Finding Resource-Release Omission Faults in Linux

Suman Saha

LIP6-Regal
Suman.Saha@lip6.fr

Abstract

The management of the releasing of allocated resources is a contin-
ual problem in ensuring the robustness of systems code. Missing
resource-releasing operations lead to memory leaks and deadlocks.
A number of approaches have been proposed to detect such prob-
lems, but they often have a high rate of false positives, or focus only
on commonly used functions. In this paper we observe that resource-
releasing operations are often found in error-handling code, and
that the choice of resource-releasing operation may depend on the
context in which it is to be used. We propose an approach to finding
resource-release omission faults in C code that takes into account
these issues. The approach is based on parsing C language. We use
our approach to find over 100 faults in the drivers directory of
Linux 2.6.34, with a false positive rate of only 16%, well below the
30% that has been found to be acceptable to developers.

1. Introduction

Omitting needed resource-releasing operations is a common prob-
lem in systems code, such as the Linux operating system, and
can lead to memory leaks and deadlocks. A challenge in detect-
ing resource-release omission faults is to identify the set of expected
resource-releasing operations. One approach that has extensively
been explored is to identify pairs of functions that first allocate and
then release some resource, and then to scan the code base for occur-
rences of an allocation without a corresponding resource-releasing
operation [2, 4, 6, 10]. For some kinds of resources, however, the
choice of resource-releasing operation is context-sensitive, depend-
ing on the phase within a computation at which a release is needed or
whether the current file has defined a specialized resource-releasing
function. When the choice of resource-releasing operation depends
on the context, fault-finding rules relating an allocation function
to e.g. its most common resource-releasing operation will lead to
false positives in cases where the context indicates that a different
resource-releasing operation is required. On the other hand, ignoring
cases where the set of possible resource-releasing functions appears
to contain more than one element will lead to false negatives. We are
not aware of existing approaches that have addressed these issues.
In this paper, we propose an approach to finding resource-
releasing omission faults in the Linux operating system, building on
the observation that many Linux functions need to deal with multiple
possible failures, and thus appropriate error-handling code is often
nearby. To exploit this nearby error-handling code, our approach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLOS ’11 October 23, 2011, Cascais, Portugal.

Copyright © 2011 ACM 978-1-4503-0979-0/11/10. .. $10.00

Julia Lawall

DIKU, University of Copenhagen
julia@diku.dk

Gilles Muller

INRIA/LIP6-Regal
Gilles.Muller@lip6.fr

first collects a list of calls to probable resource-releasing operations,
from all error-handling code in a given function. It then searches
for error-handling code that is missing calls to some of these
operations. Finally, it uses some heuristics to determine whether
these omissions are legitimate or they represent omission faults.
By relying on a list of the resource-releasing operations actually
used in the function’s error-handling code, our approach naturally
takes into account context-sensitive constraints on the choice of
resource-releasing operations. Furthermore, unlike statistics-based
approaches, our approach is independent of the usage frequency of
a resource-releasing operation across the code base.

We have implemented our approach in OCaml, and have carried
out preliminary experiments on the source code of the drivers
directory of Linux 2.6.34. Our experiments find over 100 faults,
with a low number of false positives. Our results furthermore show
that content-sensitivity significantly reduces the number of false
positives. Finally, to make it easier for the user to identify reports
that represent probable faults, we propose a strategy for ranking
the results, that takes into account context information. No false
positives in our results receive a high rank according to this strategy.

The rest of this paper is organized as follows. Section 2 presents
two examples that motivate our work. Section 3 then presents our
fault-finding algorithm. Section 4 presents a preliminary evaluation
of this algorithm. Finally, Section 5 presents related work and
Section 6 concludes.

2. Motivating Examples

We first illustrate resource-release omission faults, using two exam-
ples from the Linux 2.6.34 kernel. These examples, as well as the
other examples presented in the paper, have been found using the
tool we have developed based on our approach.

The first example, shown in Figure 1, relates to the use of
the functions lock_kernel and unlock_kernel. This example
is typical of the use of locking functions. On line 3, the entire
kernel is locked by calling lock_kernel. The error-handling code
on lines 14-15 jumps to the label bail, which correctly calls
unlock_kernel on line 23 to release the kernel lock. However,
the preceding error-handling code, on lines 6 and 8, do not perform
this operation. Both omissions will lead to a deadlock if an error is
detected on line 5 or 7.

