelle
Coccinelle provides a language, Semantic Patch Language
(SmPL), for describing code transformations. A semantic
patch has the form of a traditional Linux patch: it is based on
C syntax and the code to be removed and added is designated
with - and +, respectively. Nevertheless, a semantic patch
is independent of whitespace and newlines, can abstract
over subterms via a collection of metavariables, and can
abstract over arbitrary control-flow paths via the “...”
notation [18]. Figure 1 shows a simple example of a semantic
patch implementing part of an evolution to Linux drivers
identified in our previous work [19]. This semantic patch
adds GPF_ATOMIC as the second argument to usb_submit_urb
whenever this function is called with interrupts disabled.

In the rest of this section, we consider some of the bugs
for which Metal patterns have been published, and show how
these patterns can be expressed using SmPL.



@@ expression E; @@
cli();
... WHEN != ( sti(); | restore_flags(...); )

- usb_submit_urb(E)
+ usb_submit_urb(E, GFP_ATOMIC)

Figure 1. Evolving uses of usb_submit_urb

1 @@ @@
2 cli();
3 ... WHEN != ( sti(); | restore_flags(...); )
4 ? cli();
5
6 @@ @@
7 ( sti(); | restore_flags(...); )
8 ... WHEN != cli();
9 ( sti(); | restore_flags(...); )

Figure 2. Detecting bugs in interrupt status management

@@ @@
cli();
... WHEN != ( sti(); | restore_flags(...); )
kmalloc(...,GFP_KERNEL);

Figure 3. Calling kmalloc with interrupts disabled

Double enabling or disabling of interrupts An oper-
ating system relies on interrupts in order to be informed of
certain asynchronous conditions. Leaving interrupts disabled
for too long hurts the interactivity of the system, and dis-
abling them forever can lead to a deadlock. The criticality
of interrupt status management means that changes in the
interrupt status are typically only done intraprocedurally;
for example, if interrupts are enabled at the beginning of a
function, they should be enabled when leaving the function
as well. Functions that do not fit this pattern are thus suspi-
cious. To find such potential bugs, we search for control-flow
paths where:

1. Interrupts are disabled but not enabled before the end of
the function or before again disabling them.

2. Interrupts are enabled twice, without being disabled in
between.

Figure 2 shows a SmPL semantic patch that searches for
control flow paths satisfying these conditions. To simplify
the presentation, we have assumed like Engler et al. that
interrupts are disabled using cli and enabled using either
sti or restore_flags. The semantic patch can easily be ex-
tended to take into account a wider variety of interrupt status
management functions, as we have done in the experiments
described in Section 4. The semantic patch consists of two
rules, each beginning with a pair of @@s. The first rule (lines
1-4) detects either a call to cli that is followed by a call to
cli with no intervening call to sti or restore_flags. The
question mark at the beginning of line 4 makes the detection
of a second call to cli optional, meaning that the pattern
also detects the case where there is a call to cli with no
subsequent call to cli, sti or restore_flags before the end
of the function. The second rule (lines 6-9) similarly detects
successive calls to sti or restore_flags with no intervening
call to cli. These rules thus detect all occurrences of the
above conditions.

Blocking Calls. Another common source of bugs related
to interrupt status management is calling a possibly blocking
function in a context where interrupts are disabled. If

@@ expression E; @@
kfree(E)
...
E

Figure 4. SmPL patch for matching use-after-free bugs

@@ @@
cli();
... WHEN != ( sti(); | restore_flags(...); )

+ warn("Double disable of interrupts in %s", __FUNCTION__);
cli();

@@ @@
( sti(); | restore_flags(...); )

... WHEN != cli();
+ warn("Double enable of interrupts in %s", __FUNCTION__);
( sti(); | restore_flags(...); )

Figure 5. Warning about bugs in interrupt status manage-
ment

@@ expression e; @@
cli();
... WHEN != ( sti(); | restore_flags(...); )

- kmalloc(e,GFP_KERNEL);
+ kmalloc(e,GFP_ATOMIC);

Figure 6. Changing kmalloc flag

the function call actually blocks, the kernel is effectively
deadlocked since no interrupts will be received to awaken
the sleeping kernel. One such function is the kernel memory
allocation function, kmalloc, which may block to wait for
more memory to be available if it is given GFP_KERNEL as its
second argument. Thus, kmalloc should not be called with
this argument when interrupts are disabled. Figure 3 shows
a semantic patch that searches for this pattern.

