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Abstract. Developing new process-scheduling components for multiple
OSes is challenging because of the tight interdependence between an OS
and its scheduler and because of the stringent safety requirements that
OS code must satisfy. In this context, a domain-specific language (DSL),
designed by a scheduling expert, can encapsulate scheduling expertise
and thus facilitate scheduler programming and verification. Nevertheless,
designing a DSL that is target-independent and provides safety guaran-
tees requires expertise not only in scheduling but also in the structure
of various OSes. To address these issues, we propose the introduction of
an OS expert into the DSL design process and the use of a type system
to enable the OS expert to express relevant OS properties.
This paper instantiates our approach in the context of the Bossa process-
scheduling framework and describes how the types provided by an OS
expert are used to ensure that Bossa scheduling components are safe.

1 Introduction

A domain-specific language (DSL) is a programming language dedicated to a
given family of problems, known as a domain. Such a language provides high-level
abstractions allowing the DSL programmer to focus on what to compute rather
than on how to perform this computation [7]. Specifically, the DSL approach
relieves the programmer both of constructing code appropriate for a given target
and of ensuring that this code satisfies target-specific requirements. Instead,
these issues are addressed by the compiler and verifier of the DSL.

Commonly, the responsibilities of designing a DSL and providing the asso-
ciated compiler and verifier are delegated to a domain expert. Such an expert
has a broad view of the algorithms relevant to the domain, and thus can se-
lect appropriate language abstractions. Nevertheless, this kind of knowledge is
not sufficient to create a complete implementation of the language. Construct-
ing a compiler and verifier requires low-level understanding of the target. When
there are multiple targets, taking them all into account multiplies the expertise
required and the complexity of the compiler and verifier implementations.
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In this paper, we examine these issues in the context of the DSL provided by
the Bossa framework for implementing operating system (OS) process-scheduling
components [14, 16]. The goal of Bossa is to facilitate the integration of new
schedulers in existing OSes, both general-purpose OSes, such as Linux and Win-
dows, and those that address special needs, such as OSes for real-time and em-
bedded systems. In the domain of scheduling, there is a substantial gap be-
tween expertise in the domain itself and expertise in the target, i.e., a given
OS. Scheduling policies are typically developed and presented at a theoretical
level, where the main concerns are high-level properties such as liveness and
CPU utilization. Implementing a scheduling policy, on the other hand, requires
a deep knowledge of the interaction between the OS and its scheduler, and this
interaction differs for each OS. Few scheduling experts possess both expertises,
particularly across the range of OSes targeted by Bossa.

Our Approach. To address the need for OS expertise and for OS independence
in the design of a DSL for process scheduling, we propose two extensions to the
DSL design process. First, we introduce an OS expert, i.e., an expert in the
target OS, who provides information about OS behavior relevant to the domain
of scheduling. Second, we propose that the scheduling expert define a type system
to be used by the OS expert to create types describing this information. The
scheduling domain expert constructs a compiler and a verifier that use these
types in generating code appropriate to the target OS and in checking that the
behavior of a scheduling policy implementation satisfies OS requirements. This
approach allows the DSL to be targeted to many OSes, without complicating its
implementation, and eases subsequent evolution of the language to new OSes.
In the context of process scheduling, we focus on the problems of codifying the
behavior that a target OS requires from its scheduler and of checking that a
given scheduler implementation satisfies these requirements, as these are the
main sources of OS dependence in this domain.

The specific contributions of this paper are:

– We present a novel approach to the design of a DSL for process scheduling.
This approach incorporates an OS expert and a type system to make the
language implementation target-independent.

– We instantiate this approach in the context of the DSL of the Bossa process-
scheduling framework. In this context, we present a type system that enables
an OS expert to express OS information relevant to scheduling.

– We show how to exploit the information provided by the OS expert in the
verifier, by presenting a static analysis that checks whether a Bossa schedul-
ing policy satisfies the OS requirements specified using the type system.

– We illustrate the use of the analysis on typical Bossa code.

The rest of this paper is organized as follows. Section 2 presents an overview of
our approach and instantiates this approach for the Bossa framework. Section 3
presents the type system used in Bossa and the corresponding analysis. Section 4
illustrates the various features of the analysis on a realistic example. Finally,
Section 5 describes related work and Section 6 concludes.
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Fig. 1. Verification and compilation tools

2 DSL Design Approach

We first give an overview of our approach, and then instantiate it in the context
of the Bossa framework. The languages and tools used in our approach are
illustrated in Figure 1.

2.1 Methodology

Based on an analysis of the range of scheduling policies, the scheduling expert
identifies the kinds of programming abstractions and properties of OS behavior
that are relevant to the scheduling domain. He then designs a DSL incorporating
the identified abstractions and codifies the range of properties in a type system.
Having designed the language and the type system, the scheduling expert im-
plements a verifier and compiler that are parameterized by type information.
The verifier checks that the implementation of a scheduling policy satisfies the
provided types, while the compiler uses type information to optimize the code
generated to produce the scheduling component.