The second example, shown in Figure 2, relates to the use of a
highly specialized memory allocation function, w11251_alloc_hw.
This example is typical of the use of allocation functions. On line 3,
a resource is allocated by calling w11251_alloc_hw, and the result
is stored in the variable hw. The error-handling code on lines 8-9
and the error-handling code on lines 18-19 both jump to the label
out_free, which calls ieee80211_free_hw on line 25 to release
hw. However, the error-handling code in the middle of the function,
on lines 13-14, does not have any operation that releases hw. This
omission may lead to a memory leak. We note that the function
wl1251_alloc_hw is only used twice in the Linux kernel, once

1 static int

2 hiddev_open(struct inode *inode, struct file *file) {
3 lock_kernel();

4 L

5 if (i >= HIDDEV_MINORS || i < 0 || 'hiddev_table[i])
6 return —ENODEV;

7 if (!(list = kzalloc(sizeof(struct hiddev_list), GFP_KERNEL)))
8 return —ENOMEM;

9 S

10 if (list—>hiddev—>exist) {

11 if (!list—>hiddev—>open++) {

12 .

13 if (res < 0) {

14 res = —EIO;

15 goto bail;

16 }

17 }

18 .o

19 unlock_kernel();

20 return 0;

21 bail:

22 -

23 unlock_kernel();

24 return res;

25}

Figure 1. Example of an omission fault that may lead to a deadlock
(Linux-2.6.34/drivers/hid/usbhid/hiddev.c)

1 static int __devinit wl1251_spi_probe(struct spi_device *spi) {
2 e

3 hw = wl1251_alloc_hw();

4 if (IS_ERR(hw))

5 return PTR_ERR(hw);

6

7

8

if (ret < 0) {

9 goto out_free;
10 }

12 if (!wl—>set_power) {

13 L

14 return —ENODEV;
15 }

16 .

17 if (ret < 0) {

18 S

19 goto out_free;

20 }

21 e

22 return 0;

23 e

24 out_free:

25 ieee80211_free_hw(hw);
26 return ret;

27 }

Figure 2. Example of an omission fault that may cause a memory
leak (Linux-2.6.34/drivers/net/wireless/wl12xx/wl1251_spi.c)

with this resource-releasing operation and once without. Therefore,
statistics-based approaches [2, 6] are not likely to detect this fault.

3. Detecting Resource-Release Omission Faults

We have designed an algorithm to detect resource-release omission
faults based on the information available in the current function. This
algorithm first globally analyzes a function’s error handling code to
identify its resource-releasing operations, and then finds omissions

u(a) | x(d)

X
Y [u@ [vlb) [wO [x(d |
Z [u@ [v®) [wO [yO |

Figure 3. A schematic representation of a function’s error-handling
code

of these operations in the individual blocks of error-handling code.
Concretely, the algorithm performs the following steps:

1. Collect the complete set of resource-releasing operations used
by a given function in its error-handling code.

2. Compare each block of error-handling code within the function
with the set of collected resource-releasing operations to deter-
mine whether any resource-releasing operations are omitted.

3. Analyze the omitted resource-releasing operations using heuris-
tics to determine whether they represent omission faults.

We now describe these steps in more detail.

3.1 Identify resource-releasing operations

The algorithm first analyzes the error-handling code in a given
function to identify its probable resource-releasing operations. We
consider error-handling code to be any conditional branch that ends
with a return or goto, following Linux coding conventions. Within
such code, we consider a probable resource-releasing operation to be
a call to a function that has at most one pointer-typed argument and
that does not have any explicit string arguments, as string arguments
are typical of debugging code. The pointer-typed argument, if any,
is considered to be the released resource. The identified set of
operations is stored in the function list.

As a running example, consider a function containing three
blocks of error-handling code X, Y, and Z, shown schematically in
Figure 3. In this case, the function list is {u(a), v(b), w(), x(d), y()}.

3.2 Finding omitted resource-releasing operations

For each block of error-handling code, the algorithm then calculates
the set of omitted resource-releasing operations, which is the differ-
ence between the set of resource-releasing operations in the function
list and the set of resource-releasing operations in the error-handling
code. We refer to this difference as the candidate set.

Continuing with the example of Figure 3, suppose that we are
analyzing the block of error-handling code labelled X, indicated
in grey. In this case, the difference between the function list, {u(a),
v(b), w(), x(d), y()} and the resource-releasing operations in X,
{u(a), x(d)}, is {v(b),w(), ¥()}, which is the candidate set for X.
The remainder of the algorithm then analyzes this candidate set to
determine which of its elements represent omission faults.

