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Abstract—The massive amount of resources found in datacenters makes it possible to provide high availability to multi-tier applications.
Virtualizing these applications makes it possible to consolidate them on servers, reducing runtime costs. Nevertheless, replicated VMs
have to be carefully placed within the datacenter to provide high availability and good performance. This requires resolving potentially
conflicting application and datacenter requirements, while scaling up to the size of modern datacenters.

We present BtrPlace, a flexible consolidation manager that is customized through configuration scripts written by the application and
datacenter administrators. BtrPlace relies on constraint programming and an extensible library of placement constraints. The present
library of 14 constraints subsumes and extends the capabilities of existing commercial consolidation managers. Scalability is achieved
by splitting the datacenter into partitions and computing placements in parallel. Overall, BtrPlace repairs a non-viable placement after
a major load increase or a maintenance operation for a 5,000 server datacenter hosting 30,000 VMs and involving thousands of
constraints in 3 minutes. Using partitions of 2,500 servers, placement computing is reduced to under 30 seconds.

Index Terms—Virtualization; Datacenter; Resource Management; Service Level Agreements; Reconfiguration

1 INTRODUCTION

0ST modern web applications, such as Facebook,

Twitter, and eBay, are now structured as n-tier ser-
vices, comprising, for example, a load balancer, an http
server, a specific business engine, and a database. Such
applications must be highly available (HA), which is
achieved by replicating the tiers. Running these tiers in a
datacenter makes spare hardware resources available for
restoring an application to a viable state after a hardware
failure. Using virtualization and dynamic consolidation
allows tiers of multiple applications to be efficiently
run on a single server; VMs with low activity are run
together, and they are relocated to separate servers when
their load increases [17], [21], [24].

Simply replicating tiers is, however, not sufficient to
ensure high availability. The VMs running the replicas
must also be placed on servers in such a way that there
is no single point of failure. Several current consolidation
managers provide this ability [5], [12]. However, in
practice, there may be many other requirements that a
VM consolidation manager must satisfy. For example, (i)
replicas of stateful tiers may need to be placed on servers
that are connected with low latency, to allow the use of
consistency protocols without incurring excessive over-
head, (ii) VMs running stateful tiers must be relocated
using live migration [9] to maintain their current state,
but other VMs may be relocated by booting a clone on
another server, if doing so is more efficient, (iii) some
VMs may require isolation. Furthermore, the datacenter
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administrator may need to express requirements related
to the infrastructure management, such as leaving some
servers free of VMs to allow maintenance. The set of
requirements that need to be expressed may evolve
over time with the emergence of new technologies and
software architectures. For example, the widely used
VMware vSphere and EC2 have already been updated to
support additional constraints, such as VM-to-host affin-
ity constraints in vSphere 4.1 [12] and dedicated servers
in Amazon EC2 [1]. Before these releases, these require-
ments were not expressible. Finally, a consolidation man-
ager must be highly scalable, as current datacentersuse
servers housed in multiple shipping containers, holding
up to 2,500 servers each.!

The above issues reveal that a consolidation manager
to support HA applications must be flexible at two
levels. First, the functionalities that the consolidation
manager provides must be configurable by application
and datacenter administrators, to be able to take into
account the specific, and possibly changing, properties
of the application and the datacenter, respectively. Sec-
ond, the consolidation manager must be extensible to
be able to support new functionalities as new require-
ments emerge. Most current approaches to designing
consolidation managers use ad-hoc approximation algo-
rithms [12], [21], [24]. These algorithms may be highly
optimized to provide scalability, but they are not ex-
tensible and are difficult or impossible for application
or datacenter administrators to configure. Some recent
research solutions are based on combinatorial optimiza-
tions [5], [17], [18], [26], which are more configurable.
Still, these approaches have not been explicitly designed

1. http:/ /www.datacentermap.com/blog/datacenter-container-
55.html



to be extensible, and they do not scale to infrastructures
composed of thousands of servers.

Previous work [15] has discussed the theoretical foun-
dations for a configurable and extensible consolidation
manager, based on constraint programming. Here, we
instantiate this design as a full-scale consolidation man-
ager, BtrPlace (pronounced BetterPlace) which provides:
(i) configurability, by providing a high-level scripting
language allowing administrators to describe application
and datacenter requirements. (ii) extensibility, by the use
of Constraint Programming (CP), allowing new place-
ment constraints to be easily developed and integrated;
(iii) scalability, by exploiting any partitioning that is im-
plied by the datacenter administrator constraints, allow-
ing independent sub-problems to be solved in parallel.
BtrPlace can also be used by the datacenter administrator
to simulate various datacenter configurations and work-
loads, to help in dimensioning and maintenance tasks.

Our main results are:

Expressivity: the current library consists of 14 place-
ment constraints that capture the needs of administra-
tors in terms of reliability, isolation, performance and
infrastructure management. These high-level placement
constraints subsume and extend the placement strategies
that can be expressed with the widely used consolidation
managers VMware DRS and Amazon EC2.

Extensibility: The usage of CP makes placement con-
straints independent of each other. New constraints can
be added without changing the existing implementation.
The present constraints were implemented with an av-
erage of 30 lines of Java code each. Implementing new
constraints required less than half a day of development.

Performance: On a simulated datacenter containing
5,000 servers hosting HA applications embedded into
30,000 VMs, BtrPlace can find a viable configuration
in 3 minutes when it is facing a major load increase
or maintenance. The number of application placement
constraints has little impact on either the solving time
or the quality of the reconfiguration plans.

Partitioning capabilities: BtrPlace analyzes the cur-
rent configuration and the placement constraints to de-
tect independent sub-problems that can be solved in
parallel. Scalability is then limited by the number of
servers available for computing solutions. Dividing a
5,000-server problem described above into two equal-
sized partitions allows BtrPlace to find a viable configu-
ration in 30 seconds.

The rest of this paper is organized as follows. Section 2
describes the design of BtrPlace. Section 3 describes
its implementation. Section 4 evaluates our prototype.
Finally, Section 5 describes related work, and Section 6
presents our conclusions and future work.

2 BTRPLACE OVERVIEW

BtrPlace is a flexible consolidation manager that can
be dynamically configured with placement constraints.
Its task is to maintain the datacenter in a wviable con-
figuration, in which the placement of VMs on servers

satisfies all of the constraints. BtrPlace can be customized
through configuration scripts that describe application
constraints for the placement of VM tiers and manage-
ment constraints for the datacenter infrastructure. We
first introduce the BtrPlace architecture and then present
the configuration script language. Finally, we describe
how BtrPlace performs VM re-assignment.

2.1 Architecture

BtrPlace runs on one or more VMs in the datacenter. It
monitors the VM states and initiates the reassignment
of VMs to servers when it detects that the current
configuration is no longer viable. BtrPlace consists of
four modules (see Fig. 1): monitoring, model merging,
planning, and execution, that are executed within an
infinite control loop.

CSP  CPsolver

user scripts

current
configuration

Monitoring

statistics

reconfiguration
pla

High-level
Constraints Library

VM1 [ VM2 VM3 (VM4 VMs

Server N1 Server N2 Server N3

Datacenter

Figure 1: BtrPlace control loop.

Monitoring. The monitoring module retrieves the cur-
rent state of each server and running VM, and each VM’s
current resource consumption and placement. The com-
puting capacity of a server and the CPU consumption
of a VM are expressed in terms of uCPU units, similar
to the units used in Amazon EC2 [1], to abstract over
heterogeneous hardware.