Each OS has its own properties and conventions. To make these apparent, the
OS expert describes the interface that must be provided by the implementation
of a scheduling policy and uses the type system to create types describing the
expected behavior of each definition required by this interface. The OS expert
then configures the verifier and compiler developed by the scheduling expert
with this type information. The result is a verifier and compiler specific to the
given OS. The types are also given as documentation to the scheduling policy
programmer to guide scheduler development. Even though this approach implies
that the resulting scheduling components are OS-specific, in practice there are
substantial opportunities for code re-use between policy implementations for
different OSes.



On Designing a Target-Independent DSL 439

Because understanding OS behavior is difficult, we propose that the schedul-
ing expert also provide the OS expert with a verifier to check basic properties of
the types. Such a verifier may check, for example, that a complete set of types
is provided and that the types satisfy certain properties generic to scheduling.
Details of this verifier are out of the scope of this paper.

2.2 Scheduling Expertise

The design of the Bossa framework has been based on an extensive study of
scheduling policies, both those found in commercial OSes and those developed
for special needs, such as multimedia and real-time applications. A scheduling
policy describes how to elect a new process for execution when requested to do
so by the kernel. Whether a process is eligible for election depends on its current
state (i.e., running, ready to run, or blocked). Thus, a scheduling policy also
typically specifies how to react to process state changes. Requests to elect a new
process and process state changes can be viewed as events. The Bossa framework
is organized around a set of event notifications that are generated by the kernel1

and handled by a scheduling component.
In the role of the scheduling expert, we have designed the Bossa DSL and the

type system for use within this framework. The Bossa DSL organizes the imple-
mentation of a scheduling policy as a collection of event handlers, of which one
elects a new process and the others respond to process state changes. The types
of the Bossa type system amount to pre- and post-conditions that describe the
possible states of relevant processes when an event notification is generated and
the allowed effects of the corresponding handler on these process states. Checking
of these types ensures that each handler treats all possible input configurations
and adjusts process states as required by the OS.

The Bossa DSL. The Bossa DSL provides facilities for declaring process states
and associated data structures, for managing the association of processes to
states, and for performing other kinds of relevant computation (e.g., arithmetic).
We illustrate the DSL using excerpts of a Bossa implementation of the Linux
scheduling policy (Figure 2).

The process states used by the Linux policy are defined in lines 1–8 of Fig-
ure 2. Each state is associated with a state class, indicating the schedulability
of the processes in the given state. The state class RUNNING describes the pro-
cess that is currently running. The state class READY describes a process that
is ready to run (runnable). The state class BLOCKED describes a process that is
blocked, waiting for a resource. The state class TERMINATED describes a process
that is terminating. Each state declaration also indicates whether a single vari-
able (process) or a queue (queue) should be used to record the set of processes
currently in the state. One state in the state class READY is designated as select,
indicating that processes are elected for execution from this state. State classes

1 A kernel must be prepared for use with Bossa by inserting these event notifications at
the points of scheduling-related actions. We have addressed this issue elsewhere [1].
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1 states = {

2 RUNNING running : process;

3 READY ready : select queue;

4 READY expired : queue;

5 READY yield : process;

6 BLOCKED blocked : queue;

7 TERMINATED terminated;

8 }

9

10 On unblock.preemptive {

11 if (e.target in blocked) {

12 if ((!empty(running))

13 && (e.target > running)) {

14 running => ready;

15 }

16 e.target => ready;

17 }

18 }

Fig. 2. Extract of the Linux policy

Table 1. Code size of some Bossa schedulers

Process schedulers Lines of code

The Linux 2.4 scheduling policy 201
Progress-based scheduling [21] 234
Lottery scheduling (one currency) [22] 128
Earliest-Deadline First 124
Rate Monotonic (RM) 134
RM + aperiodic processes (polling server) 262

describe the semantics of the declared states, and are crucial to the verification
process, as described in Section 3.

The handler for the unblock.preemptive event is shown in lines 10-18 of
Figure 2. This event is generated by the Bossa version of the Linux OS when a
process unblocks and the scheduler is allowed to preempt the running process.
Bossa event handlers are written using a syntax that amounts to a restricted
version of C, but includes operators specific to the manipulation of process states.
The unblock.preemptive handler first checks whether the unblocking process,
referred to as the target process or e.target, is currently in the blocked state.
If so, lines 12–15 determine whether some process is running, and if so, whether
this running process should be preempted. These lines first test whether there
is a process in the running state, using the Bossa primitive empty (line 12),
and if so check whether the priority of the target process is greater than that
of the running process (line 13). If both tests succeed, the state of the running
process is changed to ready (line 14), indicating that the running process should
be preempted. Finally, the state of the target process is also changed to ready
(line 16), indicating that the target process is newly ready to run.

The Bossa DSL has been used to implement a variety of scheduling policies.
Implementations are concise, as shown in Table 1. A grammar of the language
and some example policy implementations can be found at the Bossa web site2.

The Bossa Type System. The Bossa type system allows the OS expert to describe
pre- and post-conditions on the behavior required by a particular OS, in a policy-
independent way. Accordingly, types are expressed using state classes, rather
2 http://www.emn.fr/x-info/bossa/
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than the states defined by a specific policy implementation. In addition to the
state classes used in state declarations, the state class NOWHERE is used to describe
a process that is being created and thus not yet managed by the scheduler.

