
Increasing Automation in the Backporting of
Linux Drivers Using Coccinelle

Luis R. Rodriguez
Rutgers University/SUSE Labs

mcgrof@winlab.rutgers.edu
mcgrof@suse.com, mcgrof@do-not-panic.com

Julia Lawall
Sorbonne Universités/Inria/UPMC/LIP6

Julia.Lawall@lip6.fr

Abstract—Software is continually evolving, to fix bugs and
add new features. Industry users, however, often value stability,
and thus may not be able to update their code base to the
latest versions. This raises the need to selectively backport new
features to older software versions. Traditionally, backporting has
been done by cluttering the backported code with preprocessor
directives, to replace behaviors that are unsupported in an earlier
version by appropriate workarounds. This approach however
involves writing a lot of error-prone backporting code, and results
in implementations that are hard to read and maintain. We
consider this issue in the context of the Linux kernel, for which
older versions are in wide use. We present a new backporting
strategy that relies on the use of a backporting compatability
library and on code that is automatically generated using the
program transformation tool Coccinelle. This approach reduces
the amount of code that must be manually written, and thus can
help the Linux kernel backporting effort scale while maintaining
the dependability of the backporting process.

Keywords—Linux, backports, program transformation

I. INTRODUCTION

Linux is an open-source operating system kernel that has
been under development since 1991. Its reliability, customiz-
ability, and low cost have made it a popular choice for an
operating system kernel across the computing spectrum, from
smartphones and tablets based on the Android distribution,
to desktops based on popular distributions such as Debian
and Ubuntu, to supercomputers based on Enterprise Linux
releases. The Linux kernel is evolving rapidly, with a major
release roughly every 2.5 months. Between the recent major
releases v3.14 and v3.19 (January 2014 - February 2015),
on average, 8,400 lines of code were added, 5,300 lines of
code were removed, and 2,100 lines of code were modified
every day.1 This rapid rate of change combined with frequent
releases allows the Linux kernel to keep up to date with bug
fixes, new functionalities, and new services, such as new CPU
architectures, device drivers and filesystems.

A. The dilemma for silicon manufacturers

While the rapid evolution of the Linux kernel has many
benefits, it can be problematic for certain classes of users.
Some system integrators may have invested heavily in testing
a specific release and may wish to avoid regressions due

1https://github.com/gregkh/kernel-development/raw/
6cd82e40742008a0189fc2e57476928bd011d20f/kernel-development.pdf

to a kernel upgrade. Upgrading a kernel may also require
experience to understand what features to enable, disable, or
tune to meet existing deployment criteria. In the worst case,
some systems may rely on components that have not yet been
merged into the mainline Linux kernel, potentially making it
impossible to upgrade the kernel without cooperation from the
component vendor or a slew of partners that need to collaborate
on developing a new productized image for a system. As an
example, development for 802.11n AR9003 chipset support
on the mainline ath9k device driver started on March 20,
2010 with an early version of the silicon, at which point the
most recent major release of the Linux kernel was v2.6.32.
One of the first products to ship with this driver was the
Google Chrome CR48, using ChromeOS, which started selling
in retail in May 2011. The latest kernel release at this point
was v2.6.38, but ChromeOS was still based on the v2.6.32
kernel, the release for which it was originally developed.

The reluctance of users to keep up to date with the latest
kernel poses a dilemma for silicon manufacturers, who need to
make available device drivers so that their devices can be used
on Linux systems. One approach is to develop drivers explicitly
for the kernel releases that their clients are currently using.
However, even clients who value stability may eventually need
to modernize. Doing so then incurs the burden of a full rewrite
or port of each driver to the newly adopted kernel release. And
even once the driver is successfully ported to a more modern
kernel, the result will only be usable by those who are currently
using the same kernel release.