Model merging. The model merging module creates a
configuration model by aggregating the current resource
usage of all hosted applications and all the constraints on
VM placement. The constraints on VMs come from the
configuration scripts. These scripts are read at every loop
iteration. A part of these constraints may be provided by
provisioning strategies [22] developed by the application
administrators to indicate the changing uCPU require-
ments for their VMs.The module then determines the
viability of the current configuration according to the
constraints in the configuration model. If all the place-
ment constraints are satisfied, then the configuration is
viable and BtrPlace restarts the control loop. Otherwise
it continues to the planning module.

Planning. The planning module uses the configuration
model to compute a new placement of the VMs and
a reconfiguration plan, consisting of a series of actions
that will relocate the VMs from their current servers to
those indicated by the computed placement. Actions are
scheduled to ensure their feasibility using an estimate
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of their duration. The planning module fails if some
constraints cannot be satisfied. This situation reveals that
the datacenter is no longer able to meet the application
demand. To avoid this problem, BtrPlace can be used as
a planning tool to limit the number of applications or to
predict the need to acquire new servers.

Execution. The execution module applies a reconfigu-
ration plan by performing all of the associated actions.
Because BtrPlace creates the plan using timing estimates,
some actions may not terminate within the anticipated
time. If an action takes longer than expected, the execu-
tion module delays subsequent actions that depend on
it. This can result in a longer reconfiguration, but cannot
cause failure.

2.2 Configuration scripts

Configuration scripts permit the datacenter administra-
tor and the application administrators to express their
requirements on the VM placement and server state. A
configuration script declares a set of servers or VMs and
placement constraints to model a part of a viable config-
uration. The scripting language allows administrators to
focus on defining a viable placement, rather than how
to reach one, and to express their requirements without
having to be concerned with the resource usage and
expectations of others.

Describing a datacenter. A virtualized datacenter is
composed of a collection of servers that run a Virtual
Machine Monitor (VMM) such as Xen [3] to host VMs.
Each VM runs either client applications or datacenter
management services (monitoring system, resource man-
ager, etc.). The datacenter administrator must describe
the available servers and the connections between them.
Servers are physically stacked into racks and intercon-
nected through a hierarchical network [19]. Accordingly,
there may be a non-uniform latency between them.

Listing 1 presents a BtrPlace script for describing a
datacenter. Line 1 indicates the script name. The rest
of the script describes properties of the servers, which
are identified by their hostnames, prefixed with ‘@’.
Variables are prefixed with ’$’. Line 3 defines the variable
$Sservers as the list of servers in the datacenter. Here,
$servers is defined as a range of consecutive elements.
Line 4 defines the variable $racks as the list of racks.
Finally, line 6 makes $racks available to other scripts.

namespace datacenter;

$servers = @srv[1..12];
Sracks={@srv[1l..4],@srv[5..8],@srv[9..12]};

export Sracks to x*;

Listing 1: Description of a datacenter composed by 12
servers, grouped into 3 racks.

Describing an application. An application adminis-
trator must describe the application’s VMs and their
placement constraints. As in Amazon EC2, a VM tem-
plate describes a basic VM disk image that is already

configured for the datacenter. A template also specifies
the amount of memory available to the VM and the VM’s
maximum CPU usage. To run a VM on a datacenter
managed by BtrPlace, an application administrator must
instantiate one of these VM templates. Once the VM
instantiated, it can be customized by the application
administrator to run the desired services.

Fig. 2 illustrates a typical 3-tier HA web application.
The Apache services in tier 77 and the Tomcat services in
tier T; are stateless: all the handled requests are indepen-
dent transactions and no synchronization of their state
is required. On the other hand, tier 75 runs a replicated
MySQL database, which is stateful: transactions that
modify the data must be propagated from one VM host-
ing a replica of 73 to the others, to maintain a globally
consistent state. In order to provide high availability, VM
replicas of a tier must run on distinct servers. In order to
ensure good performance, VM replicas of a stateful tier
must be hosted on servers connected by a low latency,
medium to reduce the synchronization overhead.

load
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balancing
VM1 §\~ T k/’,\ VMs
VM> ¢ i\/,‘ synchronization
VMs N e
VM3
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T1: Apache servers
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Figure 2: A 3-tier web application.

Listing 2 presents the BtrPlace script for describing
this HA web application (appl). Line 2 imports the
datacenter configuration script in order to access the
exported variable $racks. Lines 4 and 5 ask for 9
VMs. Here, VM1 to VM7 are instances of the small
VM template while VM8 and VM10 are instances of
the large VM template. A template is parameterized
by a set of options that indicate to BtrPlace the VM’s
characteristics. The clone option indicates that the VM
can be moved by reinstantiating it on the destination
server. Once the new cloned VM has booted, the old VM
is turned off. This is possible for VMs hosting stateless
tiers. In addition, all VMs, by default, can be moved
using live migration [9]. The remaining options boot
and halt indicate the time in seconds required to boot
and halt the VM, respectively. These times depend on
the software running in the VM, and can be provided
by the application administrator to override the defaults
found in the templates.

Lines 6 to 8 of Listing 2 define the variables $T1, $T2,
and $T3, which describe the VMs associated with each
tier, respectively. VMs in $T1 are listed explicitly, VMs in
$T2 are defined in terms of a range, and VMs in $T3 are
defined using an enumeration. The script then defines
constraints on the placement of the application’s VMs.
To ensure high availability, a spread constraint (line 11)
specifies that the given VMs must be hosted on distinct
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servers at all times, including during reconfiguration. An
among constraint (line 13) forces the given VMs to be
hosted within one of the sets of servers given in the
second argument. As a result, all of the VMs in $T3 will
be placed on servers in a single rack, to optimize their
synchronization. Finally, the special variable $me is used
to export all of the declared VMs (line 14).

namespace clients.appl;
import datacenter;

VM[1..7]: small<clone,boot=5,halt=5>;
VM[8,10]: large<clone,boot=60,halt=10>;
ST1 {vMm1, vM2, vM3};

ST2 vM[4..7];

$T3 vM[8,10];

$t in $T[1..3] {
spread($t);

for

}
among (ST3,$racks);
export Sme to sysadmin;

Listing 2: Description of the HA application appl for
the datacenter presented in Listing 1.

Administrating the datacenter. As illustrated in List-
ing 3, the datacenter administrator can also use configu-
ration scripts to describe placement constraints related to
the management of the infrastructure, such as datacenter
partitioning, server maintenance, or the management of
service VMs. In lines 2 and 3, the datacenter admin-
istrator imports the datacenter description and every
script with a name starting with clients. For each
imported script, a variable that lists the VMs declared
in the script is automatically created. For example, the
$clients variable contains every VM exported by the
scripts starting with clients. In line 5, the adminis-
trator asks for one large VM that will be the service
VM executing BtrPlace. In line 7, a fence constraint
restricts vmBtrPlace to the server srvl. In line 8, a
lonely constraint indicates that vmBtrPlace should
not be collocated with any other VMs. Finally, in line 9,
a ban constraint indicates that no client VMs should be
hosted on srv5, to prepare it for a maintenance.

namespace sysadmin;
import datacenter;
import clients.x;
vmBtrPlace : large;
fence(vmBtrPlace,@srvl);

lonely(vmBtrPlace);
ban(Sclients,@srv5);

Listing 3: Datacenter administrator script

2.3 Reconfiguration Example

Given the datacenter described in Listing 1, the applica-
tion described in Listing 2, and the datacenter adminis-
trator script in Listing 3, Fig. 3a depicts a non-viable VM
configuration. In this case, (i) the uCPU demand of vM3

uCPU uCPU uCPU uCPU

VM, VM
7

VM, VM,
(waiting)

VMg VM;, i VM,

srv, RAM srvy RAM srv, RAM srv; RAM
uCPU uCPU uCPU ucPy
VMyo
VMg M, VMg

Srv, RAM Srvs RAM srv, RAM Srvs RAM

(a) non-viable configuration (b) viable configuration

Figure 3: Partial sample configurations for the applica-
tion described in Listing 2, running on the datacenter
described in Listing 3. Each graph denotes the uCPU
and memory capacity of a server. Each box denotes the
estimated resource demand of a VM. Initially, VM, is
waiting to be launched while the other VMs are running.

is not satisfied because srv2 does not provide sufficient
uCPU resources for both VM3 and VM8, (ii) VM4 should
be running, and (iii) srv5 hosts VM7 while its use has
been banned by the administrator for maintenance.