A type consists of a collection of rules having the form input → output,
defined as follows:

Input configuration: input ::= [in1, ..., inn]

Input component: in ::= [p1,...,pn] in cin | [] = cin

Input state classes cin ::= RUNNING | READY | BLOCKED | NOWHERE
Output configuration: output ::= [out1, ..., outn]
Output component: out ::= [p1,...,pn] in cout | [p1,...,pn] in cout! | cout!

Output state classes cout ::= RUNNING | READY | BLOCKED | TERMINATED
Process names: p ::= src | tgt | p1 | . . . | pn

An input configuration describes possible process states on entering the han-
dler and an output configuration describes process states required on exiting the
handler. An input configuration can specify that specific processes are in a given
state class ([p1,...,pn] in cin) or that there are no processes in a given state
class ([] = cin). Output configurations are similar, but cout! indicates that pro-
cesses may change state within the given state class. The names src and tgt
refer to the source3 and target processes of the event, respectively. The names
p1, . . . , pn refer to arbitrary processes distinct from the source and target pro-
cesses. State classes and process names cannot be duplicated in a configuration
and only process names occurring in the input configuration can occur in the
output configuration.

As an example, an OS expert might use the following type to describe the
behavior of a naive unblock event handler:

[[tgt] in BLOCKED] -> [[tgt] in READY]

[[p] in RUNNING, [tgt] in BLOCKED] -> [[p,tgt] in READY]

The first rule indicates that the target process is initially blocked, and that
the event handler should change the state of this process such that the policy
subsequently considers the process to be runnable. No other state change is
allowed. The second rule indicates that if there is currently some running process
p, then the event handler can change the state of both the running process and
the target process such that both processes are subsequently considered to be
runnable. Again, no other state change is allowed.

The pseudo-parallelism introduced by interrupts must be accounted for when
analyzing the interactions between event handlers. To describe possible run-time
interactions between handlers, the type system includes automata to allow the
OS expert to specify possible sequences of events. The transitions in these se-
quences are specified to be interruptible or uninterruptible. The type information
also includes a list of the events that can occur during interrupts.

3 An event has a source process if the originator of the event is a process other than
the processes affected by the event (the target process). For example, the event
corresponding to process creation has both a source and a target process.
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sequence 1

sequence 2

sequence 3

tgt in RUNNING
add to wait queue unblock of a higher

unblock, tgt in RUNNING

unblock, tgt in READY

block unblock, tgt in BLOCKED

priority process

Fig. 3. Event sequences involving unblock.preemptive

2.3 OS Expertise

The OS expert identifies the interface and types particular to an OS that has
been prepared for use with Bossa. We have created a version of Linux 2.4 for
use with Bossa that uses the following 11 basic events: process creation, process
termination, blocking, three variants of yielding, two variants of unblocking,
clock tick, timer expiration, and process election [1]. The OS expert declares one
type for each event.

In most cases, the types of the Linux events are intuitive. For example, the
type of an unblocking event requires that a blocked process change from a state
in the BLOCKED state class to a state in the READY state class. Nevertheless,
the sequences of events that can occur due to interrupts in the Linux kernel
imply that sometimes an event handler can receive processes that are not in the
states expected by an intuitive description of the handler behavior. We illustrate
this issue using the unblock.preemptive event. Some possible event sequences
involving this event are shown in Figure 3. In the Linux kernel, a process blocks
by first placing itself on a wait queue and then requesting to be blocked. A
process can be unblocked as soon as it is on a wait queue. If the process has
already blocked, as illustrated by the first sequence, then this process, i.e., the
target process from the point of view of the handler, is in a state in the BLOCKED
state class, and the rules presented in Section 2.2 apply. If the process has not yet
blocked, then it is normally in a state in the RUNNING state class, as illustrated
by the second sequence, but may be in a state in the READY state class, e.g., if it
has been preempted by the unblocking of a higher priority process, as illustrated
by the third sequence. In the latter two cases the process should remain in its
current state. The complete type for unblock.preemptive is thus as follows:

[[tgt] in BLOCKED] -> [[tgt] in READY]

[[p] in RUNNING, [tgt] in BLOCKED] -> [[p,tgt] in READY]

[[tgt] in RUNNING] -> []

[[tgt] in READY] -> []

The Bossa type verifier (Figure 1) checks that this type is consistent with the
declared event sequences.

The considerations that go into the development of the types for unblock.-
preemptive require a deep understanding of a range of Linux mechanisms (block-
ing, interrupts, etc.). A correct policy implementation can, however, often be
constructed based on only the knowledge of what cases should be treated and
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what transitions are allowed. This information is made available to the program-
mer by the inclusion of the types in the Bossa documentation. Even when more
information about kernel behavior is needed to define an event handler, the types
are still useful in signaling the possibility of unexpected behavior.

3 Static Analysis for Bossa

The Bossa verifier connects a policy implemented using the DSL provided by
the scheduling expert to the types provided by the OS expert. Specifically, the
verifier checks that the policy implementation satisfies the types, and is thus
coherent with the behavior of the target OS. We first present the semantics of a
core subset of the DSL and then present the type checking analysis used by the
verifier. This analysis relies critically on features of the DSL that make process-
state properties explicit, such as the classification of process states into state
classes and the use of explicit state names in operations that test state contents
and implement state changes.