An alternative to targeting a device driver to a specific
kernel version is upstream-first development, in which code
is initially developed only for the latest major kernel release,
and then is submitted for inclusion upstream, i.e., into the
Linux git repository maintained by Linus Torvalds, allowing
the device driver to be included in the coming major release.
While achieving inclusion upstream can be a challenge for
silicon manufacturers, due to the strict coding guidelines of the
Linux kernel, once it is achieved, the developers at the silicon
company that upstreamed the device driver can then benefit
from help from the Linux community in reviewing changes to
the device driver as the Linux kernel evolves [1]. The silicon
manufacturer needs to contribute only one complete version of
the code; since it is upstream it will then be part of all future
kernel releases and all future Linux distributions.978-1-4799-7492-4/15/$31.00 c©2015 IEEE

B. Why and how Linux is backported

The upstream-first model makes device drivers available for
users of future kernels, but leaves out those who must remain
with older releases. If a device driver is only supported up-
stream, a Linux distribution or system integrator has no option
but to backport that device driver down to the kernel release
of interest. Backporting strategies have typically consisted of
augmenting each affected file with #ifdefs that handle what
is required for each kernel release on each target file. As
each file is augmented individually, there is no code sharing,
even within a single Linux distribution’s codebase. Files also
become harder to read, as the original code is interspersed with
new code flows required to support each kernel release.

Since 2007, the Linux kernel backports project has pro-
moted an alternative backport strategy, with the goal of
maximizing code sharing and minimizing disruption to the
individual driver source files, and with the goal of enabling
upstream-first development of new drivers and features by
making backports of the resulting code available to everyone,
regardless of the Linux distribution used. The main innovation
is to move the changes required to backport each driver out
of the individual driver files and into a backports library,
providing a set of helper functions. Indeed, typically, for a
given class of devices, the drivers use a similar set of API
functions and coding strategies, and these functions and coding
strategies can all be backported in the same way. Rather than
distributing the handling for each older release in every driver
file, all of these variations are encapsulated into a backports
library function. This approach was used in the ath9k support
for ChromeOS noted above. The ath9k device driver was
extended with AR9003 family chipset support upstream, and
this support was incorporated as part of the v2.6.38 release at
the time of the release of the Google Chrome CR48. Support
for the AR9003 family of chipsets on ath9k on ChromeOS,
however, was backported onto the ChromeOS v2.6.32 based
kernel using the Linux backports library.

The use of a backports library can dramatically reduce
the amount of code changes required to support a class of
drivers. Nevertheless, some changes per driver are still needed,
amounting to glue code, to invoke the library functions and to
e.g., modify type definitions, which cannot be encapsulated
into a function definition. These changes must initially be
made manually in each supported file to create patches,2 which
are made available to users, and these patches need to be
maintained as the kernel evolves. Making these changes and
maintaining the resulting patches is tedious and error prone,
and limits the number of drivers that the backports project can
support. A solution was thus needed to ease and improve the
dependability of the process of introducing this glue code.

C. Our contributions

We report on a new methodology for backports adopted
by the Linux backports project that combines the use of a
backports library with the use of Coccinelle [3], [4]. Coccinelle
is a program matching and transformation tool for C code that

2A patch is a document indicating the lines of added and removed code, in
a format generated by the Unix command diff. A patch can be automatically
applied to a file using the Unix command patch [2].

has been specifically designed to meet the needs and require-
ments of Linux developers. Matches and transformations are
described in terms of an extension of the patch notation with
generic features, resulting in semantic patches. Unlike standard
patches, which are restricted to specific positions in specific
files, a semantic patch expresses a change in a generic way,
allowing it to be applied across an entire code base and to
adapt to minor changes in this code base, as the code base
evolves over time. In the context of backports, we automate the
integration of the glue code into each supported driver using
Coccinelle. Now the glue code needs to be specified only once,
and then this specification can be applied automatically to all
supported drivers over multiple releases, thus further reducing
the amount of maintenance work to support a backport, while
increasing the dependability of the backport process.

The main contributions of this paper are as follows:

• We show that in practice the changes required in drivers
to support the backport backports library are often sys-
tematic. Indeed, currently, 70 (50%) of the 140 patches
distributed by the backports project affect multiple files,
but do so in a similar way, and thus are candidates for
automation.

• We show that the Coccinelle transformation language is
expressive enough to describe these changes in a driver-
independent way. Specifically, we are able to replace
the 631 additions and 112 deletions lines involved in
the common changes by 22 Coccinelle semantic patch
specifications, consisting of 562 lines of code.3

• We show that use of Coccinelle improves the depend-
ability of the backport development process, by guiding
developers to designing backports in a more orthogonal
way and by ensuring that backport changes are done
consistently.