The planning module first computes a new viable
configuration that satisfies the resource demands of the
VMs and all of the placement constraints. To reach the
new configuration shown in Fig. 3b, four actions must be
performed: VM4 must be launched on srv3, VM10 must
be moved to srv4, VM8 must be moved to srv3, and
VM7 must be moved to srv2. To ensure the feasibility
of the reconfiguration process, VM7 cannot be moved to
srv2 until VM8 is moved to srv3 because srv2 does not
initially have enough free resources to accommodate it.
In addition, moving VM8 to srv3 before moving VM10
to srv4 breaks the constraint spread (VM[8,10]).

The planning module also determines whether VMs
should be moved by reinstantiation or by live migration.
With an estimated migration duration of 20 seconds,
and an estimated instantiation duration of 2 seconds,
the planning module detects that it is more efficient to
re-instantiate VM7, as the new replica will be available
with sufficient resources in 7 seconds. However, for vM8
and vM10, which have boot durations of 60 seconds,
migration is preferable. A possible reconfiguration plan
is shown in Table 1.

Start | End || Action

0’00 | 002 instantiate VM7’

0’00 | 005 boot VM4 on srv3
000 | 020 migrate VM10 to srvi4
020 | 0’30 migrate VM8 to srv3
030 | 0’35 boot VM7’ on srv2
035 | 042 halt VM7 on srv5

Table 1: Reconfiguration plan to reach the viable config-
uration in Fig. 3b from the non-viable one in Fig. 3a.

3 IMPLEMENTING BTRPLACE

The model merging and planning modules rely on a core
reconfiguration problem (core RP) that models the current
memory and uCPU demands of the VMs. This core RP
is then extended with the high-level placement constraints



provided by the datacenter and application configura-
tion scripts, resulting in a full reconfiguration problem (full
RP). BtrPlace relies on Constraint Programming (CP) [20]
to model and solve RPs. The use of CP makes the core
RP composable with administrator-provided placement
constraints.

We first introduce CP and then describe the imple-
mentation of the core RP. We then present the library
of high-level placement constraints. Finally, we address
solver optimizations.

3.1 Constraint Programming

Constraint Programming is an approach to model and
solve combinatorial problems in which a problem is
modeled by stating constraints (logical relations) that
must be satisfied by the solution. For a given problem
and sufficient time, the CP solving algorithm is guar-
anteed to compute a globally optimal solution, if one
exists. The algorithm is independent of the constraints
composing the problem and the order in which they
are provided. To use CP, a problem is modeled as a
Constraint Satisfaction Problem (CSP), comprising a set of
variables, a set of domains representing the set of possible
values for each variable and a set of constraints that
represent the required relations between the values of
the variables. A solver computes a solution for a CSP by
assigning each variable to a value that simultaneously
satisfies the constraints. To make the solving process
as scalable as possible, the challenges are to model the
problem using the most appropriate basic constraints
and to implement domain-specific heuristics to guide the
solver efficiently to a solution.

BtrPlace uses the Java open-source constraint solver
Choco.? The model merging module translates the con-
figuration scripts into Choco constraints that are added
to the core RP. Because Choco constraints are designed
in terms of a number of standard constraints [4], Btr-
Place will be able to benefit from improvements in the
performance of CP, while it should also be possible to
port the RP to other solvers.

3.2 Core Reconfiguration Problem

Computing a viable configuration requires first choosing
for each VM a hosting server that satisfies the VMs
resource requirements and then planning the actions that
will convert the current configuration into the chosen
one. This problem is expressed as the core RP. We now
describe the variables, domains, and basic constraints
that model the core RP. For reference, the variables are
summarized in Table 2. We then propose a metric for
estimating the cost of executing a reconfiguration.
Modeling the datacenter. The core RP is defined in
terms of a set of servers N and a set of virtual machines
V. Each server n; € NV is denoted by its memory usage
n7**", and its uCPU usage n;"", both capped by their

2. http:/ /choco.emn.fr

Variables related to VM Management
Current host of the VM (constant)
Current amount of memory and uCPU re-
sources allocated to the VM (constant)

ced Time the VM may leave its current host

dhost Next host of the VM

dmen, d°P*  Next amount of memory and uCPU resources

to allocate to the VM
dst Time the VM arrives on its next host

Chost

cmen cpu

Variables related to server management
nd Next state of the server

Variables related to action management
Times an action starts and ends, respectively

CLSt, aed

Table 2: Variables composing the core RP.

respective maximum capacity. In addition, the boolean
variable ng-, denotes the server state at the end of the
reconfiguration process. It is instantiated to 1 if the server
should be online at this point, and 0 otherwise.

We define a slice as a finite period during a recon-
figuration process where resources are consumed on a
server. A slice is represented as a collection of variables
that are used within the core RP to represent the resource
consumption of each VM and server throughout the
entire duration of the reconfiguration process.

A consuming slice (c-slice) ¢ € C is a slice where
resources are consumed at the beginning of the reconfig-
uration process. The variable ¢"°*! indicates the location
of the slice. The variable is assigned to a value so that
chost = j indicates the c-slice is hosted on the server
n;. Until the end of the slice, at the moment e a c-
slice is considered to consume a constant amount of
uCPU ¢ and memory ¢™™. A demanding slice (d-
slice) d € D is a slice where resources are consumed on
some server at the end of the reconfiguration process.
The variable d"°s* = j indicates that the d-slice is hosted
on the server n;. The d-slice d starts at the moment d**
and ends at the end of the reconfiguration process, at
the moment d°. During the whole duration of a d-slice,
a constant amount of memory d™¢™ and uCPU d°** are
then considered to be consumed.

Modeling the actions. The manipulation of the
servers’ states and the assignment of the VMs to servers
may lead to the execution of actions. During a recon-
figuration, a server can be turned off and on using the
shutdown and the boot action respectively. A running VM
may stay on the same server or may be moved to an-
other server using a migration or a re-instantiation action.
Finally, a waiting VM may be started on some server
using a start action. The variables a*' and a®! denote
respectively the moments when an action a € A starts
and ends. The duration of an action can be estimated
and modeled from experiments [16]. The datacenter ad-
ministrator provides an estimate, parameterized by the
properties of the involved VM or server, of the duration
of each of the possible actions (migration, instantiation,
or launch of a VM, start or shutdown of a server). As
the duration of booting or halting a VM depends on the
software installed by the application administrator, the



estimated duration of these actions can also be provided
in the configuration scripts.

The assignment of a waiting VM to a server is modeled
using a d-slice and results in a launch action. Fig. 4 uses
a Gantt diagram to illustrate a launch action a for VM1
on server N2. When action a starts, the VMM allocates
the memory for VM1 and boots the guest OS. Once the
guest OS is booted, the application starts and causes the
VM to consume CPU resources. The d-slice continues
to the end of the complete reconfiguration process, as it
represents the fact that the VM is hosted by the server
during this time. It may thus continue beyond the end
of the estimated duration of the launch action.

boot(VM1)
N1 : : W d-slice
N2| JTIIIDREE
0 ast=dst aed ded

Figure 4: Modeling the launch of the waiting VM vM1.