More Bugs. In addition to the interrupt status manage-
ment bugs discussed above, we have implemented Coccinelle
versions of all the Linux-relevant Metal scripts provided in [4].
Of particular interest are bugs related to memory manage-
ment since they often have high impact on security and
dependability. Figure 4 shows a semantic patch that searches
for a (potential) use of a region of memory after it has been
free’d. The repeated use of the metavariable E ensures that
the argument to kfree is the same as some subsequent ex-
pression. Since Coccinelle uses syntactic matching, however,
it will generate a false positive if there is an intervening reas-
signment of E. We consider how to reduce the number of false
positives in Section 5. We have also implemented a semantic
patch for detecting cases where the result of kmalloc is used
without first being checked for NULL.

3. Fixing Bugs with Coccinelle
Our goal is not only to find potential bugs, but also to insert
“workarounds”, i.e., code that is meant as a temporary stop-
gap, not as a permanent solution, to a potential problem. A
workaround could disable a vulnerable service, provide extra
logging to make forensic analysis easier, etc. By following
the example of Figure 1, we can use Coccinelle to add such
code during the bug-finding process.

We first consider the bugs related to the double enabling
or disabling of interrupts. The semantic patch in Figure 2
detects that some control-flow path contains, e.g., a double
cli or double sti. Because these operations may be involved



in other control-flow paths, we cannot simply remove the
second one. Instead, we introduce logging code, to make any
bugs that potentially involve a double cli or sti easier to
diagnose. This transformation is performed automatically
by the augmented semantic patch shown in Figure 5. The
semantic patch could be further augmented to declare a
flag in the enclosing function, to set and clear this flag on
reaching a cli or sti respectively, and to only generate a
warning or error when this flag indicates that a use of cli or
sti is invalid. While such flags can be expensive to maintain,
in this case, the semantic patch statically ensures that they
are only added to functions in which there is a potential
problem.

For calls to kmalloc that may potentially block with in-
terrupts disabled, a more proactive approach is possible:
changing GFP_KERNEL to GFP_ATOMIC will prohibit the kernel
from blocking during memory allocation. Figure 6 shows a
semantic patch that automatically performs this transforma-
tion. This transformation, however, is not a panacea since the
fact that interrupts are disabled still prevents the kernel from
allowing other processes to free up memory and thus will lead
to more “out of memory” errors. Thus, the maintainer should
ultimately consider what should be done at each code site.
Still, the transformation is safe (with respect to deadlocking
the kernel), and thus represents an appropriate workaround.

4. Preliminary Results
Engler et al. provide a web page with the results of applying
their checkers to a variety of Linux kernels [15]. To validate
our implementations of the above rules, we have repeated
their experiments on Linux 2.3.99-pre6, which is the version
for which results are provided on the web page that is closest
to the version used in Engler et al.’s paper [4]. All of our
experiments were carried out on a 3.40GHz Pentium 4. For
each checker, the total processing time for all of the C files
in the Linux 2.3.99 kernel source tree is under 15 minutes. In
order to compare to Engler et al.’s work we only search for
bugs and do not perform any program transformations. The
code sites identified by these searches are of course candidates
for rewriting.

Engler et al.’s results are classified as BUG or UN-
CHECKED. The former have been manually checked to be
likely bug sites, while the latter may contain false positives.
We thus focus on the matches classified as BUG. Further-
more, due to the large number of BUG null pointer errors,
we consider only those derived from an allocation using the
standard memory allocation function kmalloc. Table 1 indi-
cates the number of checked bugs found by Metal, and the
percentage of these that are found by Coccinelle.

Among the bugs that are not found by the current version
of Coccinelle, the main problems are that the enclosing
function could not be parsed, in which case Coccinelle skips to
the next function, or a specialised macro was used (“naming”
in Table 1), obscuring the source code. The parsing errors
are primarily due to the fact that Coccinelle does not invoke
the C preprocessor since this would make it impossible to
detect bugs in code that disappears due to #ifdef processing.
Specialised macros are used in some drivers to define their
own memory allocation functions or macros, to override
or extend kmalloc. Despite this, Coccinelle finds up to
100% of the Metal-detected bugs. Furthermore, our design
decisions for Coccinelle imply that it finds some bugs that are
overlooked by Metal. For example, in drivers/net/3c515.c,
Coccinelle finds bugs in both branches of an #ifdef, but the

detected % detected Missed bugs reasons
by Metal by Coccinelle Parsing Naming

Interrupt checking 23 91% 9% 0%
Use of freed memory 17 100% 0% 0%
Deref of null pointers 40 85% 8% 8%
(kmalloc bugs only)