3.3 Finding resource-releasing omission faults

The third step analyzes each element of a candidate set to determine
whether omitting the operation in the current error-handling code
is legitimate or represents a probable omission fault, taking into
account the context in which the omission occurs. The algorithm
considers the following heuristics to identify cases in which a given
resource-releasing operation is not actually needed:

1. The variables used to describe the released resource are un-
defined or have a different definition at the point of the error-
handling code than at the point of the occurrence in the code of
the element of the candidate set.

2. The released resource is returned by the error-handling code.

3. The resource is released in an alternate way.

We now describe these cases in more detail.

Definitions of variables The algorithm uses a dataflow analysis to
identify the reaching definitions for the variables used to describe the
released resource, both at the point of the omission and at the point of
the occurrences of the associated element of the candidate set in the
source code. If at the point of the omission some of these variables
are not yet defined or contain different values than at the occurrence
of the element of the candidate set, then there is no evidence that
the given block of error-handling code needs the omitted resource-
releasing operation. This dataflow analysis takes into account not
only explicit definitions, but also information that can be inferred
from test expressions. For example, in Figure 2, at line 3, a resource
is allocated by calling w11251_alloc_hw, and the result is stored in
the variable hw. From the analysis of the complete function, we find
that the resource-releasing function for hw is ieee80211 _free_hw,
which is not found in the error-handling code on line 5. However,
the associated conditional tests whether hw is an error value, and
thus in the error-handling code we consider that the definition of
hw is at the point of the if test, not the call to w11251_alloc_hw.
Therefore, there is no need to release hw in the error-handling code.

Finally, the algorithm treats specially the case of a function that
has no arguments, and thus has no explicit released resource. In
Figure 1, the error-handling code on lines 6 and 8 is missing the
resource-releasing operation unlock_kernel. Since this operation
does not have any arguments, the algorithm assumes that the missing
operation is a probable omission fault and further analyzes this
operation.

Return of the resource The algorithm checks the return statement
of the error-handling code to determine whether it uses the released
resource. If the resource is returned, then it should not be released.
For example, in Figure 4, a resource is allocated and stored into the
variable bh on line 1. The code on line 7 returns bh and thus it is
not appropriate to release this value.

1 bh = udf_tread(sb, block);
2 () |

3 .

4 goto error_out;
5}

6 .

7 if (...) return bh;
8 .

9 error_out:

0 brelse(bh);

1

—_ =

return NULL;

Figure 4. Example of returning a resource
(Linux-2.6.34/drivers/input/xen-kbdfront.c)

Alternate release of the resource Rather than releasing a resource
in the error-handling code using the identified element of the
candidate set, the resource can be released earlier or using a different
function, depending on the context. Figure 5 illustrates four ways in
which this can occur. First, the missing resource-releasing operations
may appear in the execution path prior to the error-handling code.
For example, in scenario 1, line 9 calls kfree(attr) and thus
this call is not needed in the subsequent error-handling code on
lines 12-13. Second, a resource can be released by some operation
other than the omitted resource-releasing operation either before
or inside the error-handling code. In scenario 2, the error-handling
code on lines 2-4 uses kfree(fw) to release fw. However, the
subsequent error-handling code, on lines 7-8, uses free_fw to
release fw. This operation is also used to release fw in line 11 prior
to the error-handling code on line 14, and thus no call to kfree (fw)
is needed in either case. Third, a resource can be referenced via

another pointer. Any resource-releasing operation on that pointer
may release the resource as well. In scenario 3, in line 6, the variable
pr is stored in the structure device. The subsequent error-handling
code on lines 9-10 releases the resource using device instead of
pr on line 14. In the final case, an intervening function takes the
resource as an argument to perform a specific task but is not able
to perform this task successfully and releases the resource. No
subsequent resource-releasing operation is needed. This case is
illustrated by scenario 4, where the resource command is passed to
the function usb_bulk_msg on line 4. On failure, usb_bulk msg
releases command. Therefore, the subsequent error-handling code
on lines 7-8 does not need to release this resource.