D. Overview

The rest of this paper is organized as follows. Section II
provides background, including the relevant aspects of the
Linux development model, the history of the backports project,
and the use of Coccinelle. Section III then presents a tour
of backporting strategies in more detail, based on a simple
example. Next, Section IV expands this tour to illustrate a more
complex case study, in which the changes required are deter-
mined by driver-specific information. Section V then highlights
the benefits of our approach and considers some correctness
and performance issues. Finally, we present related work,
conclusions, and future directions. This paper emphasizes
how each new backporting strategy has helped the backports
project to grow and scale, and ultimately how each of these
strategies has helped to shift the objective of the project away
from simply backporting the Linux kernel, towards trying to
automate the backport process as much as possible.

II. BACKGROUND

We first briefly review the starting points of our work: the
Linux kernel development model, the Linux backports project,
and the Coccinelle program transformation tool.

3The added and deleted lines represent the cumulated effect of the patches
generated from the semantic patches. This number is computed using the
command diffstat. The number of lines in the semantic patches is
computed using wc -l after removal of blank lines and comments.

merge

window (vn)

release candidate

evaluation (vn)

merge

window (vn+1)

release candidate

evaluation (vn+1)

stable version (vn)

m
aj

o
r

re
le

as
e

(v
n

)

Fig. 1: Four phases of Linux development

A. The Linux kernel development model

The need for backporting is intrinsically linked to the
nature and frequency of changes in the Linux kernel. Thus,
we begin by describing the Linux kernel development model,
which controls when new code becomes available and when
code changes start to affect users.

As illustrated in Fig. 1, a Linux kernel release is developed
in four phases: the merge window, the release candidate
evaluation, the major release, and the maintenance of a
stable kernel. The merge window begins immediately after the
previous major release, and lasts for 1-2 weeks. During this
period, maintainers who have accumulated new features and
device drivers for their subsystems request that Linus Torvalds
collect and integrate their changes. This period culminates
in the release of the first release candidate (rc1) making the
complete set of merged changes available for general testing.
The release of rc1 initiates the release candidate evaluation
period. The purpose of this period is to find and fix regressions
for new code merged since the last major kernel release. There
may be 5-9 release candidates, one per week. New drivers may
be integrated during the release candidate evaluation period.
Next comes the major release, making public the new version.
At this point, the merge window for the next release begins.
In parallel with the merge window, and beyond, possibly for
several years, the current release is maintained as a stable
version. Stable releases only contain critical bug fixes; they
never contain new features or drivers. Bug fixes are always
sent upstream first, and must be merged into Linus Torvalds’
tree before being cherry picked or ported to older maintained
stable releases.

The Linux kernel development model introduces some
delay across the release candidate evaluation period between
when new features are developed and when they are integrated
into a release candidate or major release. To compensate for
this delay, the linux-next4 tree mimics the merge window each
day, by pulling from each subsystem tree. Each day the tree is
reset to the latest major kernel release and then each subsystem
tree is pulled. The linux-next tree can thus be used to track the
latest development efforts on all subsystems on a daily basis.

B. A brief history of the Linux kernel backports project

The Linux kernel backports project5 was started in 2007
by Luis R. Rodriguez while at Rutgers University, to help
backport the 802.11 subsystem and a series of 802.11 device
drivers to a series of older kernel releases.6 The project was

4git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
5https://backports.wiki.kernel.org
6git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/compat-wireless-2.6-

old.git

originally referred to as compat-wireless, reflecting the initial
target. Over the years, the project grew to support more device
drivers and subsystems. In April 2012, the project was folded
under the Linux Foundation backports working group.7 The
project now spearheads the Linux kernel backports effort. In
April 2013, the project was renamed backports, to distinguish
it from the Linux kernel compat layer, which addresses 64-bit
and 32-bit compatibility. The backports project is now led by
three core developers: Hauke Mehrtens, Johannes Berg, Luis
Rodriguez and two co-maintainers: Mehrtens and Rodriguez.
Git logs going back to September 2008 show 80 unique
contributors. The project backports the subsystems Ethernet,
Wireless, Bluetooth, NFC, ieee802154, Media, and Regulator.
The backports project provides support for backporting both
driver C code and configuration code. In this paper we focus
on the backporting of driver C code.

