Autom Softw Eng (2010) 17: 119-148
DOI 10.1007/s10515-010-0062-z

Generic patch inference

Jesper Andersen - Julia L. Lawall

Received: 24 January 2010 / Accepted: 1 February 2010 / Published online: 12 February 2010
© Springer Science+Business Media, LLC 2010

Abstract A key issue in maintaining Linux device drivers is the need to keep them
up to date with respect to evolutions in Linux internal libraries. Currently, there is
little tool support for performing and documenting such changes.

In this paper we present a tool, spdiff, that identifies common changes made in a
set of files and their updated versions, and extracts a generic patch performing those
changes. Library developers can use our tool to extract a generic patch based on the
result of manually updating a few typical driver files, and then apply this generic patch
to other drivers. Driver developers can use it to extract an abstract representation of
the set of changes that others have made.

Our experiments on recent changes in Linux show that the inferred generic patches
are more concise than the corresponding patches found in commits to the Linux
source tree while being safe with respect to the changes performed in the provided
driver files.

Keywords Linux - Patches - Change detection

1 Introduction

In the case of open-source software, such as Linux, where the developers are widely
distributed, it must be possible to exchange, distribute, and reason about source code
changes. One common medium for such exchange is the patch (MacKenzie et al.
2003). When making a change in the source code, a developer makes a copy of the

J. Andersen - J.L. Lawall ()

Department of Computer Science (DIKU), University of Copenhagen, Universitetsparken 1,
2100 Copenhagen @, Denmark

e-mail: julia@diku.dk

J. Andersen
e-mail: jespera@diku.dk

@ Springer

mailto:julia@diku.dk
mailto:jespera@diku.dk

120 Autom Softw Eng (2010) 17: 119-148

code, modifies this copy, and then uses diff to create a file describing the line-by-
line differences between the original code and the new version. He then distributes
this file, known as a patch, to subsystem maintainers and mailing lists for discussion.
Once the patch has been approved, other developers can apply it to their own copy of
the code, to update it to the new version.

Patches have been undeniably useful in the development of Linux and other open-
source systems. However, it has been found that they are not very well adapted for
one kind of change, the collateral evolution (Padioleau et al. 2006). A collateral evo-
lution is a change entailed by an evolution that affects the interface of a library, and
comprises the modifications that are required to bring the library clients up to date
with this evolution. Collateral evolutions range from simply replacing the name of a
called library function to more complex changes that involve multiple parts of each
affected file. Such changes may have to be replicated across an entire directory, sub-
system implementation, or even across the entire source code. In the case of Linux,
it has been shown that collateral evolutions particularly affect device drivers, where
hundreds of files may depend on a single library (Padioleau et al. 2006).

The volume and repetitiveness of collateral evolutions strain the patch-based de-
velopment model in two ways. First, the original developer has to make the changes
in every file, which is tedious and error prone. Second, developers that need to read
the resulting patch, either to check its correctness or to understand what it will do to
their own code, may have to study hundreds of lines of patch code, which are typi-
cally all very similar, but which may contain some subtle differences. An alternative
is provided by the transformation system Coccinelle, which raises the level of ab-
straction of patches to semantic patches (Padioleau et al. 2008). A semantic patch
describes a change at the source code level, like an ordinary patch, but is applied in
terms of the syntactic and semantic structure of the source language, rather than on
a line-by-line basis. Semantic patches include only the code relevant to the change,
can be abstracted over irrelevant subterms using metavariables, and are independent
of the spacing and line breaks of the code to which they are applied. The level of
abstraction of semantic patches furthermore implies that they can be applied to files
not known to the original developer—in the case of Linux, the many drivers that are
maintained outside the Linux source tree.

Despite the many advantages of semantic patches, it may not be reasonable to ex-
pect developers to simply drop the patch-based development model when performing
collateral evolutions. For the developer who makes the collateral evolution, there can
be a gap between the details of an evolution within a library and the collateral evolu-
tion it entails. Therefore, he may still find it natural to make the required changes by
hand in a few typical files, to better understand the range and scope of the collateral
evolution that is required. Furthermore, the standard patch application process is very
simple, involving only replacing one line by another, which may increase confidence
in the result. Thus, developers may find it desirable to continue to distribute standard
patches, with or without an associated semantic patch.

What is then needed is a means of mediating between standard patches and se-
mantic patches, by inferring semantic patches from standard patches. In this paper,
we propose a tool, spdiff, that infers a restricted form of semantic patch, which
we refer to as a generic patch, from a collection of standard patches implementing a

@ Springer

Autom Softw Eng (2010) 17: 119-148 121

common set of transformations. The Linux developer who makes a change in a library
that affects the library’s interface can perform the collateral evolution in a few files
based on his knowledge about how drivers typically make use of the library, and then
apply spdiff to produce a generic patch that can be applied to the other files au-
tomatically. Complementarily, the developer who needs to read an existing standard
patch implementing a collateral evolution can apply spdiff to the patch to obtain
a more concise, abstract representation of the common changes that are performed,
as well as information about any deviations from these common changes, which may
represent bugs or special cases of which he should be aware. If the developer main-
tains proprietary code outside the Linux kernel source tree, he may furthermore use
the inferred generic patch to apply the necessary changes.
Concretely, the contributions of this paper are:

— We provide a formalization of what constitutes a concise and abstract generic
patch. The formalization does not rely on particular features of our generic patches
and thus could be instantiated for other transformation languages.

— We give an algorithm, spfind, that infers concise and abstract generic patches
for C code. We have implemented the algorithm spfind in a tool spdiff.

— We show examples of the generic patches inferred by spdiff for some recent
collateral evolutions in Linux.

The rest of this paper is organized as follows. Section 2 presents a motivating
example that illustrates some of the issues taken into account by our approach. Sec-
tions 3 through 5 formally present our algorithm for inferring generic patches, by first
defining a core term language, then developing the necessary elements of a theory of
patches on this language, and finally defining the algorithm itself. Section 6 illustrates
the application of our spdi £ £ tool to various recent collateral evolutions performed
in the Linux source tree. Section 7 describes related work and Sect. 8 concludes.

2 Motivating example

To motivate the design of spfind, we begin with a simple example of a collat-
eral evolution from March 2007 and consider the issues involved in inferring a
generic patch for it. The collateral evolution required replacing uses of the general-
purpose memory copying function memcpy that manages network buffers by calls to
a special-purpose function, skb_copy_from_linear.

Figure 1 shows extracts of two files affected by this collateral evolution and the
updates to these files. The lines prefixed with - and + indicate where code was re-
moved and added, respectively. When lines annotated with - and + are adjacent, as
in this example, the code on the + lines essentially replaces the code that matched
the - lines in the original version. Furthermore, the line that is prefixed with ! has

1Git SHA1 identification codes
lade2d093fd5f3eaf8cffc04alb803£8b0ddef6d and
d626£62b11e00cl6e81e4308ab93d3£13551812a.

All patches in this paper can be obtained from
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

@ Springer

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

122

Autom Softw Eng (2010) 17: 119-148

static int ax25_rx_fragment (
ax25_cb *ax25,
struct sk_buff *skb)

struct sk_buff *skbn, *skbo;

if (ax25->fragno 0) {
/* Copy data from the fragments */
while ((skbo skb_dequeue (
&ax25->frag_queue))
= NULL) {
- memcpy (skb_put (skbn,
skbo->data,
- skbo->1len) ;
skb_copy_from_linear_data (
skbo,
skb_put (skbn,
skbo->1len) ;

skbo->1len),

skbo->1len),

+ o+ o+ o+

kfree_skb (skbo) ;

}
static int ax25_rcv(

struct sk_buff *skb,
{

if (dp.ndigi == 0) {
kfree (ax25->digipeat) ;
ax25->digipeat NULL;
} else {
/*Reverse the source SABM's path*/
! memcpy (ax25->digipeat, &reverse_dp,
! sizeof (ax25_digi));

static

struct sk_buff *dnrmg_build_message (
struct sk_buff *rt_skb,
int *errp)

struct sk_buff *skb = NULL;

if (!skb)
goto nlmsg_ failure;

memcpy (ptr, rt_skb->data,
rt_skb->1len) ;
skb_copy_from_linear_data(
rt_skb, ptr, rt_skb->len);

nlmsg_failure:
if (skb)
kfree_skb(skb) ;

}

File: net /decnet/netfilter/dn_rtmsg.c

memcpy (skb_put (skbn, skbo->len),
skbo->data,
skbo->1len) ;
skb_copy_from_linear_data(
skbo,
skb_put (skbn,
skbo->len) ;

skbo->1len),

rt_skb->data,

rt_skb->len) ;

skb_copy_from_linear_data(
rt_skb, ptr, rt_skb->len);

memcpy (ptr,

File: net /ax25/ax25_in.c

Set of changes for the two files

Fig. 1 Extracts of the two files and the set of changes for the two files (bottom right)

superficially the same form as the others, in that it represents a call to memcpy, but
it is not affected by the collateral evolution. In the first file, two calls to memcpy are
present initially and only one is affected, and in the second file there is only one such

call and it is affected.