The above-mentioned alternate ways of releasing resources can
be identified by analyzing the execution path from the allocation
of the resource to the return statement of the error-handling code,
that omits the resource-releasing operation. The use of alternate
operations to release a resource in scenarios 2 and 3 can be identified
by interprocedural analysis and alias analysis, respectively. In the
case of scenario 4, the approach assumes that the intervening
function releases the resource for the given error-handling code if the
subsequent error-handling code does contain the omitted resource-
releasing operations.

4. Evaluation

We have implemented a tool based on our omission-fault finding
algorithm. This tool consists of around 1200 lines of OCaml code,
not including the code for the C code parser and C abstract syntax,

1 attr = kmalloc(. . .); 1 if (...) {
2 L. 2 S
3 if (ret) { 3 kfree(fw);
4 S 4 return —ENOMEM;
5 kfree(attr); 5 }
6 return ERR_PTR(ret); 6 if (...){
7} 7 free_fw(fw);
8 L 8 return —EFAULT;
9 kfree(attr); 9 }
10 pool = kmalloc(...); 10 ...
11 if (!pool) { 11 free_fw(fw);
12 o 12 -
13 return ERR_PTR(—ENOMEM); 13 if (...)
14 } 14 return err;
a) Scenario 1 b) Scenario 2
1 if (...) { 1 if (Iresult)
2 kfree(pr); 2 goto no_result_buffer;
3 return ; 3 S
4 3 4 ret = usb_bulk_msg(...,
5 ... 5 command, ...)
6 device—>driver_data = pr; 6 if (ret) {
7 . 7 S
8 if(...){ 8 goto no_firmware;
9 . 9 }
10 goto err_remove_fs; 10 -
11 } 11 no_firmware:
12 S 12 ce
13 err_remove._fs: 13 return —ENODEYV;
14 acpi_processor_remove_fs 14 A
15 (device); 15 no_result_buffer:

16 kfree(command);

¢) Scenario 3 d) Scenario 4

Figure 5. Ways of releasing a resource (Linux-2.6.34).

a. ib_create_fmr_pool in drivers/infiniband/core/fmr_pool.c

b. vx_hwdep_dsp_load in sound/drivers/vx/vx_hwdep.c

c. acpi_processor-add in drivers/acpi/processor_driver.c

d. whiteheat_firmware_attach in drivers/usb/serial/whiteheat.c

which we have borrowed from the implementation of Coccinelle [8].
We have evaluated our tool on the Linux 2.6.34 kernel, released in
May 2010, focusing in these preliminary experiments only on the
drivers directory. All of our experiments were carried out on one
core of an 8-core 3GHz machine with 16GB memory.

We first present our overall results on the drivers directory,
assess these results in light of data-mining strategies, and quantify
the importance of context-sensitivity to our results. Finally, we
propose and evaluate a ranking strategy, that highlights the reports
that most probably represent actual faults.

Results As shown in Table 1, the tool generates a total of 126
reports for the drivers directory, relating to code within 78
functions. We manually investigated all of these reports and found
that 103 of the reports represent actual faults, which come from 65
different functions. Our assessment of the faults is mainly based on
our own understanding of the code. We have also submitted patches
based on some of the reports to the maintainers of the affected code,
and these patches have been accepted.'

The impact of these faults depends on the kind of code in which
they occur. 63% of the faults are in driver initialization functions,
and thus can only occur at most once in normal usage of the device.
All of these faults are memory leaks. The remainder of the faults
occur in driver open, ioctl, or read/write functions. Most of these
faults are again memory leaks, but some can lead to deadlocks.
A few faults are only related to debugging code. Open and ioctl
functions typically are invoked only a small number of times by
each application that uses the device, but could be invoked repeatedly
in the case of a denial of service attack. Read/write functions are
typically invoked many times in the normal usage of the device.
Faults in this kind of code can thus have a high impact.

We also found 20 false positives within 10 functions, i.e., 16% of
the total number of reports. A false positive rate of under 30% has
been found to be acceptable in practice [1], and indeed the absolute
number of false positives is not high. We are still investigating 3
reports, due to insufficient expertise in the associated APIs.