The current goal of the backports project is to backport a
slew of device drivers from the latest major kernel releases
down to a series of supported stable kernel releases, at a min-
imum those listed on the main kernel website, kernel.org.
Currently, 22 releases are supported. The project’s master
development branch always tracks linux-next, allowing it to
track all the development trees. This ensures that at the end
of each merge window, the state of the backports will be
very close to the state of the first release candidate. At this
point, the backports project creates a further branch that tracks
the progress of the new release over the release candidate
evaluation period, to the major release, and on to its lifetime as
a stable kernel. The backports project thus makes three kinds
of backports available: those derived from linux-next, those
derived from the most recent release candidate if any, and
those derived from recent stable kernels. A user may prefer a
backport from a stable kernel to one from linux-next or from
a release candidate, if one is available for the desired driver.

As shown in Fig. 2, as of June 2015, the backports project
backports almost 800 drivers.8 These are kept up to date with
linux-next and the recent stable kernels each day, and are
guaranteed to at least compile correctly. Ensuring this each
day typically requires 2-6 iterations of test, refinements, and
compiles for all supported versions. For this development, the
backports project uses a 32-core system with 236 GiB of RAM.
Code generation and compile tests are all run in memory. As
measured by GNU time, a full compilation test of a release
across all 22 supported kernel revisions takes approximately
53 minutes of real time, 1440 minutes of user mode time
and 219 minutes of kernel time. When the backports project
began in 2007, it provided backporting support for drivers
down to v2.6.25, first released in 2008. In order to scale to a
wider range of drivers, however, the project now only supports
kernels down to at most Linux v3.0, first released in 2011.
The original motivation behind the project was to encourage
silicon manufacturers to work upstream on the Linux kernel
while providing them with a solution for backporting their
drivers automatically down to older releases. The framework
is designed only for Linux upstream drivers; the associated
license enforces that proprietary drivers cannot and should not
use this framework.

7http://lists.linuxfoundation.org/pipermail/lf driver backport/2012-
August/001075.html

8The Linux v4.2 number is approximate, as Linux v4.2 is not yet released.

v
2
.6

.2
9
-p

re
v
2
.6

.3
0

v
2
.6

.3
1

v
2
.6

.3
2
.1

6

v
2
.6

.3
3
.6

v
2
.6

.3
4
.1

v
2
.6

.3
5
.9

v
2
.6

.3
6
.2

v
2
.6

.3
7
.6

v
2
.6

.3
8
.2

v
2
.6

.3
9
.4

v
3
.0

.2
6

v
3
.1

.1
0

v
3
.2

.1
3

v
3
.3

v
3
.4

-rc1

v
3
.5

.4

v
3
.6

.8

v
3
.7

v
3
.8

.2

v
3
.9

v
3
.1

0

v
3
.1

1

v
3
.1

2

v
3
.1

3

v
3
.1

4

v
3
.1

5

v
3
.1

6
.2

v
3
.1

7
-rc3

v
3
.1

8
.1

v
3
.1

9
-rc1

v
4
.0

v
4
.1

v
4
.2

0

200

400

600

800

b
a
ck

p
o
rt

ed
 d

ri
v
er

s

Fig. 2: Number of backported drivers, for kernels released
since 2009

To better understand the usage of the code provided by
the Linux kernel backports project, we conducted an informal
survey of developers via the Linux kernel mailing list and
the backports mailing list.9 Current users include the Open-
WRT Linux distribution for embedded devices,10 and Google
Fiber.11 We are also aware of several major Linux enterprise
distributions that are considering integration of backports for
their future products. Other developers cited the need for
backporting in their work, although they currently do backports
in an ad hoc manner. Their experiences suggest that other
subsystems may benefit from the methodology developed by
the backports project. Between April 26 and May 29, 2015, the
backports project website received an average of 4218 “GET”
requests per day, with 13633 requests on May 28 alone. While
we do not know who initiated these requests, nor how they
use the resulting information, it is another sign of the overall
interest in the work of the backports project.