The activity of a running VM is modeled using a c-
slice on its host server and a d-slice on the server that
will run it at the end of the reconfiguration process. If the
d-slice and the c-slice are not placed on the same server,
there will be a relocation. By default, the relocation is
performed using a migration action. However, if the
VM has the clone option, then BtrPlace uses the cost
functions to determine whether a re-instantiation would
be faster. When the relocation is performed, the c-slice
and the d-slice overlap for a finite period, equaling the
estimated duration of the action. Fig. 5 illustrates the
relocation of VM3 from N2 to N1 using live migration.

migrate(VM3)
RS

vi[ T ® 25
N2 VIS —
C5t=0 aS‘]=d st aed=c6d dled > time

Figure 5: Modeling the migration of the running VM
vM3. The action will start at the beginning of the d-slice
and terminate at the end of the c-slice.

A server that can be booted is modeled using a c-
slice that occupies all the server resources for a duration
provided by the cost model. This ensures that no VMs
are assigned to this server before booting has completed.
To model the action of booting a server, we establish
a relation between its state variable and its memory
usage. We consider that a server is hosting VMs when
its memory usage is not null. Its state variable is set to
1 if and only if its memory usage is greater than 0.

A server that can be shut down is modeled using a
d-slice that does not use any resources. This allows the
shutdown action to be scheduled with the other actions,
but makes it possible to place other d-slices, and thus
VMs, on the server if the server is allowed to stay online.
However, if the server must be turned off, then no other

d-slices should be placed on the server. This is modeled
by a constraint that restricts the number of d-slices to 1
when the state variable of the server is 0. In this case,
the starting time of the d-slice is set to the maximum
of the finish times of the c-slices hosted on the server,
and its duration is at least the estimated duration of the
shutdown action provided by the cost function.

Satisfying the VMs’ resource demand. To run the
VMs optimally, in the final configuration, a server must
not host slices with a total uCPU or memory demand
greater than its capacity. The final configuration is deter-
mined by the placement of the d-slices. To place the d-
slices with regard to their resource demand, we augment
the core RP with bin-packing constraints. A bin-packing
constraint packs items with a specific size into bins
with a finite capacity. As a bin-packing constraint only
accounts for one resource, we use two instances, for the
uCPU and for the memory.

The satisfaction of VMs bandwidth requirements is not
addressed in this paper. To support high-speed network
requirement at large scale, datacenters have started to
rely on network fabrics having a full bisection band-
width [13], [14]. In this setting, a bandwidth constraint
violation only occurs when a server hosts VMs that have
their cumulated bandwidth requirements exceeding its
capacity. Satisfying bandwidth requirements can then be
modeled similarly to the support of memory and uCPU
requirements.

Scheduling the actions. A server may be the source
of outgoing relocations and the destination of incoming
relocations and launch actions. To ensure the feasibility
of reconfiguration, incoming actions can only be exe-
cuted when there are sufficient free uCPU and memory
resources on the server. Thus, some outgoing actions
may need to be executed prior to some incoming actions,
to free the required resources. To plan the execution
of the actions, the standard constraint cumulatives may
be used to choose the actions’ start and finish times to
schedule the incoming actions according to the outgoing
actions. As this constraint is not available in the Choco
library, we have implemented a dedicated version.

Dependencies between relocations may be cyclic. This
may occur when the placement of the VMs is computed
without considering how the migrations can be sched-
uled. A solution is to add a relocation to a temporary
pivot server to break the cycle [2], [17] after the place-
ment has been computed. As this extra relocation slows
down the reconfiguration process, cyclic dependencies
are generally undesirable. To avoid cycles, our model
allows at most one relocation per VM and both selects
the VM placement and schedules the actions in a single
core RP. If the solver tries to place a VM on a server
that will lead to a cycle, the scheduling constraint will
invalidate this placement, causing the solver to directly
place the VM on what would be the pivot server.

Solving a RP then requires computing a value for each
d"ost and a*'. The chosen values indicate how to create
a reconfiguration plan containing the actions to perform



and a time for each action to start that ensures the
action’s feasibility with regard to its estimated duration.
A given RP may have multiple solutions, varying in
terms of the costs entailed. Performing a reconfiguration
takes non negligible time, during which the performance
of running applications may be impacted until the re-
configuration is completed. In addition, the duration of a
migration and a re-instantiation increases with the mem-
ory usage of the migrated VM and its booting duration,
respectively. Finally, a relocation consumes resources on
the involved servers and thus temporarily decreases
the performance of applications, if the servers do not
have spare capacity. A good reconfiguration plan is thus
composed of a few, fast actions, where most of them
are executed in parallel, with a minimum delay [17],
[24]. Given a notion of cost, a constraint solver can
compare possible solutions, and return the one with
the lowest cost. The cost of a reconfiguration is defined
as the sum of the elapsed time between the moment
when the reconfiguration starts and the moment when
each reconfiguration action has completed. This measure
accounts for the number of actions, their execution time,
and their delay. It is expressed in Choco by defining the
objective variable K = min(}_ . 4 a°®). To compute K,
Choco works incrementally: each time a solution = with
an associated cost k; is computed, Choco automatically
adds the constraint K < k, and tries to compute a new
solution. This added constraint ensures the next solution
y will have a cost &k, < k. This process is repeated until
Choco browses the whole search space or hits a given
timeout. It then returns the last computed solution.

3.3 Script Placement Constraints

Administrators use configuration scripts to express
placement requirements. BtrPlace provides an extensible
library of placement constraints designed according to a
modular architecture. Each constraint is implemented as
a module that provides the signature of the placement
constraint and an implementation that interacts with
variables from the core RP to restrict the VMs’ resource
allocation, their placement, server states, or the action
schedule. The current library provides 14 constraints tar-
geting either the datacenter administrator or application
administrators and focusing on performance, reliability
and partitioning concerns (see Table 3).

Gather forces all of the given VMs onto the same
server. This constraint is relevant for application admin-
istrators who want to minimize the network communica-
tion between their VMs. The constraint is implemented
by forcing all the placement variables of the d-slices to
take the same value.using eq constraints.

Spread forces the given VMs onto distinct servers,
even during reconfiguration. To force the VMs to be
hosted on distinct servers at the end of the reconfig-
uration process, spread forces the d-slice placement
variables to each take on distinct values. To prevent the
specified VMs from overlapping on any server during

the reconfiguration process, the arrival time of a d-slice
is increased to at least the departure time of a c-slice if
their placement variables are equal.

Among ensures that the given VMs are hosted on a
single set of servers among those given. The implemen-
tation forces that if any d-slice of one of the given VM
is hosted on a server, then all the given VMs are hosted
on the set of servers to which this server belongs.

Ban, fence, quarantine, and root restrict the set of
servers considered for a given set of VMs. Ban prevents
the use of the given servers by the VMs to help the data-
center administrator preparing software main tenant on
the servers. Fence limits the VMs to the given servers.
It enables the datacenter administrator to partition the
datacenter. Quarantine creates a zone where no VMs
can enter or leave to limit the contagion when some
servers appear to be compromised. Root prevents the
VMs from being relocated, to make BtrPlace compatible
with infrastructure that does not support relocation.
These constraints rely on domain restrictions: for each
of the given VMs, the disallowed servers are removed
from the domain of each d-slice placement variable.