3.1 Semantics of the Bossa DSL

The types provided by the OS expert describe changes in process states. We
thus consider a core subset of the Bossa DSL that focuses on the operations that
relate to the states of processes. The syntax of this core language is as follows:

Statements: stmt ::= exp => state | foreach ( x in state ) stmt
| if ( bexp ) stmt1 else stmt2 | {stmt1 ; stmt2} | { }

Process expressions: exp ::= e.source | e.target | x | state | select()
Boolean expressions: bexp ::= empty(state) | exp in state | exp1 > exp2

The only constructs not previously presented are e.source, which refers to the
source process, foreach, which iterates over the set of processes in a given state,
and select(), which elects the highest priority process in the state designated
as sorted.

The big-step operational semantics [18] of this language is given in Figure 4.
The semantics is defined in terms of the following judgments:

Statements: φ, σ � stmt → σ′

Process expressions: φ, σ � exp → process
Boolean expressions: φ, σ � bexp → bool

An auxiliary judgment π, φ, σ �x stmt → σ is used to control the iteration in the
semantics of foreach. These judgments refer to the following semantic objects:

Variable environment: φ : (var ∪ {e.source, e.target}) → process
State environment: σ, σ′ : state → P(process)
Process: process : process id× priority

The set of processes, process, is finite. A state environment σ partitions the set
of processes, i.e., a process cannot be in more than one state at a time. Each
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Statements
state info(state) = queue ∨ σ(state) = ∅

φ, σ � exp → p σ−1(p) = pstate σ′ = σ[pstate �→ σ(pstate) − {p}]
φ, σ � exp => state → σ′[state �→ σ′(state) ∪ {p}]

φ, σ � { } → σ

σ(state) = π π, φ, σ �x stmt → σ′

φ, σ � foreach ( x in state ) stmt → σ′ ∅, φ, σ �x stmt → σ
p ∈ π φ[x → p], σ � stmt → σ′

π − {p}, φ, σ′ �x stmt → σ′′

π, φ, σ �x stmt → σ′′

φ, σ � bexp → true φ, σ � stmt1 → σ′

φ, σ � if ( bexp ) stmt1 else stmt2 → σ′
φ, σ � bexp → false φ, σ � stmt2 → σ′

φ, σ � if ( bexp ) stmt1 else stmt2 → σ′

φ, σ � stmt1 → σ1 φ, σ1 � stmt2 → σ2
φ, σ � {stmt1 ; stmt2} → σ2

Process expressions
φ, σ � e.target → φ(e.target)
φ, σ � e.source → φ(e.source)

φ, σ � x → φ(x)
state info(state) = process σ(state) = {p}

φ, σ � state → p

σ(s) = π prio = max{prio′ | ( , prio′) ∈ π} (id, prio) ∈ π
φ, σ � select() → (id, prio)

(s is the state designated as select)

Boolean expressions

φ, σ � empty(state)
→ σ(state) = ∅

φ, σ � exp → p
φ, σ � exp in state → p ∈ σ(state)

φ, σ � exp1 → (id1, prio1)
φ, σ � exp2 → (id2, prio2)

φ, σ � exp1 > exp2 → prio1 > prio2

Fig. 4. Semantics of a core subset of Bossa

process is associated with a unique identifier process id and a priority drawn
from some totally ordered domain. By a slight abuse of notation, we use σ−1 to
designate a function that maps a process to its current state as defined by σ.
The semantics also uses the function state info(state), which returns the kind of
data structure (queue or process variable) implementing state.

3.2 Analysis of Bossa Programs

The analysis performed by the Bossa verifier is based on a number of well-known
dataflow-analysis techniques, including inferring information from conditional-
test expressions, not merging the results of analyzing conditional branches, and
maintaining a precise representation of the contents of data structures. In the
context of Bossa, the simple program structure (e.g., the absence of function
calls) and the use of domain-specific constructs imply that these techniques can
be used more effectively than is typically possible in a general-purpose language.
The result is an analysis that is precise enough to identify policy implementations
that satisfy the types provided by the OS expert, while detecting implementa-
tions that violate OS requirements.

The analysis is inter-procedural (i.e., inter-handler) following a graph of pos-
sible execution paths through the policy implementation derived from the event
sequences given by the OS expert. Each step in the analysis considers a pair
of a handler and an abstract state environment that has not previously been
explored. The analysis simulates the behavior of the handler on the state envi-
ronment, producing a set of possible resulting state environments. These envi-
ronments are then checked against the type of the handler. If the type is satisfied,
then all possible successor handlers are paired with each of the resulting state
environments, and pairs that have not been considered previously are added to
the set of pairs to explore.
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The analysis manipulates a set of abstract values. We first present these ab-
stract values, then present some useful functions, and finally present the analysis
rules. The analysis has been implemented in the Bossa verifier.

Abstract Values. The information contained in the abstract values is determined
by the kinds of properties described by the types. Types describe the starting and
ending state classes of various processes, notably the source and target processes,
as well as the allowed transitions between state classes and within the states of a
state class. Accordingly, the abstract values keep track of the state of the source
process and the state of the target process and permit to determine both the
original and current state of each process.