Comparison with data-mining strategies Data-mining based ap-
proaches to identifying pairs of related allocation and resource-
releasing operations and other similar protocols typically use thresh-
olds defined in terms of support (the number of occurrences of the
protocol) and confidence (the number of occurrences of some rele-
vant information that match an expected pattern vs. the number that
do not) to reduce the number of false positives. The data-mining-
based protocol-finding tool PR-Miner [6], for example, only reports
on sets of functions that occur together at least 15 times, with a
confidence of at least 90%.> We have evaluated our identified faults
with respect to these parameters, as shown in Figure 6. The xs and
circles represent the 30 pairs of allocation and resource-releasing
operations associated with our 103 identified faults, and the y-axis
indicates support, while the x-axis indicates confidence. The figure
shows that only two pairs, marked as x, have support greater than
15 and confidence greater than 90%. These two pairs are associated
with only 10 of the 103 faults found by our approach. Thus, most of
the faults we have found would be missed by approaches using these
thresholds. On the other hand, reducing the support or confidence
thresholds used by data-mining-based approaches could drastically
increase their number of false positives.

Context sensitivity 'We have previously observed that for some
kinds of resources, the choice of resource-releasing operation may

! Examples, from linux-next [7]: 7febe2be36035e5¢75128e8cc3baeb1£30fa2bc4,

b722dbf176b67c75fe0f5a6b1b31f5ea8aa6117d

2 Concretely, we compute the confidence as the number of times the alloca-
tion function occurs with the given resource-releasing operation as compared
to the total number of times the allocation function occurs.

Total reports Faults | FP | TODO
Fault count 126 103 20 3
Function count 78 65 10 3

Table 1. Total number of Faults, False Positives (FP), and TODO,
and the number of different functions that contain them

x Pairs having support >= 15 and confidence >= 90%
402 Other pairs

oo ® o0 o000, XX

Support
[353
S

5 . s :

Ot+—Tr+—>71—1r—7T—7 11

0 10 20 30 40 50 60 70 80 90 100
Confidence (%)

Figure 6. Support and confidence associated with the functions
found in the faults reported by our algorithm. The dotted lines mark
the thresholds of support 15 and confidence 90%.

depend on the context in which releasing the resource is needed.
Searching for one type of resource-releasing operation when the
context indicates that another one should be used results in false
positives. In order to reduce the number of false positives, the tool
must be aware of the context in which error-handling code appears.

Scenarios 2 to 4, illustrated in Figure 5 to motivate the third step
of our algorithm, involve issues of context sensitivity. We analyze
how often the strategies derived from these scenarios discard reports,
avoiding false positives. Our tool found 331 resource allocations for
which at least one resource-releasing operation seems to be omitted.
‘We refer to these as candidate resources. In scenario 2, a resource-
releasing operation seems to be omitted, but another one is used
instead. Table 2 shows the number of the candidate resources that
are associated with only one kind of resource-releasing operation
in a given function, and the number that are associated with more
than one in the given function. 22.4% of the candidate resources
are released within a single function by two different operations
while 4.2% of the candidate resources are released by three different
operations. In scenario 3, a resource is accessible via another
pointer, and is released via this pointer. Table 3 shows that 5.2%
of the candidate resources are released in this manner. Finally, in
scenario 4, a resource is released by an intervening function when
this function fails on some task. Table 4 shows that 15.7% of the
candidate resources are released in this manner. Moreover, 14.8%
are released by a call to some other function that is defined in the
same file (Table 5). Our tool takes these issues into account and does
not generate reports in these cases.

resource released Total
by three operations

resource released
by two operations

resource released
by one operation

243(73.4%) 74(22.4%) 14(4.2%) 331

Table 2. Number of different operations used to release a resource

released via | not released via Total
another pointer | another pointer
17 (5.2%) 314 (94.8%) 331

Table 3. Number of resources that are released via other pointers
and that are only released directly

not released via Total
other operations
279 (84.3%) 331

released via
other operations
52 (15.7%)

Table 4. Number of resources that are released via other operations
and that are only released directly

not released via Total
a local function
282(85.2%) 331

released via
a local function
49(14.8%)

Table 5. Number of resources that are released by calling another
function defined in the same file, and number of resources that are
only released by non local function calls

Ranking the fault reports As our algorithm does report some false
positives, we have experimented with a ranking strategy to draw the
user’s attention to the most probable fault instances.

We rank the reports as high and low. A report is ranked high if the
omitted function appears in both a preceding block of error-handling
code and a following block of error-handling code. In this case, we
have high confidence that the resource has both been allocated
(based on the preceding error-handling code) and has not yet been
released (based on the following error-handling code). Other faults
are ranked low. For example, in Figure 2, the tool found an omission
of ieee80211_free_ hw in the error-handling code on lines 13-
14. The omitted resource-releasing function appears in both the
preceding error-handling code on lines 8-9 and the following error-
handling on lines 18-19, and thus the fault receives rank high. On the
other hand, in Figure 1, the tool found omissions of unlock_kernel
in the blocks of error-handling on lines 6 and 8. There is no
preceding error-handling code that contains unlock_kernel, and
thus these faults receive rank low.