Table 1. The number of bugs detected by Metal, and their
treatment by Coccinelle

Interrupt checking: Double sti() 1
Interrupt checking: Error-paths with no sti() 1
Use of freed memory 1
Dereference of null pointers 3

Table 2. Bugs detected by Coccinelle, but overlooked by
Metal

Coccinelle Metal [4] (Linux 2.3.99)
Use of freed memory 9 (53%) 43%
Dereference of null pointers 5(12%) 11%

Table 3. False positives. Percentages compare false positives
to checked bugs.

void isdn_ppp_cleanup(void) {
int i;
for (i = 0; i < ISDN_MAX_CHANNELS; i++)

kfree(ippp_table[i]);
}

Figure 7. Bug-free use of “freed” memory in
drivers/isdn/isdn_ppp.c (Linux 2.3.99-pre6)

Metal results include only one of them. Table 2 indicates the
number of such bugs found by Coccinelle, but not Metal.

Finally, like Metal, Coccinelle finds a number of false
positives. Table 3 assesses the match sites that occur within
the BUG files but are not marked as bugs by Engler et al. Our
false positive rates within these files are roughly comparable
to the false positive rates reported by Engler et al. [4].

5. Towards reducing the number of false
positives

The rule detecting the use of freed memory finds all of
the bugs identified by Engler et al., but has the highest
rate of false positives among our examples. The source of
these false positives is the case where some subterm of the
argument to kfree is reassigned before the identified use of
the argument expression. An example is shown in Figure 7.
In this code, there is a control-flow path from the call to
kfree(ippp_table[i]) back to itself, and thus to a reference
to its argument expression ippp_table[i]. This reference to
the argument expression is reported as a bug by Coccinelle,
but it is not a bug because the expression depends on the
variable i, whose value changes on each iteration.

The problem here is that the current version of Coccinelle
has no notion of data flow. That is, it can detect that two
terms have the same structure, but it does not know whether
they may have the same value. Staying within the current
capabilities of Coccinelle, we could augment the semantic
patch of Figure 4 by enumerating all the possible forms that
the argument to kfree can have, and extending the when
clause between the call to kfree and the use to check that
none of the possible subexpressions are reassigned. The great
variety of the possible forms of the argument to kfree, e.g.,



@@ expression E1, E2; @@
kfree(E1)
...
E2 where E1 = E2 and E1.dfa = E2.dfa

Figure 8. SmPL patch for matching use-after-free bugs

an array reference, a field reference, a field reference from
an array reference, etc., however, implies that this approach
is highly impractical. Instead, we need to be able to reason
about arbitrary data-flow information, transparently, just as
Coccinelle currently does for control-flow information.

To this end, we propose to extend Coccinelle with data-
flow analysis capabilities, and provide these to SmPL via a
new where-clause, so that we can filter away bug-free matches
such as the one in Figure 7. Figure 8 shows an initial proposal
for how to express this kind of filtering. In this example, we
match a call to kfree with E1 as an argument expression
followed by an arbitrary expression E2, but constrain the
matches so that E1 and E2 are syntactically equal and E1
and E2 are determined to be the same by data-flow analysis.
These constraints are specified using the notation E1 = E2
and the notation E1.dfa = E2.dfa, respectively.

Data-flow information encompasses not only use-def in-
formation, as used in the previous example, but also infor-
mation about the range of concrete values that a particular
expression can assume. Such information could be useful
in detecting bugs such as buffer overflows, where each ar-
ray reference needs to be compared to the size of the array.
Detecting such bugs, however, typically involves arithmetic
computations and constraint solving, which are outside the
scope of Coccinelle. Instead we propose to extend SmPL
with a general interface to integrate scripting language en-
gines into Coccinelle, in order to be able to accept or reject
matches based on more complex rules. Our goal is that using
such scripting language engines should be transparent to
Coccinelle, to make it easy to plug in any tool that could be
relevant to a program searching or transformation task.