A process description, pd, is a pair of one of the forms (src, state), (tgt, state),
(x, state), (x, class), or (x,�), where src, tgt, and x are constants that represent
the source, target, and any other process, respectively. Process descriptions are
ordered as follows:

(src, state), (tgt, state) � (x, state) � (x, class) � (x,�)

(x, state) � (x, class) only holds if state was declared to be in the state class
class. If the second component is the name of a state or state class, it is the
state or state class of the process at the start of the handler. If this component
is �, the state of the process at the start of the handler is unknown (the starting
state of the source or target process is always known). A process description can
either represent a specific process or one of a set of possible processes. Those
of the form (src, state) or (tgt, state), or of the form (x, state) where state is
represented as a process variable, can only represent a single process. Such a
process description is said to be unique. The predicate unique(pd) is true only
for these process descriptions.

The analysis is defined in terms of an abstract state environment that asso-
ciates with each state a contents description, cd of the form [ ] or 〈must,may〉.
The description [ ] indicates that it is known that there are no processes in the
state. A description 〈must,may〉 describes the set of processes in a state us-
ing “must” and “may” information, analogous to that used in alias analysis [15].
Specifically, must is a set of process descriptions of which each element represents
a distinct process that is known to be in the state, and may is a set of process
descriptions that describes a safe approximation (superset) of all processes that
may be in the state. Redundant information is not allowed in may information;
for example, may information can contain only one of (tgt, state) and (x, state).
For convenience, the functions must and may return the corresponding compo-
nents of a contents description of the form 〈must,may〉, and return ∅ for the [ ]
contents description. The maintaining of both must and may information often
enables the analysis to return a precise result (i.e., true or false) as the result of
analyzing the domain-specific boolean expressions empty(exp) and exp in state.

The ordering on contents descriptions is defined as follows:

[ ] � [ ]

[ ] � 〈∅,may〉

must2 = {pd′
1, . . . , pd

′
n} ∃(pd1, . . . , pdn) ∈ choose(must1, n).∀i.pdi � pd′

i

∀pd ∈ may1.∃pd′ ∈ may2.pd � pd′

〈must1,may1〉 � 〈must2,may2〉
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The function choose(π, n) returns all possible tuples of n distinct elements of π.
Descriptions lower in the ordering are more informative than those higher in the
ordering. This ordering is a partial order and extends pointwise to state environ-
ments. Based on this ordering, an upper bound of two contents descriptions is
computed as follows. [ ]� [ ] = [ ]. Otherwise cd1� cd2 = 〈α∪β ∪γ ∪ δ, may(cd1)

may(cd2)〉 where α, β, γ, δ, and 
 are defined as follows:

must1 = must(cd1), must2 = must(cd2),
must′1 = {(x, s) | (p, s) ∈ must1 − must2}, must′2 = {(x, s) | (p, s) ∈ must2 − must1},
must′′1 = {(x, c) | (x, s) ∈ must′1 − must′2 ∧ state s in state class c},
must′′2 = {(x, c) | (x, s) ∈ must′2 − must′1 ∧ state s in state class c},
α = must1 ∩ must2, β = must′1 ∩ must′2, γ = must′′1 ∩ must′′2
δ = {(x,�)}, if |α ∪ β |< min(|must1 |, |must2 |). Otherwise, ∅.
π1 � π2 = {pd | pd ∈ π1 ∪ π2 ∧ ∀pd′ ∈ ((π1 ∪ π2) − {pd}).pd′ �� pd}

Some Useful Functions. The main purpose of the analysis is to track changes in
process states. For this, the analysis uses two key functions, add and remove, that
add a process description to the information known about a state and remove a
process description from the information known about a state, respectively, in
some abstract state environment Σ, mapping states to contents descriptions.

There are two cases in the definition of add, depending on whether the process
description is unique:

if unique(pd),must = must(Σ(state)),may = may(Σ(state)) :
add(pd, state, Σ) = Σ({state �→ 〈{pd} ∪ must, {pd} � may〉}

∪ {state′ �→ 〈must′,may′ − {pd}〉 |
state′ �= state ∧ Σ(state′) = 〈must′, may′〉})

if ¬unique(pd),must = must(Σ(state)),may = may(Σ(state)) :
add(pd, state, Σ) = Σ[state �→ 〈{pd} ∪ must, {pd} � may〉]

In both cases, the process description is added to the must and may information
(in the latter case, the use of 
 implies that the process description is only added
if it is not already described by some process description in the may information).
If the process description is unique, then adding it to the must information of
the current state implies that it cannot be in any other state. It is an invariant of
the analysis that when add is used, if the process description is unique, it cannot
be in the must information of any state. It can, however, be part of the may
information, due to the use of the � operation. The add operation thus removes
the process description from the may information of the other states.