Lonely and splitAmong address isolation issues
between VMs. Lonely keeps the given set of VMs
separate from all other VMs, allowing an application
administrator to prevent critical VMs from being hosted
with potentially suspicious VMs. Its implementation
forces the set of d-slice variables of the given VMs and
the set of d-slice variables of all the other VMs not to
have any values in common. SplitAmong forces several
sets of VMs to be hosted on distinct set of servers.
This constraint enables for example, disaster recovery
by forcing tier replicas to be hosted on distinct racks
so that even in the case of a major outage affecting a
whole rack, the application will still be available. The
implementation of splitAmong relies on some of the
principles of the among and the spread constraints.

Capacity restricts the total number of VMs hosted on
a set of servers. It enables the datacenter administrator
to control the use of shared resources, such as public
IP addresses. Its implementation limits the number of d-
slice placement variables that are assigned to the servers.

Preserve and oversubscription control the re-
source demand of the VMs and the servers’ resource
allocation, respectively. They allow the datacenter ad-
ministrator and the application administrators to ensure
that small changes in resource usage will not trigger a
reconfiguration. Such an overallocation of resources to
prevent frequent reconfigurations is standard industry
practice. Preserve provides a minimum amount of
uCPU resources to each of the given VMs. It enables
an application administrator to prevent temporary re-
source outages due to load spikes. This constraint is
implemented by increasing the uCPU resource required
by the d-slice of each of the given VMs, if it is below
the given threshold. Oversubscription ensures for
each of the VMs hosted on the given servers an amount
of uCPU resources equal to the VM’s maximum usage



Placement Constraint User Primary concern Manipulated elements
Hoster | Hostee | Resource | Reliability | Partitioning | Server | VM | Actions

spread(vs) X X X X

gather (vs) X X X

among (vs, {nsi, ..,nsz}) X X X

splitAmong ({vsi,...,vs;}, {ns1,...,nsz}) X X X X

ban (vs, ns) X X X

fence (vs, ns) X X X

root (vs) X X X

lonely (vs) X X X

quarantine (ns) X X X

capacity(ns, n) X X X

preserve (vs, n) X X X

oversubscription(ns, n) X X X

offline (ns) X X X

noldles (ns) X X X

Table 3: Placement constraints available in BtrPlace. Hoster and Hostee denote the datacenter administrator and an
application administrator, respectively. ns, vs denote a set of servers and VMs, respectively. n denotes an integer.

reduced by the given ratio. For example, with a ratio
of 0.8, each server must be able to provide each of the
VMs it hosts with 80% of the VM’s maximum uCPU
usage, even if the VM’s current demand is inferior. This
constraint avoids placing too many VMs that currently
consume a few uCPU on a single server, which could
increase the chances of having a saturated server if
the VMs simultaneously increase their uCPU demand.
Oversubscription is implemented using a bin-packing
constraint similar to the one in the core RP.

Offline and noIdles control the servers’ states.
Offline forces a set of servers to be offline for example,
to allow the datacenter administrator to prepare for
hardware maintenance. NoIdles causes the given set
of servers to be turned off if they do not host any VMs.
This constraint allows the datacenter administrator to
provide a power saving policy. These constraints are
implemented by manipulating the boolean state variable
of each server in the set given as argument.

3.4 Optimizing the Solving Process

Computing a solution for the full RP may be time
consuming for large datacenters, as selecting a host for
each VM and planning the actions is NP-hard. BtrPlace
uses three strategies to optimize the solving process: sim-
plification of the full RP, heuristics guiding the CP solver
toward fast reconfiguration plans, and partitioning.

Our first strategy, referred to as the filter optimization,
is to limit the set of VMs that are considered by the
generated full RP. Initially, each placement constraint
uses a dedicated algorithm to check the viability of
the current configuration and on failure computes a
set of candidate VMs to try to replace, that is expected
to be sufficient to compute a solution. For example,
the spread constraint checks if the VMs to spread are
already on distinct servers. If not, it selects as candidate
VMs those which share servers. Only the VMs in the
candidate set are considered to be relocatable.

Our second strategy is a heuristic that indicates to the
solver the variables it has to instantiate first and the
values to try for these variables. As moving larger VMs

first reduces resource fragmentation, the solver considers
the VMs in descending order of their memory usage. If
the filter optimization is enabled, the solver focuses first
on the VMs whose current placement violates at least
one constraint. Each time a VM is selected, the solver first
tries to place the VM on its current host to avoid useless
relocations. In case of failure, if the filter optimization is
enabled, the solver tries a server that does not host any
of the candidate VMs selected by the filter optimization.
As no resource will be freed on these servers during
the reconfiguration process, relocation to such a server is
guaranteed not to be delayed. Finally the solver tries the
remaining servers. Servers having the largest amount of
free memory are preferred in order to balance the VM
load in the datacenter and to reduce the chance of having
overloaded servers in the future.

Our third strategy is to identify independent sub full
RPs to solve in parallel. For example, the datacenter
administrator can split the infrastructure into several
physical partitions, aligned with the network topology,
and use fence and among constraints to restrict the
placement of each application to one physical partition.
Before the full RP generation, each constraint checks
if the involved VMs and servers can be isolated from
others to form a partition, or can join an existing par-
tition. Typically, constraints such as fence, or among
that restrict the placement of VMs to a known set of
servers lead to the creation of new partitions. Constraints
restricting the placement of VMs with regard to other
VMs do not participate in partition creation. They are
however analysed to check that they are consistent with
the computed partitions. For example, if some of the
VMs in a spread constraint are in different partitions,
then the constraint is split so that it does not overlap
multiple partitions.

BtrPlace generates one full RP for each of the partitions
and solves them in parallel, or in a distributed manner.
This decomposition may, however, fragment resources
and cause some sub-problems to have no solution on a
heavily loaded infrastructure.




4 EVALUATION OF BTRPLACE

The goal of BtrPlace is to allow the specification of a large
range of placement constraints and to repair non-viable
configurations with regards to the specified constraints
in the presence of disruptions, such as maintenance
or long-lasting load increases. We first discuss the ex-
pressivity of BtrPlace for supporting various placement
constraints. We then demonstrate the practical benefits
of BtrPlace for easing maintenance on a small cluster.
Finally, we evaluate the impact of placement constraints
on the solving process of BtrPlace for a real-sized mod-
ern datacenter with up to 5,000 servers running 30,000
VMs.

4.1 Expressivity and Extensibility of BtrPlace

The current library of BtrPlace provides 14 placement
constraints related to resource management, isolation,
fault tolerance, and server management. These con-
straints cover all the affinity constraints in VMware DRS
while splitAmong and lonely implement the two
placement constraints available to EC2 clients: availabil-
ity zones and dedicated instances, respectively. Table 4
compares the placement constraints in BtrPlace with
those in VMware DRS [12]. Fence and ban are similar
to the DRS VM-host affinity constraints while gather
and spread are similar to the DRS VM-VM affinity
constraints. However, spread additionally disallows the
given VMs to collocate even during the reconfiguration.
The capacity constraint can be emulated in DRS but
doing so requires modifying environment variables. Ca-
pacity can furthermore only be limited for all servers
in an entire cluster, rather than for an arbitrary set
of servers, as in BtrPlace. To the best of our knowl-
edge, among, quarantine, oversubscription, and
splitAmong are not available in either DRS or EC2.

Constraint ~ Status | Constraint Status
ban = fence =
gather = spread >
root = preserve =
offline = noldles =
capacity > quarantine X
among X splitAmong X
lonely X overSubscription X

Table 4: Compatibility of the constraint with regards to
VMware DRS. ’x’, ’>’, and '=’ indicate that the BtrPlace
constraint is not available, is superseded, or is equivalent
to a constraint in VMware DRS, respectively.