A summary of the changes is shown in the bottom-right part of Fig. 1. The sum-
mary reveals that although there are differences in how the two files were modified,
there are also compelling similarities in the modified parts of the code:

1. All calls to memcpy where the second argument references the field data
from a sk_buff structure are changed into calls to skb_copy_from_1i-
near_data. On the other hand, in the call to memcpy marked with a !, the
second argument does not reference the field data.

The first argument becomes the second.
The field reference to data in the original second argument is dropped. The re-

sulting expression becomes the first argument of the new function call.

function call.

@ Springer

The third argument of memcpy is copied as-is to the third argument of the new

Autom Softw Eng (2010) 17: 119-148 123

The changes made to the two mentioned files can be summarised compactly as the
following generic patch derived using our inference tool:

ee
expression X0;
struct sk_buff *X1;
expression X2;
Qe
memcpy (X0,X1->data, X2)
+ skb_copy_from_linear_data(X1l,X0,X2)

where X0, X1, and X2 serve as placeholders (metavariables) for concrete arguments.
The metavariables are declared to match expressions (X0 and X2) and an ex-
pression of type struct sk_buff * (X1). Intuitively, the generic patch is an
abstract representation of the changes made: in the context of a call to memcpy
where the first and third arguments are arbitrary expressions and the second is of
type struct sk_buff * and references the data field of the sk_buff struc-
ture, then change the called function to skb_copy_from_linear_data, move
the first argument to the second position, remove the data field reference of the
second argument and make it the first argument in the new function call, and copy
the third argument as-is. Thus, the combined requirements on the context in which to
make a transformation ensure that only the calls marked with - are affected and leave
out the call to memcpy marked with !, as required.

There are two main issues to be considered when inferring generic patches:
(1) compactness and (2) safety.

Compactness The most trivial way to construct a generic patch is simply to enumer-
ate the changes, as done for the example earlier in this section. The result, however,
would be no better than a standard patch, and it would generally not be applicable to
files other than the ones used for the inference. Finally, it would generally not be read-
able as high-level documentation of the changes performed. We prefer, therefore, a
more compact description of the changes. We produce the more compact description
by replacing subterms that are not affected by the transformation by metavariables.
The use of metavariables is illustrated in the generic patch above where e.g., X0
is used rather than the concrete terms skb_put (skbn, skbo->1en) (in the file
ax25_1in.c) and ptr (in the file dn_rtmsg. c).

Safety The safety of a generic patch requires that only things that were actually
changed in the original file should be changed by the inferred generic patch. In our
example, one of the calls to memcpy was not changed. We saw that we could ensure
safety by imposing structural and type-based restrictions on the second argument
to memcpy: only those calls where the second argument had the correct type and
referenced the data field should be affected.

In the next two sections we develop the machinery needed to present an algorithm
that can automatically infer compact and safe generic patches such as the one shown
above. In the example above, there was only one change, but the method we describe
is capable of deriving a generic patch that can perform multiple changes at code sites
scattered throughout the source program, and always ensures that the derived generic
patch correctly describes a set of transformations that apply to all the files given as
nput.

@ Springer

124 Autom Softw Eng (2010) 17: 119-148

3 Setup

While our approach targets C code, we formalise it in terms of a simpler language,
which we call the language of TERMs. The syntax of the language of TERMs is given
as:

Definition 1 (Syntax of Terms)

TERM ::= ATOM | ATOM(TERM™)

In this definition, and subsequently, t* indicates one or more comma-separated oc-
currences of the nonterminal 7. Furthermore, terms will be written as a and a(ts),
for atomic and compound terms respectively, where a represents an ATOM and fs
represents a TERM™.

Generic patches describe updates on terms. A generic patch is created out of pat-
terns, as defined below.

Patterns A pattern is a TERM that may additionally contain metavariables, which
are placeholders for concrete terms. The syntax of patterns is as follows:

Definition 2 (Syntax of Patterns)
p i= ATOM | ATOM(p+) | Meta | Meta(p+)

where Meta denotes a set of metavariables. In the examples, we use uppercase letters
to denote metavariables.

A pattern p matches a term ¢ if there is a substitution 6 of metavariables for terms
such that applying the substitution to the pattern yields a term that is syntactically
equivalent to ¢, i.e., Op =t where 6p denotes application of 6 to p. A metavariable
may occur more than once in a pattern, in which case all occurrences of the metavari-
able must match the same concrete term. For example, the pattern £ (X, X) matches
any concrete term that is a call to £ with two syntactically equal arguments.

Term replacement patches A term replacement patch describes how to transform
any (sub)terms that match a given pattern. The syntax of term replacement patches is
as follows:

Definition 3 (Syntax of Term Replacement Patches) A term replacement patch, trp,
has the form defined by the following grammar:

trpi=p~p
In a term replacement patch, p; ~» p2, p is a pattern that should match a subterm

of the input term, and p» is a pattern that describes the term that should replace the
matched term.

@ Springer

Autom Softw Eng (2010) 17: 119-148 125

W:6p=r 6Op'=t MV(p)CMV(p)

@ (p =)D =1.T
—30:0p=alty,...,t,)
(p~pH(t)=t], fiforall0<i <n
® Lo
(p~pHato,....tn) =alty,....t,), f
© —30:0p=a

(p~pHa)=a, L

Fig. 2 Application of a term replacement patch

The application of a term replacement patch to a term is defined by the rules shown
in Fig. 2.2 Rule a addresses the case where a term 7 matches the pattern p according
to some substitution 8. The matching term ¢ is replaced with §p’. This rule further
requires that the metavariables in the right-hand side pattern MV (p’) be a subset of
those in the left-hand side pattern MV (p). The remaining rules apply only if rule a
does not apply. Rule b recursively traverses a non-atomic term top-down to all its
subterms. Rule ¢ processes an atomic term that does not match the pattern. If there
is no matching subterm, the application of a term replacement patch behaves as the
identity function. Term replacement patch application terminates because the only
recursive application is in rule b, in which the term replacement patch is only applied
to proper subterms of the original term.

The application of a term replacement patch additionally returns a flag f, which
is T when a match has been found, and | when no match has been found. These
are ordered as L T T. Note that even if there is a match, the resulting generated term
might be the same as the original one, e.g., if the term replacement patch specifies that
the two arguments of a function should be switched, and they are actually textually
equal. The flag distinguishes between the case where there is a match and the term is
unchanged (T) and the case where there is no match at all (_L).

Generic patches A generic patch is a sequence of one or more term replacement
patches, as defined by the following grammar:

Definition 4 (Syntax of Generic Patches) A generic patch is either a term replace-
ment patch or a sequence of generic patches.

gp=p~>plgp;gp

ZNote that although term replacement patches have the form of rewrite rules, they are not applied itera-
tively as is typically done in term rewriting systems. Iteration would be possible, but would significantly
complicate the semantic patch inference process. Furthermore, iteration is not provided by Coccinelle, and
this has not been found to be a significant limitation in practice.

@ Springer

126 Autom Softw Eng (2010) 17: 119-148

Subsequently, whenever we say “patch,” we mean generic patch unless stated oth-
erwise. Also, we say that a generic patch is non-abstract if no pattern used in the
generic patch contains any metavariables.

The rules for applying a generic patch are shown below. The application of a
term replacement patch p; ~» p» is defined according to the rules of Fig. 2, but here
the application only succeeds if the pattern matches somewhere, as indicated by the
flag T. A sequence of patches gpq; gp, first applies gp; to the term and then applies
gp, to the result.

[p~ plt =t" if (p~pH@®)=1t",T
[gp1; gpo 1t = llgp1I(lgp 11D

Note that the side condition (p ~ p’)(¢) =", T implies that every term replacement
patch in a generic patch must be able to successfully apply somewhere within the
argument term ¢ for the generic patch to apply at all.

If the result of applying gp;; gp, to a term is independent of the ordering of gp;
and gp,, the patches are said to be commutative.