There are three cases in the definition of remove, depending on whether the
process description is unique, and if so depending on the implementation of the
state, if any, for which the process description occurs in the must information:

unique(pd) Σ(state) = 〈must,may〉 pd ∈ must state info(state) = queue

remove(pd, Σ) = ({state}, Σ[state �→ 〈must − {pd},may〉])

unique(pd) Σ(state) = 〈must,may〉 pd ∈ must state info(state) = process

remove(pd, Σ) = ({state}, Σ[state �→ [ ]])
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¬unique(pd) ∨ ∀state.pd �∈ must(Σ(state))
s = {state | ∃pd′ ∈ α(pd).pd′ ∈ may(Σ(state))}

remove(pd, Σ) = (s, Σ{state �→ 〈must(Σ(state)) − α(pd), may(Σ(state))〉 | state ∈ s})
α(pd) = {pd′ | pd � pd′ ∨ pd′ � pd}

This function returns both a set of states in which the process represented by the
process description pd may occur, and a state environment in which any possible
representation of this process has been removed from the must information.
In the first two rules, because the process description is unique and occurs in
must information, we know the state of the associated process. If this state is
implemented as a queue, then the process description is simply removed from the
must information in the resulting state environment. If this state is implemented
as a process variable, then removing the process makes the state empty. Thus, the
information associated with the state is replaced by [ ]. In the final rule, either the
process description is not unique, or it does not occur in any must information.
In this case, the process may occur in any state whose may information contains
a process description related to the given process description, as computed using
α. All elements of α(pd) are removed from the must information of such states.
All such states are returned as the set of possible states of the process.

Analysis Rules. The analysis simulates the execution of a Bossa handler with
respect to variable and state environments described in terms of process descrip-
tions and contents descriptions, respectively. The result of the analysis is a set
of state environments, which are then checked against the type of the handler
to determine whether the handler satisfies OS requirements. The analysis rules
are shown in Figure 5 and are defined using the following judgments:

Statements: Φ, Σ �s stmt : S
Process expressions: Φ, Σ �e exp : (pd, s, Σ′)
Boolean expressions: Φ, Σ �b bexp : bool+

The environments Φ and Σ and the results S, s, and bool+ are defined as:

Φ : (var ∪ {e.source, e.target}) → pd S : P(state → cd) s : P(state)
Σ, Σ′ : state → cd bool+ : bool + ((state → cd) × (state → cd))

The initial variable environment Φ contains information about the source and
target process, derived from the initial state environment under consideration.

Analysis of a statement returns a set of state environments, representing the
effect on process states of the various execution paths through the statement.
To increase precision, the analysis keeps the results of analyzing individual con-
ditional branches separate, rather than computing a single environment approx-
imating their different effects. This degree of precision is tractable because of
the simple structure of Bossa handlers. Analysis of a process expression returns
a process description pd describing the value of the expression, a set s of states
representing a safe approximation (superset) of the state of this process, and
a state environment Σ′ that is a safe approximation of the effect of removing
the process from its current state. This information is used in the analysis of
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Fig. 5. Analysis rules for a core subset of Bossa

an in expression and in the analysis of a state-change statement. Analysis of a
boolean expression returns either a boolean value or a pair of state environments.
In the latter case, the pair components represent the current state environment
enhanced with information derived from the assumption that the boolean ex-
pression is true or false, respectively. The domain-specific boolean expressions
empty(state) and exp in state often enable useful information to be incorpo-
rated into these environments, which are used in the analysis of a conditional
statement. The relationship between the analysis and the semantics is formalized
in the appendix.

4 Analysis Example

The analysis must be precise enough to be able to both accept correct handlers
and give useful feedback for incorrect handlers. To illustrate the behavior of the
Bossa analysis, we consider the following example:
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1 On unblock.preemptive {

2 if (empty(running)) { }

3 else running => ready;

4 e.target => ready;

5 }

This handler is typical in its size, structure, and use of domain-specific con-
structs. Nevertheless, it is incorrect for the Linux OS because it does not take
into account the possibility that the target process might not be blocked.

We consider the analysis of this handler with respect to a state environment
in which the target process is initially in the ready state and no information is
known about the set of processes in the other states. For conciseness, we only
include the running, ready, and blocked states, as only these states are relevant
to the handler. The initial state environment is thus represented as follows:

{running �→ 〈∅, {(x, running)}〉, ready �→ 〈{(tgt, ready)}, {(x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

In this state environment, the must information {(tgt, ready)} for ready indi-
cates that the target process is initially in this state, and the must information ∅
for the other states indicates that nothing is known about their contents. In each
case, the may information indicates that some process x may be in the given state
and that any such process is initially in the given state itself. Figure 6 illustrates
the steps in the analysis of the handler with respect to this state environment.

The analysis begins by analyzing the test expression, empty(running) (line
2), of the initial conditional. At this point the contents description associated
with running is 〈∅, {(x, running)}〉, implying that this state is neither known to
be empty, nor known to be non-empty. Rule (7) is used, which creates refined
state environments, B and C in Figure 6, describing the cases where the state
is empty and non-empty. These environments will be used in the analysis of the
then and else branches of the conditional, respectively.

The analysis of the then branch, {} (line 2), is trivial, and simply returns
the current state environment B. The analysis of the else branch, running =>
ready (line 3), uses the first state-transition rule, rule (1). This rule first ana-
lyzes the expression running, obtaining as the first component of the result the
process description pd associated with the process in this state, and as the third
component of the result a state environment Σ′ describing the effect of removing
this process from its current state. The result of analyzing the entire statement
is then the state environment C obtained by adding the representation pd of the
process to its new state ready in the state environment Σ′.