Figure 9 illustrates our proposal to interface Coccinelle
with a scripting language, here Python. The semantic patch
consists of two rules, one written in SmPL and one invoking
Python. The SmPL code matches an array declaration and
any subsequent references to it. The Python code is then
invoked for each such match, based on the bindings indicated
in the header (between the two occurrences of @@). The
script uses a library, cocci_lib, that provides callbacks into
Coccinelle, including access to the data-flow analysis engine.
The eval function defined in this library first performs
the data-flow analysis, if needed, memoizes the result, and
then determines the set of possible values of the term in
its argument. The include_match function defined in this
library decides whether this instance of the match should be
accepted as a possible bug or discarded as a false positive.

We consider the application of this semantic patch to the
code shown in Figure 10, which includes the declaration and
use of an array. On this code, the Python script in Figure 9
first calls eval to compute the size of the array, which will
always return one value, as the size of the array must be a
constant, and then uses eval again to compute all possible
values that the array is dereferenced with, obtaining the
range of values [0; 20]. Finally, the comparison in the last line
evaluates to True as one element of the range is 20, which
is outside the array’s bounds. The value True is passed to
include_match, indicating that the matched code represents
a bug.

@@
identifier I;
expression E;
constant C;
type T;
@@
T I[C];
<... I[E] ...>

@@ script: python: C as x, E as y @@
buffer_size = cocci_lib.dfa.eval(x)[1]
index_values = cocci_lib.dfa.eval(y)
cocci_lib.include_match(max(index_values) >= buffer_size)

Figure 9. SmPL patch detecting potential buffer overflows

char buf[20];
int i;

for (i = 0; i <= 20; ++i)
buf[i] = ’A’;

Figure 10. Buffer overflow bug

6. Related Work
In recent years a number of bug-finding tools have been
developed. Tools like Flawfinder [26] and RATS [21] use
simple rules for syntactic searches whereas Metal [4] and
Microsoft’s SDV [1] use more elaborate semantics-based
approaches. None of these tools provides facilities for program
transformation.

Weimer has also proposed to address the difficulty of using
automated bug-finding tools [25]. His approach combines each
bug report with a possible bug fix, inferred from the difference
between the existing code and a description of correct
protocol usage. The bug fix must still be applied manually.
Our approach automates the introduction of workaround
code, but the lack of human intervention implies that the
behavior of this code must be conservative, as illustrated by
the examples in Section 3. It is thus still desirable for the
maintainer to analyze the bug reports and make the most
appropriate bug fix in each case, and Weimer’s technique
would be useful in this process.

A number of other frameworks for specifying and applying
program transformations have recently been developed, from
CIL [16] and XTC [7] that mainly support low-level rewriting
of abstract syntax trees, to higher level languages such as
JunGL [23] for refactoring C# programs and Stratego [24]
for generic program transformation. While these languages
are more expressive than SmPL, they are also more verbose,
and thus do not allow the concise expression of the pattern
to search for and the transformation to perform.

Aspect-Oriented Programming (AOP) has been used
to extend OS code with new functionalities [2], including
logging [13], and adding workaround code at run time [14].
While the pointcut languages of typical aspect systems only
allow adding advice to individual operations [10], there
has been some investigation of pointcut languages that
allow describing sequences of operations [3], as we have
used here. Typical aspect systems also only allow adding
advice to high-level operations, such as method calls and
field references, whereas SmPL allows matching against and
adding or removing code around any C language element.
We conjecture that the latter degree of expressiveness will
be necessary for detecting some kinds of bugs, such as buffer
overflows.

The Broadway compiler [8] has also adopted a pattern-
based search language, but targeting a different area of



application, namely program optimization. As part of their
work they have developed and employed several data-flow
analyses [9, 22] that we will investigate more closely as part
of our work to reduce the number of false positives.

7. Conclusion
In this paper, we have proposed to improve the effectiveness
of bug-finding tools by augmenting bug-finding rules with
transformations that describe how to add workaround code
to potential bug sites. This workaround code can provide
a stop-gap solution between the time when the bug-finding
tool is run and the time when the maintainer has completed
the analysis and treatment of the generated bug reports. We
have tested our bug finding and transformation tool on the
set of examples defined in the initial paper on Metal [4], and
we have found that our approach scales well to operating
systems code and that we achieve comparable rates of bug
detection and false positives. Finally, we have identified some
areas in which our approach could be more expressive or
flexible, both to reduce the number of false positives and to
increase the range of bugs that can be identified.
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