Two generic patches are equivalent with respect to a set of terms 7T if and only if
application of the patches has the same effect on all terms:

gp1 =g8py <=Vt € T : [lgp 1t = ligp, 11t

Two generic patches are equivalent with respect to a set of pairs of terms (which
we shall also call a changeset) C if and only if application of the patches has the same
effect on all left-hand side terms in C:

gp1 =c gpr <= V(1,1) € C : [lgp It = lIgp, It

Whenever the changeset, C, is clear from the context, we will write gp; = gp, instead
of gpy =c bp>.

4 Theory of subpatches

To satisfy the criteria of safety and compactness, we would like to infer a generic
patch that expresses the largest possible common transformation applied to each
term, without performing any undesired transformations (safety). In this section, we
provide a formal definition of what it means for the transformation performed by a
generic patch to be largest and common.

4.1 Ensuring safety

Safety of a generic patch requires that it does not perform undesired changes. For-
mally, safety is defined relative to a pair of terms (¢, ¢’) with the assumption that some
change has been made in ¢ to turn it into #’. A patch gp is said to be safe relative to a
pair of terms when the transformations it makes when applied to ¢ need not be undone
in order to reach the final term ¢’. To illustrate this concept, the following example
shows a patch that performs a safe transformation and another patch that does not
perform a safe transformation relative to a pair of terms.

@ Springer

Autom Softw Eng (2010) 17: 119-148 127

Example 1 (Illustration of safety) Consider the following terms:

and the following patches:

gp = £(10) ~ £(42)
gp’ = £ (X) ~ £(42)

Observe that [gp'Tlt =" and [gp” Tz = t”. We now consider whether gp’ or gp” is
safe with respect to the pair (¢,1").

The following diagram illustrates the application of and gp” to ¢, and compares
the result to ' (center right) where the subterms that have been affected by a patch
are underlined. Arrows between terms are labeled with the patch that transforms the
source term to the target term.

m(£(42),£(100))

ar'
/ £(100) £ (420)
\

m(£(10),£(100)) m(£(42),£(420))

After the application of gp’, only the subterm £ (100) (top right) of ¢’ needs to be
modified in order to reach " (center right). As can be seen by the fact that £ (100)
is not underlined it was not modified by gp’. Thus, gp’ is safe relative to (¢, t").
After application of gp”, on the other hand, we need to modify the second generated
occurrence of £ (42) into £ (420) in order to reach ¢””. Thus, we need to undo some
of the changes made by gp”, Thus, gp” is not safe relative to (z,).

To capture the “no-undoing” property that we have motivated informally in Exam-
ple 1 above, we define a distance metric on terms. The distance between two terms
is defined as the cost of performing the minimal number of insertions and deletions
of subterms needed to turn one term into the other. The cost of inserting or deleting
a subterm is defined as the size of the subterm. We denote the size of a term ¢ by [¢].
The function calculating the size of a term is given by induction on the structure of
terms:

lal =1

n
leGo, -t =14 |t
—

@ Springer

128 Autom Softw Eng (2010) 17: 119-148

The distance between two terms ¢ and ¢’ is denoted (¢, ¢). The definition of term
distance is given in Definition 5 below. The definition makes use of an auxiliary func-
tion A(zs, ts’) that takes two lists of terms s and rs” and uses a dynamic program-
ming scheme to find the minimal distance between the two lists. We make liberal use
of the TERM T notation introduced in Definition 1 and let (¢ : #s) denote a list of terms
that starts with ¢ and has remainder ¢s. Also, we let € denote an empty list of terms
although that is technically not a valid TERM™.

Definition 5 (Term distance)

0 ifr=r
v ift=a@s) At =a'(ts') A
85, 1) = | Ats1, ts0) ifa=a
- { 2 4+ A(tsq, tsn) otherwise

|t]| + |t'| otherwise

where
8(t, 1)+ A(ts, ts)),
A((t:ts), (¢ :ts")) =min { A((t:ts),ts") + ||,
Alts, (t' :ts")) + |t
n

Ale, (to, ... 1)) = Al(to, ... ta). €) = Y _|t;]
i =0

Example 2 (Term distances) Reconsider the terms from Example 1 (repeated below
for ease of reference)

One can see that §(z,t") =4, §(t,t") + 8@, ") =2+ 2 =4, and §(¢,t") +
S, "y =4+2.

We now connect the idea of term distance to the idea of a safe transformation. In
Example 1 we motivated why gp should be considered safe with respect to the pair
(¢,1"") and gp’ not safe by showing the changes required to reach the target term "’
after application of the patches: after application of gp only non-changed subterms
needed to be changed to reach t”” while after application of gp’ one needs to modify
an already modified subterm (£ (42)) to reach . A similar picture is shown in
the diagram below; One can see that more changes (insertions and deletions) are
performed when following the path t+ — 7 — " (with summarised cost 6) than
when following the path r — ¢ — " (with summarised cost 4). In fact, exactly the
same changes are required to first change ¢ to ¢’ and subsequently change ¢’ to 1’ as
the changes required when transforming 7 into " directly.

@ Springer

Autom Softw Eng (2010) 17: 119-148 129

t' :m(£f(42),£(100))

gp -
- 5
t :m(£(10),£(100)) " m(f(42),f(420))
4
4 2
gp// te.

t cm(£(42),£(42))

Based on Definition 5 we now formally define the concept of a safe transformation
part of a pair of terms (z,¢”). A safe transformation part safely performs all or part
of a transformation on ¢, such that no undoing is required to subsequently reach ¢”.

Definition 6 (Safe Transformation part) For any pair of terms (z, t') and patch gp:
gp 2 (1.1") = llgpllt =1" = 8(1,1") + (", 1") = 8(1,1")
Note that the definition of [gp]lr = ¢’ implies that gp does apply to 7.

Extension to changesets We extend the notion of safety to a changeset by simply
quantifying over all the pairs of terms in the changeset.

Definition 7 (Common Patch) A patch gp is a common patch for a set of pairs of
terms C if it is safe relative to each pair of terms in the set C:

gp<C<V(t,t"eC:gp=<(,1")

We will sometimes say that a patch is a safe common patch to emphasise that the
patch is indeed a safe patch with respect to all pairs of terms in the changeset C.

4.2 Ensuring compactness

In addition to seeking a safe generic patch, we also seek a generic patch that com-
pactly represents the changes made. In order to define that one generic patch gp’ is
more compact than another generic patch gp, we define an ordering of patches relative
to a pair of terms: gp <, ;) gp’. When gp <, ,») gp’ the transformations expressed
by gp are also contained in gp’ and we say that gp is a subpatch of gp’.

Definition 8 (Patch Ordering Relation)

8P 2 80" = g0’ X (1, 1) AT 1 [Igp' Nt =1 Agp < (1, 1)
Thus, we consider gp a subpatch of gp’ (or equivalently, gp’ a superpatch of gp) if and
only if gp performs a safe part of the transformation that gp’ performs, as expressed

by gp < (¢, 1) above, and gp’ is a safe part of (¢,).

@ Springer

130 Autom Softw Eng (2010) 17: 119-148

A patch gp is a trivial subpatch of gp’ if gp is equivalent to the identity patch with
respect to the pair of terms (¢, t’).
The subpatch definition can be generalised to a set of pairs of terms as follows:

8P =c gp/ — V(l, t//) eC: gp 5([,[”) gp/
Example 3 (Super- and subpatches) In this example we show that when a patch gp’

is a superpatch of gp, it can actually be syntactically smaller than gp.
Consider the following terms:

tr=1£(1) t}: £(1,1)

tg =g(£(1)) te =g (£(1,1))
t =h(£(1)) t,’lzh(f(l,l))
h =x(£(2)) t,=x(£(2,2))

twy=m(g(£(1)) ,h(£(1)) +x(£(2)))
ty=m(g(£(1,1)),h

m

m
-
—
-
b
=
o
I

as well as the following patches:

&y =lfv->t}=f(l)wf(l,l)

8Py ZIthézg(f(l))Wg(f(lll))

gpp =tp~t, =h(£(1)) ~h(£(1,1))

gry =ttty =x(£(2)) ~»x(£(2,2))
(X,X)

The subpatch hierarchy is given below. An arrow from gp; to gp; indicates that
relative to the term pair (¢, f,,), gp; is a subpatch of gp; (and gp; a superpatch

of gp;).

8P f,x

gy
8pg 8n

From the hierarchy one can see that although gp is syntactically smaller than both
gp, and gpy, it is a superpatch of both. Finally, we see that gp, , is highest in the
subpatch hierarchy and that it covers both the transformations made by gp s and gp,..
Therefore it can be considered more compact than the combination of the two smaller
patches.