The translation of the placement constraints into Java
is straightforward and concise. It primarily consists of
directly encoding the formal definition of the constraint
into the Choco library and the BtrPlace APL. On average,
30 lines of code (Loc.) are required to implement the
constraints provided with BtrPlace (Table 5). These im-
plementations have furthermore been designed to be as
efficient as possible. Each placement constraint carefully
analyzes the state of the variables in the core-RP to
generate few and efficient Choco constraints.

Constraint  Loc. | Constraint  Loc. | Constraint Loc.
spread 50 root 11 preserve 10
among 40 lonely 17 overSubscription 40
ban 20 quarantine 40 offline 10
fence 58 capacity 64 | noldles 10
gather 11 splitAmong 31

Table 5: Lines of Java code per placement constraint.

The high-level expressivity and conciseness of Choco
and the BtrPlace API allow the implementation of rel-
evant placement constraints in only a few hours for
an experienced developer. For example, lonely and
splitAmong were not present in the initial version of
BtrPlace, but were motivated by an extension to EC2 [1]
and by a request from a BtrPlace user, respectively.
Browsing the Choco API to choose the right basic con-
straints, and performing the implementation and the
unit tests required half a day for each of these placement
constraints. Neither the existing placement constraints
nor the core RP were modified.

BtrPlace is currently used by the European project
FitdGreen.> One goal of this project is to place VMs
in a federation of clouds, taking into account energy
concerns. Fit4Green developers having no background
in Constraint Programming implemented a non-invasive
extension of BtrPlace to provide constraints that restrict
the hosting capacity of the servers, satisfy the hardware
requirements of specific VMs, and reduce the global
energy consumption of the clouds. [11]

4.2 Using BtrPlace to Prepare for Maintenance

We first study reconfigurations that restore a cluster to
a viable configuration when an administrator needs to
perform maintenance on a server. For this, we test three
instances of the RUBIS benchmark [8], an auction site
prototype that is modeled after eBay.com. Each instance
of RUBIS provides a 3-tier web application and a bench-
mark to evaluate its performance. The evaluation plat-
form is a small cluster, composed of 8 working servers.
(WN1 to WN8) and 4 service servers connected through
a Gigabit network. All the servers have a 2.1 GHz Intel
Core 2 Duo and 4 GB RAM. Each working server runs
Xen 3.42 with a Linux-2.6.32 kernel and provides a
capacity of 2.1 uCPU and 3.5 GB RAM for the VMs.
Monitoring is performed by Ganglia.* Three of the ser-
vice servers export the RUBiS VM images and run the
benchmarks. The fourth service server runs BtrPlace.
We have tailored the RUBIS configuration so as to
deliver the maximum possible performance. The three
tiers of each instance of RUBIS are deployed as 7 VMs
(for a total of 21 VMs), as described in Listing 4. Each
VM in tier $T1 has 512 MB RAM and runs Apache
2.1.12. Each VM in tier $T2 has 1 GB RAM and runs
Tomcat 7.0.2. Finally, each VM in tier $T3 has 1 GB RAM
and runs MySQL-cluster 7.2.5. This tier is stateful, and

3. http:/ /www.fitdgreen.eu
4. http:/ /www.ganglia.info



the coordination between the databases is provided by
the MySQL’s ndb engine. Requests involving dynamic
content are distributed by each Apache service to Tomcat
services using mod_jk 1.2.28. SQL queries executed in
a Tomcat service are distributed to MySQL services
using Connector/J 5.1.13. The initial deployment of the
VMs is compatible with their placement constraints. Our
experiment adds ban constraints at various times to
allow for the maintenance of a server, and removes them
later when the server is up again. At the same time, the
server load may change due to the running benchmarks.
Table 6 shows, for each of these events, the number of
relocations performed and their duration.

//Datacenter description

Sracks = {@srv[1..4], @srv[5..8]};
//Rpplication description
S$ST1 vM[1..2];
$T2 vM[3..5];
$T3 = VM[6..7];
for $t in ST[1..
spread($t);
}

among (ST3,

31 {

Sracks);

Listing 4: BtrPlace script for the environment.

[ Time | Event [ Reconfiguration |
2’10 | + ban ({WN8}) 3 + 3 relocations in 0’42
4’30 + ban ({WN4}) 2 + 7 relocations in 1’02
7’05 — ban ({WN4}) n01fconﬁguraﬁon

11’23 | + ban ({WN4}) no solution
1143 | — ban ({WN8}) 2 relocations in 0'28
+ ban ({WN4})

Table 6: Experimenting with maintenance. '+’ indicates
a constraint injection while '—’ indicates a removal.

The ban constraints added in our experiment most
obviously require relocating the VMs hosted on the
specified servers to other servers. Nevertheless, such a
constraint can also induce other relocations, when the
amount of resources currently free on other servers is not
sufficient for these VMs. This is illustrated at time 2’10,
when the constraint ban({WN8}) is injected. The addition
of this constraint requires relocating the 3 VMs hosted
on WN8, but it also requires three induced relocations to
obtain a viable host for all of the VMs. A similar situation
occurs at 4’30 when 7 induced relocations were needed
to be able to migrate the 2 VMs that were running on
WN4. Such induced relocations are hard to plan manually.

The end of the experiment illustrates the case when
the full RP is unsolvable. At time 11’23, the constraint
ban({WN4}) is injected by the administrator. However,
BtrPlace indicates that it is impossible to have a viable
configuration in this situation. Logs revealed a load
increase occurred after time 7’05. This increase was
absorbed through migrations of VMs to WN4, making
the ban insertion impossible to satisfy. At time 11’43, the
administrator removes the ban on WN8 and tries the ban
on WN4, which is now successful, leading to 2 relocations.
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4.3 Scalability of BtrPlace

The scalability of BtrPlace is determined by the time to
reconfigure the datacenter, which comprises the time to
solve the full RP and the time to apply the resulting
reconfiguration plan. As compared to the core RP, the
full RP includes the placement constraints, which reduce
the possible solution space and thus may increase the
solving time. These additional constraints may further-
more introduce the need to sequentialize some induced
relocations, which may increase the reconfiguration time.
To analyze scalability we generate non-viable configura-
tions that simulate server failures or load increases and
assess the resulting reconfiguration process.

We are not aware of established consolidation work-
loads that allow comparison with existing work. Fur-
thermore, commercial consolidation manager implemen-
tations are proprietary [1], [12], while reimplementing
related approaches from high-level descriptions in re-
search papers [5], [18], [26] is unlikely to give realistic
results. Accordingly, we rely on a workload generated
from experimental data and industry best practice.

We simulate a datacenter with 5,000 servers that are
similar to those in the griffon cluster, a part of the
Grid’5000 testbed [7] that can be used to run VMs.
Each server has a dual processor 2.5 GHz quad-core
Intel Xeon-L5420 and 16 GB RAM. On the simulated
datacenter, these servers are grouped by 250 on edge
network switches and they provide 20 uCPU each.

In a datacenter, each hosted application has its own
structure. Accordingly, we randomly generate the struc-
ture of each virtualized application. An application has
3 tiers and uses between 6 and 30 VMs, with at least
2 VMs per tier. 12 templates are available to instantiate
VMs that require between 1 and 3 GB RAM and at most
30 to 60 uCPU. All the VMs in the same tier instantiate
the same template. Each application can be run with or
without placement constraints. When present, the place-
ment constraints are expressed as one spread constraint
per tier and one among constraint for the third tier.
The uCPU consumption of each application is chosen
randomly between 20% and 90%.