Because the value of the test expression empty(running) could not be deter-
mined, the result of analyzing the conditional (lines 2-3) is the union of the sets
of the state environments resulting from the analysis of the branches, according
to rule (7). The rule for sequence statements, rule (8), implies that the next
statement of the handler, e.target => ready (line 4) is analyzed with respect
to each of these environments, D and E, individually. The analysis proceeds sim-
ilarly to that of running => ready, and produces the two state environments,
F and G, shown at the bottom of Figure 6.
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empty(running)

{} running => ready

e.target => ready e.target => ready
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unblock.preemptive

if (empty(running)) ...

A
{running �→ 〈∅, {(x, running)}〉,
ready �→ 〈{(tgt, ready)}, {(x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}B

{running �→ [ ],
ready �→
〈{(tgt, ready)},
{(x, ready)}〉,

blocked �→
〈∅, {(x, blocked)}〉}

C
{running �→ 〈{(x, running)}, {(x, running)}〉,
ready �→ 〈{(tgt, ready)}, {(x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

D
{running �→ [ ],
ready �→ 〈{(tgt, ready)}, {(x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

E
{running �→ [ ],
ready �→ 〈{(x, running), (tgt, ready)},

{(x, running), (x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

F
{running �→ [ ],
ready �→ 〈{(tgt, ready)}, {(x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

G
{running �→ [ ],
ready �→ 〈{(x, running), (tgt, ready)},

{(x, running), (x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}
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Fig. 6. Steps in the analysis of the unblock.preemptive handler

The final step is to compare the two resulting state environments to the type
of the event. As described in Section 2.3, the type of unblock.preemptive for
Linux 2.4 is:

[[tgt] in BLOCKED] -> [[tgt] in READY]

[[p] in RUNNING, [tgt] in BLOCKED] -> [[p,tgt] in READY]

[[tgt] in RUNNING] -> []

[[tgt] in READY] -> []

We first consider the output state environment F :

{running �→ [ ], ready �→ 〈{(tgt, ready)}, {(x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

To match this state environment against the type rules, the verifier must de-
termine the starting and ending state of each process. The starting state of a
process is stored in the second component of the associated process descrip-
tion. Thus, in environment F , the starting state of the target process is ready.
The ending state of a process is indicated by the state that is mapped to the
contents description containing the given process. Thus, in environment F , the
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target process ends up in the ready state. Other state changes are indicated by
the must and may information associated with each state. In environment F ,
the may information associated with each state contains only process descrip-
tions originating in the state itself. Thus, we conclude that the handler does not
change the state of any process. The state environment is thus compatible with
the type rule [tgt in READY] -> [].

We next consider the output state environment G:

{running �→ [ ], ready �→ 〈{(x, running), (tgt, ready)}, {(x, running), (x, ready)}〉,
blocked �→ 〈∅, {(x, blocked)}〉}

This environment indicates that both the process initially in the running state
and the process initially in the ready state end up in the ready state. This
behavior is not described by any of the type rules, which require that if the
running process is preempted, then the target process is initially in a state of
the BLOCKED state class. The policy is thus rejected by the Bossa verifier.

The problem with the given handler implementation is that it preempts the
running process regardless of the state of the target process, whereas the type
only allows preemption when the target process is initially in a state of the
BLOCKED state class. Indeed, a programmer might write such a handler on the
assumption that the target process is always initially blocked, which, in the
absence of detailed information about the kernel, is a natural assumption. The
type of the event, however, clearly shows that the RUNNING and READY state
classes must be taken into account. A correct version of the handler is:

On unblock.preemptive {

if (tgt in blocked) {

if (empty(running)) { }

else running => ready;

e.target => ready;

}

}

Analysis of this handler yields state environments that satisfy the type of un-
block.preemptive.

5 Related Work

Recently, there has been increasing interest in compile-time error detection in the
context of OS code. CCured [17], Cyclone [12] and Splint [10] check C programs
for common programming errors, such as invalid pointer references, relying to a
varying degree on user annotations. These approaches provide little or no sup-
port for checking domain-specific properties. Meta-level Compilation [9] checks
properties that can be described using an extended automata language, and has
been used to find many bugs in OS code. Nevertheless, this approach provides
only bug finding; it does not guarantee satisfaction of the checked property. The
SLAM model checker has been used to verify properties of device driver code [2].



452 Julia L. Lawall, Anne-Françoise Le Meur, and Gilles Muller

The effectiveness of all of these strategies depends on the will of the program-
mer to follow anticipated (or inferred, in the case of Meta-level Compilation [8])
coding conventions. A DSL, on the other hand, restricts the programmer to a
limited set of abstractions, thus making feasible more precise verifications.

The SPIN extensible operating system [4] addresses the need to check the
safety of OS extensions by requiring that extensions be implemented using a vari-
ant of Modula-3, which is a type safe language. Nevertheless, this approach only
suffices for properties that can be encoded using the general-purpose Modula-3
types. In particular, there is no framework for declaring and checking high-level
domain-specific properties, as we have proposed here.