8Px

@ Springer

Autom Softw Eng (2010) 17: 119-148 131

The largest safe common subpatch

Definition 9 Suppose C is a set of pairs of terms {(to,), ..., (tx,1,)} represent-
ing the original and updated code after some manual collateral evolution has been
performed. A largest safe common subpatch for C is then a patch gp satisfying the
following properties:

gp=C ey

Vep':gp' < C=gp' <cgp)

Property (1) expresses that gp is a safe common patch and property (2) expresses
that gp is largest among the common subpatches. Since there can be more than one
patch satisfying the requirements above, we let LCP(C) be the set of largest safe
common patches for a set of pairs of terms C. The set LCP(C) is thus the set of the
most compact and safe generic patches relative to a set C.

Example 4 (Largest Safe Common Subpatch) The following is an example of a
largest safe common subpatch for a set of pairs of terms C = {(#1, ti), (12, té)}. This
example shows that the largest safe common subpatch need not be unique.

— -
H = tl—

int foo(void) { int foo(void) {
int x; int x;
£(117); £(117,GFP) ;
x = g(117); x = h(g(117));
return x; return x+x;

} }

= zé:

int bar(int y) { int bar(int y) {
int a; int a;
a = £(11)+g(y); a = f£(11,GFP)+g(y);
return a; return a+a;

} }

The changes made to the two terms #; and #, are enumerated below. In the term
11 three changes are made: the call to g (117) is embedded in another call to h, the
call to £(117) gets an extra argument GFP, and the expression returned is added
to itself. In the term #, only two changes are made: the call to £ (11) gets an extra
argument GFP and the expression returned is added to itself. Schematically:

Updates applied to 7, : Updates applied to #;:

- £(117) - £(11)

+ f£(117, GFP) + f(11,GFP)
- g(l1l17) - return a;
+ h(g(117)) + return a+a;
- return x;

+ return x+Xx;

@ Springer

132 Autom Softw Eng (2010) 17: 119-148

Given the above definition of C, the set LCP(C) consists of exactly two generic
patches:

{f(X) ~ f(X,GFP) ; return Y~» return Y+Y,

return Y ~»return Y+Y ; £(X) ~ £(X,GFP)

The difference between the two is the order in which the two term replacement
patches are applied. However, the result of applying either patch to each term in
C is the same. Note that the transformation on g does not appear in LCP(C), because
there is no transformation on g in the term ¢,.

The example above motivates the following theorem of equivalence of the set of
largest safe common subpatches.

Theorem 1 For all sets of pairs of terms C, all of the patches in the set LCP(C) are
extensionally equivalent with respect to the application function:

VYC :Vgp,gp' :gp € LCP(C) =
gr' € LCP(C) =
(ti, 1) eC=
sp=gr

Proof of Theorem 1 (sketch) Given a set of pairs of terms C, let B =
{gp | gp < C}. The goal is to show that the pair consisting of the quotient set B/=
(where = denotes equivalence of generic patches with respect to C) and the subpatch
ordering <¢ (C/=, <X¢) forms a complete join semi-lattice and that the least upper
bound is in fact the set LCP(C). Then, since any element of B/= is a set of equivalent
generic patches, Theorem 1 follows.

O

Inverse monotonicity Given a set of pairs of terms C, let B be the set of largest com-
mon subpatches for C: B = LCP(C). Adding more pairs to the set C will decrease
the size of B:

VC,C':C CC' = LCP(C") CLCP(C)

In particular LCP(C’) can become empty. This can happen in two ways: 1) the trans-
formations in the pairs added to C have nothing in common with the transformations
in C, or 2) the transformations in LCP(C) are not and cannot be refined to be safe for
the new pairs of terms.

Summary In this section, we have defined when a generic patch transforms terms
in a set of example terms in a correct manner. We have also defined when a generic
patch is a subpatch of another. Using the subpatch relation, we have defined the set of
largest safe common subpatches, LCP(C). Each patch in LCP(C) (recall that accord-
ing to Theorem 1 they are all equivalent) is a high-level expression of all common
changes applied in all pairs of terms in C. In Sect. 6, we will show how inference of
largest safe common subpatches can help obtain a succinct form of documentation of
changes made in Linux device drivers.

@ Springer

Autom Softw Eng (2010) 17: 119-148 133

5 The sp£find algorithm and implementation

We now present an algorithm for finding the set of largest common subpatches given
a set of pairs of terms, C, as well as details about the implementation of the algorithm.

We first present a very simple algorithm for computing largest common subpatches
that leaves out any performance concerns and other details that must be addressed
when implementing the algorithm. This very simple algorithm is mainly to be con-
sidered as an outline of the algorithm’s basic structure. Based on an observation about
a “sufficient level of abstraction” we then refine the algorithm in two steps. The re-
fined algorithm returns a subset of what the simple algorithm returns such that all
patches returned are of minimal abstractness. Finally, we present the two main issues
we have addressed in our implementation: non-uniform input data and constant-time
comparison of terms.

5.1 A simple algorithm

We now present the simple version of our algorithm to compute the set of largest
common subpatches for a given changeset. The algorithm is denoted spfind. Over-
all, spfind works in two steps: (1) finding term replacement patches (i.e. patches of
the form p ~ p’) and (2) growing larger sequential patches (i.e., patches of the form
bpi; ...; bp,) from the set of found term replacement patches.

The pseudocode of the spfind algorithm is written in the style of a functional
programming language, such as OCaml or Standard ML. In the pseudocode, we fre-
quently make use of set-comprehensions to compute sets.

Definition 10 (spf ind—simple version)
simple_pairs C =
{ p->p’ | (lhs,rhs) € C,
t is a subterm of 1lhs,
t’ is a subterm of rhs,
3 ,p,p’': Op = t , Op’ = t’,
p~p’=<(lhs, rhs)

computeNext C B cur = {p~p’ | p~p’ €B, (cur;p~p’) XC}

gen C B cur =
let next = computeNext C B cur in
if next == {}
then {cur}
else {gp | p~p’ € next, gp € gen C B (cur;p~p’)}

spfind C =

let B = simple_pairs C in
{gp | gp € gen C B bp, bp € B}

@ Springer

134 Autom Softw Eng (2010) 17: 119-148

The main functions in the algorithm are simple_pairs and gen. The function
simple_pairs constructs term-replacement patches and the function gen grows
larger sequential generic patches.

Construction of term-replacement patches The simple_pairs function takes a
set of pairs of terms C and constructs the set {gp | gp < C} by considering abstrac-
tions of all subterms in the given set of pairs of terms C. In the pseudocode, patterns
p and p’ (that may contain metavariables) more or less “magically” appear in the
line with existential quantification. In the refined algorithm in Sect. 5.2 we describe
a method to construct such patterns from a set of terms. Another, more serious, issue
is that even for small examples, the simple_pairs function can return many term
replacement patches—an upper bound for p ~ p’ is O@2!PHP'Ty where | - | denotes the
number of subterms in a pattern. We illustrate this in Example 5 below.

Example 5 Let the following be given

tl = g(£(42)) t2= g(£(117))
tl’'= g(£(42,42)) t2'= g(£(117,117))
¢ = { (t1,t1") , (t2, t27) }

Part of the result of simple_pairs C is show below. Recall that capital letters
denote metavariables.

simple_pairs C =

{
g(f(X)) ~ g(£(X,X)), g(¥(X)) ~ g(f£(X,X)),
Z(£(X)) ~ g(E(X,X)), Z(Y(X)) ~ g(f(X,X)),
g(Y (X)) ~ g(¥(X,X)), 2Z(£(X)) ~ Z(£(X,X)),
Z(Y(X)) ~ Z(Y(X,X)),

3

The above result-set for simple_pairs illustrates that many very similar patches
can be returned. In this example the complete set contains (23*0) term replacement
patches where 5 is the number of subterms of g (£ (42)) and 6 is the number of
subterms of g (£ (42, 42)). A few of those are not safe for the changeset, but most
are. Thus, we are motivated to find a way to limit the size of this set to return fewer
representative patches. This will be done in Sect. 5.2.

Growing sequential generic patches The gen function takes three inputs: a change-
set C, a set of term-replacement patches B, and a generic patch cur. The func-
tion then tries recursively to extend the generic patch cur with term replace-
ment patches from the set B. Roughly, the gen function generates all sequential
patches that are safe and largest with respect to B, composed of permutations of
elements of B, where no element occurs more than once in each generated sequen-
tial patch. Thus, a call to gen C B cur returns a set of patches that have the
shape cur;p; ~ p):...;p, ~ P, Where p; ~ p; € B and cur;p; ~ pi;...;
pp ~ Py, <C.