C. Coccinelle

Coccinelle is a program matching and transformation en-
gine for C code [3], [4]. It is released as open source, and is
available in a number of Linux distributions. Coccinelle pro-
vides a scripting language, SmPL (semantic patch language),
that allows patterns to be expressed as fragments of C code,
and transformations to be expressed by annotating lines of code
with -, for removal of the matched code, or +, for addition
of the corresponding code. As such, SmPL specifications
resemble patches [2]. Nevertheless, they are more robust than
ordinary patches in that they are insensitive to comments and
whitespace, and take into account some aspects of the code
semantics such as control flow and type information. Thus,
we refer to SmPL specifications as semantic patches.

As a simple example of the use of Coccinelle, we consider
the problem of replacing each call to a function one by a
call to a function two, and adding a NULL argument. The
semantic patch that makes this change is shown in Fig. 3.

9backports@vger.kernel.org, linux-kernel@vger.kernel.org,
http://lkml.kernel.org/r/CAB=NE6UUTmMMB0La3OFe+hXpaZzdAwTs0QK
BsTLSyrsSMFxJRg@mail.gmail.com

10https://openwrt.org/,
http://lkml.kernel.org/r/556CA991.7030302@openwrt.org

11https://fiber.google.com/about/,
https://gfiber.googlesource.com/vendor/opensource/backports

1 @@
2 expression arg;
3 @@
4 - one(arg)
5 + two(arg, NULL)

Fig. 3: A simple semantic patch

This semantic patch consists of a single rule that makes
the complete transformation. The rule has two parts: the
declaration of metavariables that can match any term of a
specified type, between the initial pair of @@ (lines 1-3),
followed by a transformation specification (lines 4-5). In this
case, the only metavariable is arg, which is declared to
match any expression. The transformation specification then
removes the call to one with its argument, while at the
same time binding the metavariable arg to this argument
expression. It then constructs a new call to two with arguments
the current binding of arg and NULL. This semantic patch
can be applied to an entire code base, removing the tedious
and error prone task of searching for and transforming each
relevant call manually, and thus improve the dependability of
the transformation process. A more detailed presentation of
Coccinelle is available in previous work [3], [4] and at the
Coccinelle website.12

Coccinelle was originally motivated by a study of how the
Linux kernel evolves [5]. This study identified the problem
of collateral evolutions, in which the interface of a library
changes, and all clients of the library must be updated accord-
ingly. Coccinelle was designed to help Linux developers make
collateral evolutions faster and more reliably. The problem of
implementing backports using Coccinelle is related to the prob-
lem of collateral evolutions. While collateral evolutions were
envisioned as being needed to modernize software, backports
must address changes in library interfaces to transport modern
code to older versions.

The Linux backports project is widely used over a few
industries. making its dependability critical. Thus, the project’s
maintainers were initially concerned about the effect of replac-
ing manually created and checked patches by an automatic
tool. Coccinelle was chosen for initial experiments because
it has already been extensively used on Linux kernel code,
and because its patch-like notation implied that existing patch
sets could be easily converted to Coccinelle semantic patch
specifications. Conversely, the similarity between standard
patches and Coccinelle semantic patches can help developers
read and maintain the semantic patches over time, thus further
improving the dependability of the backporting process.

III. BACKPORTING STRATEGIES

We now review two existing backporting strategies: i) the
common strategy of providing version-specific implementa-
tions using #ifdefs, and ii) the strategy originally taken by
the Linux backports project of factorizing these changes into
a compatibility library. We then present our extension of the
latter using Coccinelle.

12http://coccinelle.lip6.fr

1 --- a/drivers/net/usb/usbnet.c
2 +++ b/drivers/net/usb/usbnet.c
3 @@ -1151,6 +1151,7 @@
4 }
5 EXPORT_SYMBOL_GPL(usbnet_disconnect);
6

7 +#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))
8 static const struct net_device_ops usbnet_netdev_ops = {
9 .ndo_open = usbnet_open,

10 .ndo_stop = usbnet_stop,
11 @@ -1160,6 +1161,7 @@
12 .ndo_set_mac_address = eth_mac_addr,
13 .ndo_validate_addr = eth_validate_addr,
14 };
15 +#endif
16