Table 6 shows the total number of high and low ranked reports.
22 reports are ranked high and 104 are ranked low. No false positives
have high rank. Still, many actual faults are given a low rank. We
envisage that the user may want to study the high ranked reports first,
to get an overall understanding of the problem of resource-release
omissions, and then consider the low ranked reports, taking into
account the acquired intuitions.

Total reports Faults | FP | TODO
High 22 21 0 1
Low 104 82 | 20 2

Table 6. Ranking reports

5. Related Work

A number of approaches have been proposed to detect the omission
of certain operations in systems code. One well known technique is
to use some form of data mining to extract implicit programming
rules from the software source code and then to use static analysis to
detect faults based on those programing rules. Engler et al. [2] and
Li et al. [6] both propose variations of this approach. Kremenek et
al. [3] present a framework based on factor graphs for automatically
inferring specifications directly from programs. Ramanathan et
al. [9] integrate mining within a path-sensitive dataflow framework
to define potential preconditions of a procedure. Le Goues and
Weimer [5] integrate extra information about nonfunctional code
characteristics, such as churn and author expertise. Our approach is
completely different, in that it relies entirely on local information
rather than a global analysis of the software. As compared to other

approaches, our approach may result in false negatives, when error-
handling code is omitted and there is no relevant code nearby. But,
as we have shown, it can also find faults in the use of protocols that
are likely to be overlooked or given a low rank by other approaches.

In previous work, we have considered how to restructure Linux
error-handling code to introduce the use of gotos, which jump to a
cascade of resource-releasing operations at the end of the current
function. This structure for error-handling code is suggested by
the Linux coding style guidelines. A number of the faults found in
this work stem from cases where direct returns are mixed in with
error-handling code using gotos, and the direct returns omit some
required resource-releasing operations.

6. Conclusion

In this paper, we have provided an approach to finding resource-
release omission faults that takes context information into account.
Our proposed approach finds a number of probable faults in Linux
kernel code with only a small number of false positives. We have
shown that taking context information into account significantly
reduces the number of false positives. Moreover, the approach
ranks the generated reports to draw the user’s attention to the more
probable fault instances.

Our approach only detects the omission of resource-releasing
operations, but does not fix these faults. In future work, we will
extend the algorithm to consider this issue. The proposed approach
keeps track of NULL values, but does not fully use this information,
e.g., to find probable NULL pointer dereferences. We will consider
the benefit of such checks in future work. Finally, we will consider
the applicability of our approach to other kinds of systems software.

References

[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. Commun.
ACM, 53:66-75, Feb. 2010.

[2] D. R. Engler, D. Y. Chen, A. Chou, and B. Chelf. Bugs as deviant
behavior: A general approach to inferring errors in systems code.
In Proceedings of the 18th ACM Symposium on Operating System
Principles, pages 57-72, Banft, Canada, Oct. 2001.

[3] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From
uncertainty to belief: Inferring the specification within. In OSDI, pages
161-176, Nov. 2006.

[4] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muller, and N. Palix.
WYSIWIB: A declarative approach to finding protocols and bugs in
Linux code. In DSN, pages 43-52, Estoril, Portugal, June 2009.

[5] C. Le Goues and W. Weimer. Specification mining with few false
positives. In TACAS, volume 5505 of Lecture Notes in Computer
Science, pages 292-306, York, UK, Mar. 2009.

[6] Z. Li and Y. Zhou. PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software code.
In ESEC/FSE, pages 306315, Lisbon, Portugal, Sept. 2005.

[7] Linux. Linux-next gitweb, 2011.
http://git.kernel.org/?p=linux/kernel/git/next/linux-
next.git;a=summary.

[8] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and
automating collateral evolutions in Linux device drivers. In EuroSys
2008, pages 247-260, Glasgow, Scotland, Mar. 2008.

[9] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive
inference of function precedence protocols. In ICSE, pages 240-250,
Minneapolis, MN, USA, May 2007.

[10] W. Weimer and G. C. Necula. Mining temporal specifications for
error detection. In TACAS, volume 3440 of Lecture Notes in Computer
Science, pages 461-476, Edinburgh, UK, Apr. 2005.