To illustrate the impact of the resource usage and the
number of VMs and applications on BtrPlace, we vary
the consolidation ratio on the servers from 3 VMs to
6 VMs amounting to up to 1,700 applications running
a total of 30,000 VMs. This makes the overall memory
and uCPU usage vary from 36% to 73% while 6 VMs
per server is a common ratio observed in industrial
datacenters hosting services [23]. For each consolidation
ratio, we generated 50 different RPs that only differ by
the initial VM placement and their resource allocation.

Finally, the action durations were estimated from mea-
surements inside the griffon cluster. Table 7 summarizes
the time to boot or halt a VM depending on the running
service. Instantiating a VM from its template requires 2
seconds while a live VM migration requires 1 second per
100 MB RAM [17].



. Action duration (in sec.)
Embedded Service oot halt
Apache 4 5
Tomcat 9 10
MySQL 5 6

Table 7: Estimated action duration.

We consider two scenarios: LI that simulates Load
Increases and NR that simulates a maintenance for Net-
work Rewiring. In LI, 10% of the applications are se-
lected to have their uCPU demand increased by 30%
(capped at 100%). This increases the overall demand
by an average of 5% which induces the relocation of
some VMs to restore a viable configuration. In NR, 5%
of the servers are randomly selected to be shutdown
for maintenance. This percentage is derived from ob-
servations reported on Google’s datacenters where ad-
ministrators have to rewire at any given moment, 5%
of their servers. [10] In this scenario, The VMs hosted
on these servers then have to be restarted elsewhere.
We run BtrPlace on one core of a Intel Xeon X3440 at
2.53 GHz with 16 GB RAM that runs Linux 2.6.32-5-
amd64 and Sun’s JVM 1.6.0u26. For each experiment, we
give the planning module 5 minutes to solve a full RP.
The planning module succeeds at solving a RP when
it computes a reconfiguration plan or proves that no
solution exists within the allotted time.

Impact of the filter optimization. The filter optimiza-
tion, defined in Section 3.4, reduces the number of VMs
considered in a RP. In this experiment, we evaluate its
practical interest on the core-RP, and thus no applications
have placement constraints. Fig. 6 shows the impact of
the filter optimization on the solving process.
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Figure 6: Impact of the filter optimization

Fig. 6a shows that the solving duration for the RPs is
exponential with respect to the number of VMs managed
by BtrPlace. Indeed, solving a RP is NP-Hard. Without
filter, BtrPlace was not able to compute a placement for
20% of the RPs having 15,000 VMs in the LI case. The
solver has to select a host for each of the VMs which
leads to big RPs that cannot be solved due to running
out of memory or exceeding the alotted time. Enabling
filter makes BtrPlace generate smaller RPs that were all
computable by the solver. In NR, filter restricted the full
RPs to the VMs that have to be restarted after failure.
In L1, filter restricted the full RPs to the VMs hosted on
the overloaded servers (3,000 VMs on average for RPs
having 30,000 VMs). By reducing the number of con-
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sidered VMs, filter can significantly reduce the average
solving time and manage bigger RPs. In LI, with RPs
having 15,000 VMs, the time is reduced from 276 seconds
to 8 seconds. In NR, it is reduced from 240 seconds
to 27 seconds. In the LI case, we also observe that
the reconfiguration duration increases with the number
of VMs. The overall load of the datacenter increases
and it becomes more complicated for the solver to find
a place for a VM that is immediately available. The
solver determines that more VMs have to be relocated in
advance to liberate enough resources to be able to reach
a viable configuration.

Enabling filter leads to slightly faster reconfiguration
plans (Fig. 6b). The option helps the solver in placing
VMs on servers that can host the VMs without any
delay. Filter thus reduces the number of induced reloca-
tions, and thus the number of actions and the estimated
reconfiguration duration. Without filter option, 7.5% of
the computed plans for RPs having 15,000 VMs contain
delayed actions with a maximum reconfiguration dura-
tion equal to 32 seconds. Enabling the option enables
the solver to compute plans without delayed actions
and with a maximum reconfiguration duration equal
to 14 seconds. In the NR case, filter does not help Btr-
Place compute better reconfiguration plans. In this case,
the reconfiguration is motivated by the fact that some
servers have failed. BtrPlace is obliged to reboot the VMs
that were on these servers, and only has the latitude
choose the VMs affected by the induced relocations,
if any. However, for the NR scenarios, the computed
reconfiguration plans have no induced relocations even
without filter and stay constant for all the RPs.

Impact of the placement constraints. In this exper-
iment, we vary the percentage of applications having
placement constraints. The filter optimization is enabled.
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Figure 7: Impact of the percentage of applications having
constraints on the solving process wrt. a resolution with
no placement constraints. The filter option is enabled.

Fig. 7 shows the impact of placement constraints on
the solving process for scenarios NR and LI. In these
examples, BtrPlace was able to compute a solution for
every scenario. The overhead on the solving duration
is due to the additional computations performed by



an increasing number of placement constraint. In the
worst case, when all the applications have placement
constraints, the overhead is 21% (18 sec) for RPs having
30,000 VMs in the NR case (Fig. 7a). However, for every
RP, the dominating factor in the solving process remains
the two bin-packing constraints in the core RP. In the LI
case, the overhead is negligible or negative (Fig. 7b).
As compared to the NR case, there are fewer VMs to
place. When more than 66% of the applications have
constraints, RPs with 30,000 VMs are faster to solve than
RPs with 25,000 VMs. This reveals a phase transition. With
this amount of constraints, the full RP is more complex to
solve, but the filtering provided by each constraint helps
the solver compute a solution more quickly. Finally,
the placement constraints do not impact the estimated
reconfiguration duration in the NR case. In the LI case,
the reconfiguration duration increases when 66% of the
applications have constraints but the phase transition
limits this increase once this threshold is exceeded.

Impact of partitioning. We evaluate the impact of
partitioning in the context of a datacenter having 5,000
servers and 30,000 VMs, fence constraints are injected
into the full RP to force the creation of equal-sized parti-
tions, varying from 250 to 5,000 servers. The filter option
is enabled and all of the applications have placement
constraints. A solution was found for every RP, except
for two in the LI case and one in the NR case, the three
having partitions of 250 servers. As all of the VMs of a
given application must fit within a single partition, the
use of small partitions may introduce resource fragmen-
tation and reduce the datacenter hosting capacity.

Fig. 8a shows that partitioning the datacenter into
smaller full RPs and solving them in parallel gives a sig-
nificant benefit. For instance, solving a single partition of
5,000 servers requires 159 seconds for LI, while splitting
the servers of the datacenter into two partitions of 2,500
servers each reduces the solving duration to 26 seconds.
The partitioning process did not alter the computed
reconfiguration plans and the estimated reconfiguration
duration stays similar to the values reported in Fig. 7
when 100% of applications have constraints.
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Figure 8: Partitioning impact.

Detecting partitions induces an overhead in the plan-
ning module. A current trend in datacenter design is
to use multiple shipping containers, each storing up to
2,500 interconnected servers. To evaluate the partition
detection overhead in the context of a datacenter having
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several containers, each corresponding to a partition, we
generate configurations made up of a varying number of
2,500-server partitions. Fig. 8b shows that the duration
of the partitioning process increases with the number
of partitions. It is indeed correlated with the number of
servers, VMs and constraints and as is necessary to check
and check that none of the constraints overlap multiple
partitions. Below 24 partitions, the partitioning duration
is still lower than solving a single 2,500-server full RP
for the worst observed case, LI. 24 2,500-server parti-
tions results in a datacenter made up of 60,000 servers
and 360,000 VMs. For more scalability, the partitioning
process could itself be split among multiple servers. The
scalability of BtrPlace is then limited by the number of
sub-RPs it can simultaneously solve.