17 /*---*/
18

19 @@ -1229,7 +1231,15 @@
20 net->features |= NETIF_F_HIGHDMA;
21 #endif
22

23 +#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))
24 net->netdev_ops = &usbnet_netdev_ops;
25 +#else
26 + net->change_mtu = usbnet_change_mtu;
27 + net->hard_start_xmit = usbnet_start_xmit;
28 + net->open = usbnet_open;
29 + net->stop = usbnet_stop;
30 + net->tx_timeout = usbnet_tx_timeout;
31 +#endif
32 net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
33 net->ethtool_ops = &usbnet_ethtool_ops;

Fig. 4: Backporting the net_device_ops collateral evolu-
tion for the usbnet driver

A. Backporting with #ifdefs

Backporting a device driver typically consists of modifying
the source code with #ifdefs to handle the different require-
ments of different kernel releases. This entails adding blocks of
code that provide alternate implementations for various func-
tionalities, for different ranges of kernel versions, according to
which evolutions have occurred and which collateral evolutions
must be performed to accommodate them.

As a running example, we consider an evolution that was
introduced by Linux kernel commit d314774cf2 (“netdev:
network device operations infrastructure”)13 and that was first
merged upstream in Linux v2.6.29. This evolution moved
a series of callback functions from the net_device data
structure out into a new separate data structure of type net_-
device_ops. Backporting over this evolution, for Linux
kernel versions before Linux v2.6.29, requires a collateral
evolution that undoes this change. We refer to this collateral
evolution as the netdev_ops collateral evolution. Specifi-
cally, the definition of the new net_device_ops structure
and the initialization of the link from the net_device
structure to this new structure via the netdev_ops field
must be restricted, using an #ifdef, to the versions starting with
Linux v2.6.29. Earlier versions must initialize the appropriate
fields in the net_device structure itself, from among the
callback functions that the modern driver puts in the new
structure. Fig. 4 shows a patch that backports this single
collateral evolution on one device driver.

Lines 7 and 23 of Fig. 4 introduce the #ifdefs that restrict

13git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=d314774
cf2cd5dfeb39a00d37deee65d4c627927

some code of the modern driver to be used only in Linux
versions v2.6.29 and later. Lines 25-31 introduce the code
to be used for earlier versions, placing the relevant callback
functions from the modern code (lines 8-13) into the fields
of the net structure. In each case, the callback functions are
used by the driver support library of the kernel, which is not
backported, and which thus finds the desired functions in the
expected place, with no further code changes.

In general, every driver that initializes a net_device
structure would require all of these changes. Creating these
patches, and maintaining them as other collateral evolutions
are needed, is complex, tedious, and error prone.

B. Backports via a compatibility library

Maintenance of patches is easy as long as the amount of
changes being introduced is rather small. The netdev_ops
collateral evolution, however, is an example of a collateral
evolution that affects many network drivers, resulting in a large
set of changes, that then have to be maintained in patch form.
A better approach, proposed by the Linux backports project,
consists of wrapping up the required changes into static inline
or external helper functions and then using #ifdefs in these
functions to adapt the code to each previous release.

This strategy is illustrated by the following code, which
backports the netdev_ops collateral evolution for two de-
vice drivers. Now, the new net_device_ops structure used
by the modern driver remains in the code as is. Instead, we
replace the direct initialization of the netdev_ops field
by a call to a single static inline function defined by the
backports compat library, amounting to glue code. Now, only
this function needs multiple lines of #ifdef code, performing
the direct assignment for versions starting with Linux v2.6.29,
and copying the fields from the new structure into the main
net_device structure for older versions. Only one line of
code is changed in each driver, in contrast to the 10 lines added
to each driver by the previous approach.

1 --- a/drivers/net/usb/usbnet.c
2 +++ b/drivers/net/usb/usbnet.c
3 @@ -1446,7 +1446,7 @@ usbnet_probe (struct usb_interface *

udev
4 net->features |= NETIF_F_HIGHDMA;
5 #endif
6

7 - net->netdev_ops = &usbnet_netdev_ops;
8 + netdev_attach_ops(net, &usbnet_netdev_ops);
9 net->watchdog_timeo = TX_TIMEOUT_JIFFIES;

10 net->ethtool_ops = &usbnet_ethtool_ops;
11

12 --- a/drivers/net/wireless/ath/ath6kl/main.c
13 +++ b/drivers/net/wireless/ath/ath6kl/main.c
14 @@ -1289,7 +1289,7 @@ static const struct net_device_ops

ath6k
15

16 void init_netdev(struct net_device *dev)
17 {
18 - dev->netdev_ops = &ath6kl_netdev_ops;
19 + netdev_attach_ops(dev, &ath6kl_netdev_ops);
20 dev->destructor = free_netdev;
21 dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;

Between 2007 and 2013 the backports project exclusively
followed this strategy to help reduce the amount of mainte-
nance of patches. The backports library now has a large set
of helper functions that help minimize the number and size of
the patches required for each backported driver.