@ Springer

Autom Softw Eng (2010) 17: 119-148 135

The main function of the spfind algorithm calls gen for each term replacement
patch found by simple_pairs.

Relationship between algorithm and specification Unfortunately, the spfind al-
gorithm is neither sound nor complete in the strict sense. There are patches in LCP(C)
that spfind will not find and indeed some patches found by spfind are not largest.
An example illustrates both cases and hints at why the lack of soundness and com-
pleteness is not as bad as it sounds.

Example 6 (No soundness or completeness) Assume the following definitions are
given:

tl = h(£(1),1)

tl’ = h(£(2),3)

t2 = t(£(1),42,1,117))
t2’ = t(£(2),42,3,117))

C = {(tl,t1"), (t2,t2")}

We notice that gp; = £ (1) ~» £(2) is safe for C while gp, = 1 ~+ 3 is not because
it updates too many occurrences of 1. However, gp;; gp, is safe for C because now,
when gp, is applied, there is only one occurrence of 1 and that occurrence is supposed
to be updated to 3. In fact, gp;; gp, is one of the largest common subpatches for C.

All patches returned by spfind are either term replacement patches or sequences
of term replacement patches all of which are individually safe for the changeset given.
Therefore, spfind C will not contain a patch that is composed of 1 ~~ 3. It can
also be shown that spfind C cannot contain a patch that is equivalent to gp;; gp,
because the occurrences of 1 in t1 and t2 that have to be changed have no common
term structure expressible in a generic patch.

Therefore, we can conclude that spfind is not complete. The result of spfind
C will contain gp; which is not in LCP(C). We can therefore also conclude that
spfind is not sound in the strict sense that for all patches found by spfind C,
there must exist an equivalent patch in LCP(C).

Example 6 gives a counterexample that shows that spfind is neither sound nor
complete. However, it is the case that the patches returned by spfind C are either
equivalent to some in LCP(C) or they are each a non-trivial subpatch of some patch
in LCP(C). Thus, each patch found by spfind C is safe for C and when applied, it
will have some safe effect on the terms.

5.2 Towards a refined algorithm

There are two problems in the simple version of the spfind algorithm:

Term replacement patches: In the function simple_pairs, we use existential
quantification to introduce patterns that contain metavariables. There are two prob-
lems to tackle: (1) how do we actually find such patterns and (2) is there a sufficient
subset of this set of patterns?

@ Springer

136 Autom Softw Eng (2010) 17: 119-148

Search-space pruning: The gen function uses the computeNext function to find a
subset of the set of term replacement patches B that can be used to extend the generic
patch being generated (cur). For each term replacement patch in this subset, gen
will try to extend the current generic patch with the particular element. Thus, if we
can limit the size of the next subset in gen, fewer recursive calls to gen ensue.

Sufficient term replacement patches Consider once more the terms from
Example 5:

tl = g(f(42)) t2= g(f(117))
tl’= g(f(42,42)) t2'= g(f£(117,117))
c = { (t1,t1") , (€2, t27) 1}

As shown in Example 5 there are many potential term replacement patches that are
safe for the set C. Let B={p ~ p' | p ~ p’ < C}. In order to define a sufficient
subset of B, we observe that some of the term replacement patches are needlessly
abstract. A term replacement patch is needlessly abstract if there is an equivalent
term replacement patch that is less abstract. For the set C above, the most abstract
patch is X (Y (Z (Q))) ~» X(Y(Z(Q,Q))) and the least abstract is g (£ (X)) ~~
g (f(X,X)).Itis easy to see that in this example all elements of B are equivalent.
The important property of two equivalent term replacement patches is that the patches
that can be grown from one are equivalent to the patches that can be grown from the
other:

Lemma 1 (Equivalent patches implies equivalent suffix extensions)
Virpy, trpy, 8p 1 trpy = trpy = 11py; P = 11p3; 8P

The conclusion one can draw from Lemma 1 is that for a set of equivalent term
replacement patches, we only need to return one of them.

Finding term replacement patches Given the set {p ~» p’ | p ~ p’ < C} we can
construct the sufficient subset of term replacement patches based on the above
observations. Implemented naively, we would still need to search the entire set
{p ~ p’ < C} and that is potentially very time-consuming.

With the goal of avoiding the construction of the complete initial set, we now
define a fusion operator on term replacement patches, trp; s trp,. The patch fusion
operator constructs a new term replacement patch encompassing both of the given
patches. The patch fusion operator relies on a pattern fusion operator which we define
below. The definition of patch fusion is then given in Definition 12.

In order to perform patch fusion, we need to be able to fuse two patterns into a new
pattern that is a superpattern of both given patterns. A simple definition of the pattern
fusion function could be: p % p’ = X, but this definition is useless for our purpose.
Instead we would like the pattern resulting from p * p’ to abstract as little as possible
and still obtain a pattern that matches both p and p’.

Definition 11 (Pattern fusion relation) The pattern fusion relation is given below. To
make the rules less verbose, we assume that the rules are considered in numerical

@ Springer

Autom Softw Eng (2010) 17: 119-148 137

order. That is, if the patterns p and p’ are the same, rule (1) is to be used. Otherwise,
if the two patterns use the same top-level constructor, a, and have the same arity, n,
rule (2) is used. Otherwise, rule (3) is used. Note that the environment used in the
rules maps a metavariable to a pair of terms.

O<i<n 6Ot pxp;=p/
2
OFpxp=p OFa(pi,....pn)*a(py,....p)=a(p],.... p,

(O]

6(X)=(p.p")
OFpxp' =X

3

One can show that for any two patterns p and p’ it is always the case that 39, p” :
O+ p* p’ = p” for some 6 and p”. Furthermore, the resulting pattern is unique up
to alpha-equivalence of patterns: O - p*x p' = pi A pxp' = pr = p1 = p2
where p = p’ denotes that p and p’ are alpha-equivalent. One can show uniqueness
by induction on the derivations and using the fact that the rules defining p * p’ are
deterministic. Thus, we will write p * p’ = p” with the meaning: 30 : 0 - p*x p’ = p”
and treat the relation as a function in the following. One can furthermore show that the
pattern fusion function is commutative p * p’ = p’ * p and associative (p * p') * p”" =
p * (p’ * p”). Commutativity and associativity can be used to show that given a set
of terms T = {t1,...,t,}, a pattern that matches all terms and is the least abstract is
given by: f1 xty--- % 1y

Using the pattern fusion function we can define fusion of term replacement patches
gp *x gp’ as the fusion of the embedded patterns in the patches and a renaming of
metavariables. The definition can be seen in Definition 12 below.

Definition 12 (Fusion of term replacement patches)

P11~ P owk py~~ ph = p3 ~ (B3p5) <=
01+ pixpr=p3 Ok pl*p)=p}
0, renamed_by 01 = 03

0 renamed_by 0’ renames metavariables in 6 using those in 6’ to produce a new
environment 6”. Thus, 8" is a mapping from metavariables to metavariables.

0 renamed_by 0' = 0" <=

VX € dom(9):0"(X) = { Yy ifdy:0'(Y)=0(X)

Z otherwise, where Z ¢ dom(0)

It is instructive to consider an example of term replacement patch fusion to see what
is going on.

Example 7 (Patch Fusion) Let the following be given:

gpl = £(42,h(117))
gp2 = £(42,g(118))

£(43,h(117+117))
£(43,9g(118+118))

o
'

@ Springer

138 Autom Softw Eng (2010) 17: 119-148

We now compute gpl ** gp2, step by step. First we need to fuse the two left-hand
sides and the two right-hand sides.

[left-hand sides]
£f(42,h(117)) * £(42,9(118)) = £(42,X0(X1))

[right-hand sides]
£f(43,h(117+117)) * £(43,g(118+118)) = £(43,X1(X3+X3))

The environments associated with each fusion are as follows:

env ={X0+ (h,g9), X1 —» (117,118)

}
env’ — (117,118) }

|
P
[y
I
5
Q
b
w

When fusing patterns we are allowed to select any metavariable names as long as the
inference rules in Definition 11 can be used to derive the desired fused patterns. Thus,
when fusing the left hand side (non-abstract) patterns we used the metavariables X0
and X1 while when fusing the right hand side (non-abstract) patterns, we used X1
and X3. Indeed, the environments need not be consistent with each other. For exam-
ple, X1 in the left hand side pattern maps to (117, 118) while in the right hand side
pattern X1 maps to (h, g). This selection of names is mainly done to illustrate how
0 renamed_by 6" works and why it is needed.

env’’ = env’ renamed_by env = { X1 +— X0, X3 > X1}

One can verify that env” satisfies the requirements set out in the definition of
p renamed_by p’ in Definition 12 above. Finally, we can construct the fused term
replacement patch as:

gpl * gp2 = £(42,X0(X1)) ~» env’’ (£(43,X1(X3+X3)))
= £(42,X0(X1)) ~ £(43,X0(X1+X1))

Search-space pruning Even with the above mentioned refinements of the simple
pairs function, the gen function can end up constructing an exponential number of
generic patches. We now consider how to further reduce the number of generated
generic patches.