Numerous DSLs exploit the use of high-level domain-specific constructs to
provide verification of domain-specific properties. We present a few examples.
Devil is a language for implementing the hardware interaction code in a de-
vice driver. The Devil compiler verifies properties of the internal consistency of
the Devil code; these checks have been shown to drastically reduce the chance
of runtime errors [19]. Nevertheless, there is no verification of the relationship
between a Devil specification and the target OS. Several approaches, includ-
ing Teapot [6], Promela++ [3], and ESP [13], have combined DSLs with model
checking to check algorithmic properties, such as liveness. Our focus is on easing
the integration of DSL program with a target system rather than on algorithmic
properties of the DSL program itself. The design of the Apostle language for
parallel discrete event simulation recognizes the importance of connecting DSL
constructs to specific type and effect information [5]. Again this information is
used to check algorithmic properties.

The Bossa DSL is a stand-alone language, with its own syntax, semantics,
parser, verifier, and compiler. An embedded DSL, on the other hand, is a con-
trolled extension of an existing language, allowing reuse of host-language pro-
cessing tools and enabling the mixing of the DSL with host language features
[11]. Traditionally, an embedded DSL is simply a library, where constraints of
the host language, such as type constraints, ensure that library constructs are
used in a consistent, language-like manner. In this variant, the only verification
that is possible is verification of properties that can be encoded in a way that
they are checked by the host language. It seems awkward, if not impossible, to
express high-level domain-specific properties in this setting. In another variant,
an embedded DSL is implemented via macros that translate DSL constructs
into the host language [20]. These macros can allow host language constructs
to appear at specific places in a DSL program giving a controlled combination
of the host language and the DSL. Our approach is directly applicable to this
setting, as the macro expander can perform verification as well as translation.
Nevertheless, if host language constructs are allowed, parts of the DSL program
cannot be verified, which is not desirable in a domain such as process scheduling
that has stringent safety requirements.
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6 Conclusion

Extending an existing OS with new scheduling strategies is a difficult task, but
one that is essential to providing good performance to many emerging applica-
tions. In this paper, we have presented the design of a DSL for scheduling and a
type-based approach to expressing and checking OS requirements on a schedul-
ing component. By making OS conventions explicit to both the verifier and the
scheduling policy programmer, this approach reduces the expertise needed to ex-
tend an OS with new scheduling components, enabling programmers to address
the needs of applications with specific scheduling requirements.

In future work, we plan to extend this approach to other OS services indi-
vidually and in combination. An approach that includes multiple OS services
could be useful in the context of embedded systems, where for example energy
constraints require specific management strategies for multiple resources. Such
cooperating extensions must take into account more complex interactions than
extensions of a single functionality, making an approach for describing OS re-
quirements even more important.
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Appendix

Definition 1 (Relation on process descriptions). For any processes src and
tgt, and any initial state environment σ0, a process p is related to an abstract
process description pd, iff src, tgt, σ0 |=p p : pd, which is defined as follows:

src, tgt, σ0 |=p src : (src, σ−1
0 (src)) src, tgt, σ0 |=p p : (x, σ−1

0 (p))
src, tgt, σ0 |=p tgt : (tgt, σ−1

0 (tgt)) src, tgt, σ0 |=p p : (x,�)
src, tgt, σ0 |=p p : (x, class), if σ−1

0 (p) is in state class class

This relation extends pointwise to variable environments, as src, tgt, σ0 |=v φ : Φ.

Definition 2 (Relation on contents descriptions). For any processes src
and tgt, and any initial state environment σ0, a set of processes π is related to
an abstract contents description cd, iff src, tgt, σ0 |=c π : cd, defined as follows:

src, tgt, σ0 |=c ∅ : [ ]

∃(p1, . . . , pn) ∈ choose(π,n).∀i.src, tgt, σ0 |=p pi : pdi

∀p ∈ π.∃pd ∈ may.src, tgt, σ0 |=p p : pd

src, tgt, σ0 |=c π : 〈{pd1, . . . , pdn}, may〉

This relation extends pointwise to state environments, as src, tgt, σ0 |=s σ : Σ.
The analysis and the semantics are then related as follows, proved by induc-

tion on the structure of the derivation:

Lemma 1 (Process expression). If Φ, Σ �e exp : (pd, s, Σ′) and src, tgt, σ0 |=v

φ : Φ and src, tgt, σ0 |=s σ : Σ and φ, σ � exp → p, then src, tgt, σ0 |=p p : pd,
σ−1(p) ∈ s, and src, tgt, σ0 |=s σ[σ−1(p) �→ σ(σ−1(p)) − {p}] : Σ′.

Lemma 2 (Boolean expression with a known value). If Φ, Σ �b bexp : b
and b ∈ {true, false} and src, tgt, σ0 |=v φ : Φ and src, tgt, σ0 |=s σ : Σ and
φ, σ � bexp → v, then b = v.

Lemma 3 (Boolean expression with an unknown value). If Φ, Σ �b bexp :
〈Σt, Σf 〉 and src, tgt, σ0 |=v φ : Φ and src, tgt, σ0 |=s σ : Σ and φ, σ � bexp → b,
then if b = true then src, tgt, σ0 |=s σ : Σt and if b = false then src, tgt, σ0 |=s σ :
Σf .

Theorem 1 (Soundness). If Φ, Σ �s stmt : S and src, tgt, σ |=v φ : Φ and
src, tgt, σ |=s σ : Σ and φ, σ � stmt → σ′, then for some Σ′ ∈ S, src, tgt, σ |=s

σ′ : Σ′.
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