Availability provided by BtrPlace. We finally analyze
the global availability rate provided by BtrPlace in the
LI case. In this case, 10% of the applications ask for more
resources. This saturates some servers and creates a non-
viable configuration. Every application with at least one
VM running on a saturated server then has its quality
of service affected by the load increase.

The Mean Time To Repair (MTTR) denotes the average
time to repair all the constraints of an application. An
un-affected application as a repair time equals to O.
Otherwise, it equals R, the duration to solve the RP
plus the reconfiguration duration. The MTTR is then
expressed as o X R where o denotes the ratio of affected
applications. Fig. 9a shows the evolution of a depending
on the number of running VMs.

Amazon EC2 relies on a hourly billing period. An
application administrator should then provision the ap-
plication’s VMs correctly for an hour to minimize the
hosting costs. If we consider that a load increase occurs
after a period P of one hour, then we can compute
the global availability provided by BtrPlace as follows:
WM' Fig. 9b denotes the global availability pro-
vided by BtrPlace depending on the number of running
VMs and the partition size.
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Figure 9: Availability in the LI case.

Reducing the partition size or the number of running
VMs reduces the importance of the solving time in
the MTTR. Reducing the number of running VMs also
reduces the percentage of affected applications. To reach
a specific availability rate, the datacenter administrator
has to establish a trade-off between a high consolida-
tion ratio, to host numerous VMs, and large partitions,



to reduce resource fragmentation. These values can be
estimated offline with BtrPlace and a workload repre-
sentative of the datacenter usage. In the LI case, when
all the applications have constraints, we observe that no
partitioning is needed to reach an availability rate of
99.9% when there are fewer than 21,000 VMs. To host
up to 25,000 VMs with an availability rate of at least
99.8%, partitions of 2,500 servers are needed.

In studying the results of our experiments, we ob-
served that every plan contains at least the relocation of
a VM running a Tomcat service which takes 9 seconds on
our platform. This is thus a lower bound for the MTTR,
and is not under the control of BtrPlace. With 25,000 VMs
and partitions of 2,500 servers, this theoretical minimal
reconfiguration duration represents 25% of the MTTR.
Having faster actions, due to a better infrastructure for
example, would then increase significantly the availabil-
ity provided by BtrPlace.

5 RELATED WORK

Configurable consolidation managers. Historically, con-
solidation managers focus the placement of VMs with
regards to their resource requirements (CPU, memory,
I/0, bandwidth, etc.) [6], [21], [25], [26] while reducing
the overall energy consumption [24]. These approaches
rely on fast ad hoc algorithms to compute the placement.
With the need to provide guarantees that also focus
other concerns such as reliability, new ad hoc algorithms,
configurable by a fixed set of constraints, have been
proposed. Jung et al. consider High-Availability require-
ments and performance using a utility function [18].
They address server failures, but not load changes. A
greedy algorithm computes the number of replicas re-
quired for each service composing the affected appli-
cations in order to satisfy network latency and perfor-
mance requirements. Replicas may be placed on different
racks or datacenters depending on the desired degree
of reliability. Only the VMs of the affected applications
are allowed to be relocated to adapt their placement
to the new location of the relaunched VMs. Adding
new concerns would require revising the reconfiguration
algorithm. Experiments are limited to a datacenter of
12 servers. VMware DRS provides the datacenter ad-
ministrator with 4 constraints similar to ban, fence,
gather, and spread [12]. Their version of spread,
however, does not ensure that the VMs will not overlap
during reconfiguration. DRS is not meant to be exten-
sible. DRS furthermore does not automatically choose
between a re-instantiation or a live migration to relocate
a VM depending on the VMs properties nor does it take
into account the need for induced relocations. Finally, a
cluster managed by DRS cannot exceed 32 servers.
Entropy [17] is at the origin of BtrPlace. It uses CP
to place VMs on the minimum number of servers but
the scheduling of the actions is computed using an ad-
hoc heuristic, which prevents adding constraints such as
spread that affect the action schedule. Entropy is not
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designed to be customized. Finally, it always considers
all the running VMs when fixing a non-viable configu-
ration, limiting its scalability to a few hundred servers.

Extensible consolidation managers. Some recent ap-
proaches propose to provide extensible consolidation
managers to integrate placement constraints on demand.
Bin et al. [5] also use CP to provide a modular con-
solidation manager. They provide high-availability by
guaranteeing that at all times a certain number of servers
will be available that satisfy the VMs resource usage and
placement constraints. When the chances of failure for a
server are significant, its VMs are migrated to one of the
satisfying hosts. Their proposed model does not support
constraints related to server state management, action
scheduling or the relocation method. Finally, scalability
has only been shown for up to 32 servers and 128 VMs.

Some theoretical aspects of BtrPlace were previously
investigated [15], with a first prototype that took into
account the resources allotted to the VMs, their place-
ment, and their migration. The current paper extends
this earlier work by showing the practical extensibility
of BtrPlace and its suitability for large datacenters made
up of thousands of servers. BtrPlace now infers the most
efficient VM relocation method, and makes it possible to
control the servers’ states, and the resource overalloca-
tion. Its extensibility is shown through the addition of
10 new placement constraints related to these concerns.
The branching heuristic of BtrPlace, relying on the filter
optimization, makes it more than 20 times faster for
datacenters with 2,500 servers.

6 CONCLUSION AND FUTURE WORK

Consolidation of VMs allows multiple applications to
share servers within a datacenter. However, modern ap-
plications have scalability and high availability require-
ments that must be taken into account in the consolida-
tion process, and new kinds of constraints on placement
are emerging continuously with new uses of datacenters.
Reconciling these requirements while allowing server
sharing is challenging. We have proposed BtrPlace, a
flexible consolidation manager allowing datacenter and
application administrators to describe placement con-
straints in configuration scripts. These scripts are inter-
preted on the fly to extend a composable reconfiguration
algorithm that is used to fix non-viable placements.

The expressivity of BtrPlace has been verified by im-
plementing 14 placement constraints related to resource
management, isolation, fault tolerance, and server man-
agement. These constraints reproduce, extend but also
bring new meaningful restrictions on the VM placement
with regards to constraints available in commercial con-
solidation managers. Each constraint was implemented
by an average of 30 lines of Java code. An experienced
developer implemented some of the them in half a
day, while external developers, without any background
in CP, have implemented constraints related to power
efficiency [11]. All of these developments did not alter
the composability of BtrPlace.



Experiments on a simulated datacenter having 5,000
servers running 30,000 VMs shows BtrPlace can find a vi-
able configuration in less than 3 minutes with placement
constraints related to performance and fault tolerance
having little impact on the solving time and the quality
of the solution. BtrPlace also detects independent place-
ment sub-problems and solves them in parallel without
any degradation of the solutions quality. Partitioning
the 5,000-server problems into two partitions of 2,500
servers, reduces the total duration of the solving process
to 30 seconds. The remaining limitation on the scalability
of the approach is then the number of servers available
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data center network. In ACM SIGCOMM Computer Communication
Review, volume 39, pages 51-62. ACM, 2009.
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to compute the subproblems simultaneously.

In future work, we want to enable BtrPlace to infer an
ideal partitioning by itself. We also plan to enrich Btr-
Place through the integration of constraints that can be
violated at a penalty. Finally, we want to keep integrating
new extensions for the core RP to make BtrPlace able to
take into account new resources and concerns.

Availability: All the material related to the repro-

duction of the scalability experiments is available at
https://github.com/fhermeni/benchmarks-tdsc.
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