The gen function in the simple version of the spfind algorithm is given a set
B of term replacement patches and tries to grow sequential patches starting from
each patch in B. If all those patches are safe for the changeset C also given to gen,
the gen function would have to compute the powerset of B. Suppose however, that
all term replacement patches in B are commutative. The gen function will first try
to grow generic patches starting from some element gp in B. After having found all
generic patches that start with gp, the gen function then tries to grow generic patches
starting with some other element gp’ from B. Since we assumed all patches in B to
be commutative, all generic patches starting with gp found by gen are equivalent to

@ Springer

Autom Softw Eng (2010) 17: 119-148 139

those found to be starting with gp’. The following corollary is a generalization of the
observation just made that whenever the gen function has already found some safe
generic patch for C denoted gp, there is no need to try to grow from a subpatch gp’.
The corollary holds even when there are non-commutative patches in the set B as
otherwise assumed above.

Corollary 1 (Search-space pruning) For any generic patches gp, gp’, gp’":
gp € LCP(C) Agp' =c gp N gp'i 80" = C = gp's 8p" c gp

The corollary follows directly from the definitions of gp € LCP(C) (Definition 9)
and gp <¢ gp’ (Definition 8) because gp € LCP(C) implies that for any other gp’, if

gp' < C then gp’ <c gp.
5.3 The refined spfind algorithm, spfind_refined

We now proceed to describe the refined spfind algorithm making use of the solu-
tions to the two problems identified for the simple algorithm.

The spfind_refined algorithm is split into two main parts just like the simple
version, spfind. The former part (the simple_pairs function) can be seen in
Fig. 3 and the latter (the gen function as well as the entry point of the algorithm) in
Fig. 4.

Generation of term replacement patches In order to generate a set of term replace-
ment patches based on a given changeset, we first find a set of sets of non-abstract
patches and then fuse them to obtain term replacement patches with metavariables.

simple_pairs_one (t,t’) =
let loop 1 r =

if 1 ==
then {}
else case (1,r) of
| (al(tsl), a2(ts2)) ->

let R = {tu | tl € tsl, t2 € ts2,
tu € simple_pairs_one tl t2
} in
{l~r} UR
| otherwise -> {l~r}
in
{tu | tu € loop t t’, tux(t,t’)}

simple_pairs C =
let loop tu_lists = case tu_lists of
[1 > {}
| [tu_list] -> tu_list
| (tu_list::tu_lists) ->
let tu_merged = {tu | tu € loop tu_lists} in
{tu ** tu_merged \ tu € tu_list, tum € tu_merged,
(tu ** tum) =< C}
lists = map find_simple_one changeset
in
{p~p’ | p~p’ € loop lists}

Fig. 3 Generation of term replacement patches

@ Springer

140 Autom Softw Eng (2010) 17: 119-148

The function simple_pairs_one defined at the top of Fig. 3 finds non-abstract
term replacement patches. The function works by taking a pair of terms and finding
non-abstract patches that all satisfy the safety criterion: #; ~ ¢/ < (¢, t"). The function
does so by traversing the given pair of terms simultaneously. If the two terms are not
equal, a non-abstract patch is added to an intermediate result set. If the two terms are
also compound, the function calls itself recursively on the embedded subterms. Once
the traversal is done, all non-safe patches are filtered out and only the safe ones are
returned.

The simple_pairs function (bottom Fig. 3) is given a changeset C =
{(t1, ti), ..., (tn, 1))} and applies the simple_pairs_one function to each pair
obtaining a set of sets of non-abstract term replacement patches:

URESE I~ 1,

h2~ 1, 2~ o
/ /

.k th,k t,,,q wtn,q

where #; j ~ tl./’ j corresponds to the jth non-abstract patch for the ith pair in C. The
goal is now to use the patch fusion operator frp ** trp’ to construct more abstract
patches. In the following, let tu_merged denote the fused patches so far. We de-
scribe the three cases of the local 1oop function of simple_pairs below. When
loop is done, tu_merged will contain a set of term replacement patches that are
safe for all pairs in the changeset.

M is empty: If M is empty, the changeset C was also empty and thus tu_merged
should also be empty.

M is a singleton: In this case there is no other set of patches to fuse with, so we
simply let tu_merged be the only list in M at this point. Doing so ensures that the
patches returned are minimally abstract.

computeNext C B cur = { p~p’ | p~p’ € B, cur;pwp’ < C }

gen C B acc_res cur =

let next = computeNext C B cur in

if next == {}

then {cur} U acc_res

else fold (racc_res bp ->
if 3gp € acc_res: (cur;bp) <cgp
then acc_res
else gen C B acc_res (cur;bp)

) acc_res next

spfind_refined C =
let B = simple_pairs C in
fold (Aacc_res bp ->
if Jgp € acc_res:bp=cgp
then acc_res
else gen C B acc_res bp
) [1 B

Fig. 4 Growing sequential generic patches and entry point of the refined algorithm

@ Springer

Autom Softw Eng (2010) 17: 119-148 141

M contains two or more sets of patches: Let M; denote one set of patches #; ;j ~ ti/’ j
for some i and M’ denote M\ M;. The 1oop function first fuses the patches in M’
and then combines each of the fused patches with one from M;. If the fused patch
is not safe for the changeset, it is not included in tu_merged and otherwise it is.
Using the safety check to limit the size of tu_merged in the mentioned way is
crucial for the running time of the 1oop function. If we had deferred the safety
check to outside of the 1oop function, it would need to compute |M{| x |M>| X
.-+ X |M,| fused patches.

Growing sequential generic patches The essential difference between the refined
gen function shown in Fig. 4 and the simple version is that before each recursive
call to gen, the refined version checks that the extended patch (cur;bp) is not a
subpatch of one it already found in the accumulated results, acc_res. Based on
Corollary 1 we can see that extending cur with bp will only allow us to find patches
that are subpatches of what is already in acc_res. Therefore, the recursive call is
not performed and instead acc_res is taken as the result.

5.4 Implementation

We have implemented the spfind_refined algorithm in a tool called spdiff
using the OCaml programming language in roughly 10.000 lines of code. In the im-
plementation two further issues have been addressed. The first issue is the problem
of non-uniform input data and the second is a performance issue.

Non-uniform input data 'We have so far assumed that the given changesets C are
“ideal” in the sense that it is possible to find a patch that is safe for all pairs in C.
When applying our tool to updates in Linux device drivers we found that this was of-
ten not the case. Rather, one patch was found safe for a number of pairs while another
patch was found safe for a different set of pairs. In this case, the transformations in
the former set of pairs may be simply disjoint from the transformations in the latter
set of pairs. Our tool would then say that it could find no globally safe update.

To relax the requirement that all changes have to be safe for all pairs we introduced
a user-specified threshold. The threshold states for how many pairs a change has to
be safe before it is considered safe for the given changeset C.

Example 8 (Introducing thresholds) Suppose the changeset defined below is given to
spdiff:

tl = £(1) t2 = g(2)+£(1) t3 = q(£(1),9(2))
tl'= £(1,1) t2'= g(2+2)+£(1) t3'= qg(£(1,1),g9(2+2))

bpl= £(1)->£(1,1)
bp2= g(2)->g(2+2)

¢ = {(tl,t1l"), (t2,t2"), (t3,t3")}

If we run spdiff with a threshold of 3, we get no result back because there is
no change that is safe for all pairs. When we run spdi £ £ with a threshold of 2, we

@ Springer

142 Autom Softw Eng (2010) 17: 119-148

get two possible solutions because bpl is safe for { (t1,t1’), (£3,t3’)} and
bp2 is safe for { (£t2,t2"), (£3,t3’))}. It is worth noting that bp1l is not safe
for (£2, £2) because application of bp1l will transform £ (1) which should not be
transformed, while bp2 is unsafe for (t1, t1’) simply because it does not apply to
it.

S spdiff C 2 =

Number of solutions: 2

Improving performance Consider the definition of term distance (Definition 5). The
function makes frequent use of equality checks on terms. A simple implementation
of term equality would compare the two given terms structurally:

let t_equal tl t2 = case (tl, t2) of

| al, a2 -> al == a2
| al(tsl), a2(ts2) ->
al == a2 && |tsl| == |ts2]| &&

VY tletsl, t2e€ts2: t_equal tl t2

Clearly, the time complexity of t_equal is O(n) where n is the size of the smaller
of the two terms. Our initial implementation used the above equality check and it was
not very fast. The big question is: How can we do better?

Pointer-equality is more efficient to compute than structural equality. Concretely,
we have made use of a technique called hash-consing (or value numbering) as im-
plemented in the module Hashcons by Conchon and Fillidtre (2006). Their imple-
mentation of hashconsing works very well in our setting and allows constant time
equality checks.

6 Examples

We now provide a few examples of the use of spdi f £, based on some recent patches
committed to Linux that we have identified using the patchparse collateral evolu-
tion mining tool (Padioleau et al. 2006). For each standard patch that we have tested,
we have constructed the set of pairs of terms, C, from the image of the Linux source
tree just before the standard patch was applied and just after.

Adapt to structure changes The following commits, dated November 9, 2007, begin

with the log message “convert to use the new SPROM structure”.

3The patches can be obtained from
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

@ Springer

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

Autom Softw Eng (2010) 17: 119-148 143

95de2841aad971867851b59c0c5253ecc2e19832
458414b2e3d9dd7eed510d18cl19a7ccd3b4d3ech
7797aa384870e3bb5bfd3b6aleacble7c7adc993

These commits comprise over 650 lines of patch code, and affect 12 files in the
drivers/net directory or its subdirectories, at 96 locations. In the role of an ex-
pert in the affected files, we selected three files from the first commit that illustrate the
set of required changes. From these files, spdi £ £ infers the following generic patch:

X0->sprom.rl ~» X0->sprom ;
sprom->rl.X0 ~» sprom->X0
The inferred generic patch fully updates all 12 original files in the same way the stan-
dard patches did. By careful examination of the standard patches, a person could con-
struct the inferred generic patch by hand. However, there would be no guarantee that
the constructed patch is safe. To check safety manually, one would have to consider
(1) whether the constructed patch updates the proper locations correctly but does not
update locations that were not to be modified, and (2) whether the constructed patch
is only a part of the update that is to be performed to a particular file. A standard
patch by itself does not provide enough information to do this, because it does not
provide a complete view of the unmodified code.

Furthermore, the inferred generic patch updates some other files that were present
at the time of the original patches but were overlooked. These files were in other
directories and were not updated until February 18, 2008, by another developer.

Structure changes Commit c32c2f63a9d6c953aaf168c0b2551da9734-
£76d2 from February 14, 2008 affects 9 files at 12 locations. The message attached
to the commit is “d_path: Make seq_path () use a struct path argument”. The
standard patch attached to the commit is approximately 160 lines. The patch inferred
by spdiff is:

seq _path(X1,X2->X3.mnt,X2->X3.dentry, X4)

~» seq path (X1, &X2->X3,X4)

The inferred generic patch fully updates all but one of the original files. The only
file that is not fully updated is the file £s/namespace.c in which a declaration
struct path mnt_path; is also added.

Renaming of function calls The following commits, dated December 20, 2007, be-
gin with some variant of the log message “Kobject: convert drivers/* from
kobject_unregister () to kobject_put()”.

cl0997£6575£476££38442fal18£fd4a0d80345£9d
7822d906b40fe530ea800cle873bfe8f02326fle
197b12d6796a3bcal87f22a8978a33d51e2bcd79
38a382ae5dd4£4d04e3046816b0a41836094e538

These commits comprise almost 800 lines of patch code, and affect 35 files at
79 locations. Based on the changes in the 17 files in the first of the above commits,
spdiff derives the following generic patch:

kobject_unregister (X0) ~» kobject_put (X0)

@ Springer

144 Autom Softw Eng (2010) 17: 119-148

The inferred generic patch fully updates all but 3 files in the same way the standard
patch did. The remaining files each include an additional change that goes beyond the
collateral evolution.

Modifying declarations Commit c1llca97ee9d2ed593ab7b5523def7787-
b46£398f and 12 others from around December 7, 2007 change 21 files at 26
locations. The log messages are “use LIST_HEAD instead of LIST_HEAD_INIT”.
The standard patches total almost 300 lines. The inferred generic patch is:

struct list_head X0 = LIST HEAD_INIT(XO);
~» LIST_HEAD(XO0) ;

The inferred generic patch fully updates all 21 files. The original developer, on the
other hand, initially overlooked one case and had to create a second patch on the same
file to correct it. Furthermore, 6 files that contained relevant declarations at the time
the patches were committed were not updated by the original patches, and of those
5 files were still not updated as of several months later. All of these files are fully
updated by the generic patch.

Use kzalloc We conclude with an example that illustrates the limitations of our
approach. Over the past couple of years, around 100 patches have been commit-
ted that convert the combination of calls to kmalloc and memset to kzalloc.
One such commit, from September 6, 2005 is dd3927105b6f65afb7dacl76-
82172cdfb86d3£00 which affected 6 files at 27 locations. The transformation it
performs can be represented as follows.

x = kmalloc(size, flags); L X = kzalloc(size, flags);

memset (x, 0, size);

Our tool is, however, not able to infer any safe generic patch in this case. Indeed,
in this case, it is not safe either to modify all of the calls to kmalloc or to drop
all of the calls to memset. Instead, the transformation is only valid when the call to
kmalloc precedes the call to memset and when they share the same expression x.
The language of generic patches is not able to express the temporal ordering of terms
nor the sharing of metavariables between disjoint code fragments, and thus it gives
no answer in this case.

Assessment These examples show that for a variety of collateral evolutions,
spdiff infers generic patches that are much more concise, and we believe much
more readable, than the corresponding standard patches. In several cases, the original
standard patches did not perform part of the collateral evolution in some relevant
files. In this situation, a developer could use spdiff to infer a generic patch from
the provided standard patches and to complete the collateral evolution. Using the
Coccinelle transformation system, the generic patch can be applied everywhere in
the Linux source tree.

While all of the inferred generic patches are simple enough that a person could
construct them by hand by inspecting the standard patches, it would require more

@ Springer

Autom Softw Eng (2010) 17: 119-148 145

work to confirm that the manually constructed patch is indeed safe for all of the input
files. Safety is not evident from the standard patches which contain only the code
that was changed, not any similarly structured code in the same files that was not
changed. In order to confirm safety, one would need to apply the constructed patch
to all original input files and check that for each file, the constructed patch applies
correctly to a subset of the locations that need to be modified in the file.

Our final kzalloc example illustrates a limitation of generic patches. The richer
language of semantic patches provided by Coccinelle can express the properties
needed to treat such examples (Padioleau et al. 2008). We are currently extending
spdiff to infer proper semantic patches (Andersen 2010).

7 Related work

Our approach considers the problem of finding a single generic patch that correctly
updates a collection of programs. We know of no work that addresses this problem
directly. Several approaches, however, have considered how to concisely capture the
changes between the original and modified versions of a single program. In this sec-
tion we relate our approach to a number of other approaches that detect program
changes.

Chawathe et al. describe a method to detect changes to structured information
based on an ordered tree and its updated version (Chawathe et al. 1996). Their goal
is to derive a compact description of the changes. To this end, a notion of a mini-
mum cost edit script is defined. An edit script is basically a sequence of operations
where each operation has an associated cost determined by some measure of struc-
tural similarity between the trees. As such, the minimum cost edit script will be the
most compact description of the changes made to the original tree with respect to the
edit operations. Edit operations, however, always explicitly denote the node to trans-
form and thus the approach is not sufficient for our context where we would like one
transformation specification that applies to even unknown code.

Neamtiu et al. (2005) consider the problem of identifying changes to C programs.
Their method infers changes, additions and deletions of various program elements
based on structural matching of syntax trees. Two trees that are structurally identi-
cal but have differences in their nodes are considered to represent matching program
fragments. In contrast to the work by Chawathe et al., each simple change (e.g. re-
naming of a variable) is only reported once. Thus, the description of the changes
made can be more compact than what is possible with the minimum cost edit scripts
of Chawathe et al. However, similarities in changes involving larger trees are not de-
tected, and consequently very similar changes made across all functions are reported
as separate changes, whereas we need to generalise arbitrary descriptions of changes.

Kim et al. (2007) propose a method to infer “change-rules” from two versions of
the same program. Their goal is to construct a small set of change rules that capture
many changes. Change rules express changes related to program headers (method
headers, class names, package names, etc.). The basic shape of a change rule is sim-
ilar to that of our term replacement patches: Vx € scope : transformation,
meaning that every match described by the scope is modified by the transformation.

@ Springer

146 Autom Softw Eng (2010) 17: 119-148

The scope, described using a variant of regular expressions, ranges over the textual
representations of the previously mentioned headers. By using regular expressions as
an abstraction mechanism the scope can be extended to e.g. all calls to a method that
starts with the prefix foo. Thus, change rules can express that a given transforma-
tion was applied to a set of entities, which is more compact than simply enumerating
all entities. Our term replacement patches are similar to change rules but apply to
any program element rather than just to program headers. Finally, our use of meta-
variables allow equality constraints among program elements as well as applicability
to more than one input program.

Weiligerber et al. present a technique to identify likely refactorings in the changes
that have been performed in Java programs (Weissgerber and Diehl 2006). Like Kim
et al., they search for a fixed set of transformation types (in this case, rename a
method, add a parameter, etc.). Each transformation type has an associated precondi-
tion that enables the transformation. They first collect various signature information
about the old and new versions of a given file, and then use this information to de-
termine whether the precondition of any of the transformation types is satisfied. If
a precondition is satisfied, the transformation is considered a refactoring candidate.
They furthermore use clone-detection to check that the change performed by a can-
didate is semantics preserving. Because we consider arbitrary changes, such checks
are not relevant in our case. The transformation types given by Weiligerber et al. do
not support any kind of abstraction mechanisms such as our metavariables. Thus, two
detected changes cannot be generalised into a more compact description that covers
both of them, as could potentially be done by the method given by Kim et al. and by
our work.

The patchparse collateral evolution mining tool (Padioleau et al. 2006) scans
patch files for frequently occurring changes, modulo a simple strategy for abstracting
away from terms that are shared between the original and modified code. Patch-
parse is sufficient to detect some of the rules in our examples, such as the example
where calls to kobject_unregister was replaced by calls to kobject_put,
for which it reports:

kobject_unregister (ARG0O) replaced by kobject_put (ARGO)

However, its strategy for detecting common terms is essentially top-down, and thus
it reports the following result for the seq_path example:

seq_path (ARGO, CODE, CODE, ARG3) replaced by seq path(ARGO, CODE, ARG3)

In this case, Patchparse was not able to relate the second and third arguments
in the original call to the second argument in the new code, and thus it falls back
on characterizing these arguments as arbitrary code (CODE), which is not sufficient
to specify the transformation. Patchparse furthermore does not ensure that the
transformation represented by the proposed collateral evolution is either safe or com-
pact. It can, however, be beneficially used, as we have done in this paper, to narrow
down the set of patches considered when using spdiff to infer generic patches
based on standard patches already submitted to Linux.

Aspect-oriented programming (Kiczales et al. 1997) can be viewed as specifying a
form of transformation rule, which integrates so called “cross-cutting concerns” into a

@ Springer

Autom Softw Eng (2010) 17: 119-148 147

program. Using our approach to infer aspects, however, would require that the aspect
be manually added into the source program at once, so we could observe the appro-
priate changesets. It is not clear that programs that could benefit from aspect-oriented
programming are created in this way, however; one could just as well imagine that
the code that should be aspectified was introduced over time, and thus appropriate
original and changed versions of the code would not be available to our approach.
Similarly, specifications for static analysis tools such as Semmle/Code”* could not be
inferred using our approach, because no transformation is involved in that case. Our
approach is indeed best suited for evolution or bug fixing, where multiple common
changes are made at once.

8 Conclusion

The contributions of this paper are as follows: (1) We provide a formalisation of the
largest common subpatch notion independent of the transformation language used.
(2) We give an algorithm that infers safe and compact subpatches relative to a trans-
formation language of generic patches as well as a tool that implements the algorithm.
(3) We have shown examples of inferred generic patches from recent collateral evo-
lutions in Linux where our tool infers generic patches that are more compact than the
standard patches that were originally applied to the Linux source tree and that allow
us to update relevant files where the collateral evolution was not performed.

Currently, the spfind tool requires that a change be made in all of the provided
files. In practice, however, particularly when spfind is used to better understand a
collection of existing standard patches, it can be useful to be able to detect changes
that occur in only a subset of the files. We have addressed this issue by allowing the
user to provide a threshold for the frequency of occurrences required for a change to
be considered for inclusion in the generic patch.

Finally, the language of generic patches covers only a subset of the collateral evo-
lutions performed in the Linux kernel. We have extended our method to a larger
subset of the richer language of semantic patches provided by Coccinelle. Work is
underway to document this extension (Andersen 2010).

Acknowledgements We would like to thank Gilles Muller for his feedback on an earlier version of this
paper. We would also like to thank the anonymous reviewers for this version and the previous conference
version of this paper for their helpful comments. And finally, this work was supported in part by the Danish
Research Council for Technology and Production Sciences.

References

Andersen, J.: Semantic patch inference. Ph.D. dissertation, University of Copenhagen, Feb. 2010

Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierarchically struc-
tured information. In: SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD International Confer-
ence on Management of Data, pp. 493-504. ACM Press, New York (1996)

4Semmle/code, http://semmle.com/semmlecode/.

@ Springer

http://semmle.com/semmlecode/

148 Autom Softw Eng (2010) 17: 119-148

Conchon, S., Fillidtre, J.-C.: Type-safe modular hash-consing. In: ACM SIGPLAN Workshop
on ML, Portland, Oregon, September 2006, supersedes (Fillidtre, 2000). [Online]. Available:
http://www.Iri.fr/filliatr/ftp/publis/hash-consing2.ps

Filliatre, J.-C.: Hash consing in an ML framework. LRI, Université Paris Sud, Research Report 1368,
September 2000. [Online]. Available: http://www.Iri.fr/~filliatr/ftp/publis/hash-consing.ps.gz

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J.: Aspect-
oriented programming. In: ECOOP’97—Object-Oriented Programming, 11th European Conference.
Jyviskyld, Finland. Lecture Notes in Computer Science, vol. 1241, pp. 220-242. Springer, Berlin
(1997)

Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for matching across pro-
gram versions. In: ICSE *07: Proceedings of the 29th International Conference on Software Engi-
neering, Washington, DC, USA, pp. 333-343. IEEE Computer Society, Los Alamitos (2007)

MacKenzie, D., Eggert, P, Stallman, R.: Comparing and Merging Files With Gnu Diff and Patch,
Network Theory Ltd., Jan. 2003, unified Format section, http://www.gnu.org/software/diffutils/
manual/html_node/Unified-Format.html

Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source code evolution using abstract syntax tree match-
ing. SIGSOFT Softw. Eng. Notes 30(4), 1-5 (2005)

Padioleau, Y., Lawall, J.L., Muller, G.: Understanding collateral evolution in Linux device drivers. In: The
first ACM SIGOPS EuroSys Conference (EuroSys 2006), Leuven, Belgium, Apr. 2006, pp. 59-71

Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating collateral evolutions in
Linux device drivers. In: Eurosys 2008, Glasgow, Scotland, Mar. 2008, pp. 247-260

Weissgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In: ASE ’06: Proceedings
of the 21st IEEE/ACM International Conference on Automated Software Engineering, Washington,
DC, USA, pp. 231-240. IEEE Computer Society, Los Alamitos (2006)

@ Springer

http://www.lri.fr/filliatr/ftp/publis/hash-consing2.ps
http://www.lri.fr/~filliatr/ftp/publis/hash-consing.ps.gz
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html
http://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

	Generic patch inference
	Abstract
	Introduction
	Motivating example
	Compactness
	Safety

	Setup
	Patterns
	Term replacement patches
	Generic patches

	Theory of subpatches
	Ensuring safety
	Extension to changesets

	Ensuring compactness
	The largest safe common subpatch
	Inverse monotonicity
	Summary

	The spfind algorithm and implementation
	A simple algorithm
	Construction of term-replacement patches
	Growing sequential generic patches
	Relationship between algorithm and specification

	Towards a refined algorithm
	Sufficient term replacement patches
	Finding term replacement patches
	Search-space pruning

	The refined spfind algorithm, spfind_refined
	Generation of term replacement patches
	Growing sequential generic patches

	Implementation
	Non-uniform input data
	Improving performance

	Examples
	Adapt to structure changes
	Structure changes
	Renaming of function calls
	Modifying declarations
	Use kzalloc
	Assessment

	Related work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