C. The Coccinelle way to backport

The backports library approach reduces significantly the
amount of code that must be modified in each driver. Still,
backporting a new driver requires identifying the set of features
that it uses, and comparing these features to those provided
by the backports library to see where a collateral evolution
to replace the existing code by glue code is needed. Our
observation is that the required changes are often systematic,
and thus, just as Coccinelle had been found to be useful
in automating traditional (forward) collateral evolutions, we
propose that Coccinelle can also be useful for the kinds of
collateral evolutions required in backports. For example, the
netdev_ops collateral evolution needed in each driver could
be expressed as a Coccinelle semantic patch as follows:

1 @@
2 struct net_device *dev;
3 struct net_device_ops ops;
4 @@
5 - dev->netdev_ops = &ops;
6 + netdev_attach_ops(dev, &ops);

This semantic patch backports the netdev_ops collateral
evolution for all networking device drivers. It is indeed no
longer even necessary for the developer to identify whether a
new device driver to backport uses this features; Coccinelle
both finds and updates the relevant code automatically. Note
that the semantic patch specifies the type of the expressions
matching the dev and ops metavariables, to ensure that
the transformation is performed only on structures of the
appropriate type. Finally, this semantic patch amounts to only
6 lines of code to maintain, rather than 2 lines of code for
each driver with the #ifdef approach.

IV. CASE STUDY

To test the limits of what can be backported using Coc-
cinelle, we chose the most complex collateral evolution ever
supported by the backports project as a test case. Specifically,
we decided to try to backport threaded IRQ support, introduced
in the v2.6.31 kernel. This backport requires modifications to a
driver-specific structure, as well as to multiple driver functions.
Note that this semantic patch is no longer part of the Linux
kernel backports release, as the backports project currently
supports only kernels down to Linux 3.0. Still, it illustrates
the most complex backport case that we have encountered.

A. Backporting threaded IRQ support the old way

We first explain how the backports project provided back-
port support for threaded IRQ support prior to using Coc-
cinelle. The first step was to extend the backports library
with support for threaded IRQs, as shown in Fig. 5. This
involved creating a new data type compat_threaded_irq
(lines 1-11) to collect some extra information for each driver,
and creating a set of helper functions to implement the
threaded IRQ fuctionality (lines 13-69). The helper functions
include compat_request_threaded_irq (lines 26-44),
which initializes the fields of the compat_threaded_irq
structure and then calls request_irq, and functions such
as compat_free_threaded_irq (lines 46-51) and com-
pat_synchronize_threaded_irq (lines 62-68) that
call their unthreaded counterparts on information stored in

the compat_threaded_irq structure. The extension to the
backports library amounts in all to 75 lines of code.14

1 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,31)
2 struct compat_threaded_irq {
3 unsigned int irq;
4 irq_handler_t handler;
5 irq_handler_t thread_fn;
6 void *dev_id;
7 char wq_name[64];
8 struct workqueue_struct *wq;
9 struct work_struct work;

10 };
11 #endif
12

13 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,31)
14 static inline
15 void compat_irq_work(struct work_struct *work)
16 {
17 ...
18 }
19

20 static inline
21 irqreturn_t compat_irq_dispatcher(int irq, void *dev_id)
22 {
23 ...
24 }
25

26 static inline
27 int compat_request_threaded_irq(
28 struct compat_threaded_irq *comp,
29 unsigned int irq,
30 irq_handler_t handler,
31 irq_handler_t thread_fn,
32 unsigned long flags,
33 const char *name,
34 void *dev_id)
35 {
36 comp->irq = irq;
37 comp->handler = handler;
38 comp->thread_fn = thread_fn;
39 comp->dev_id = dev_id;
40 INIT_WORK(&comp->work, compat_irq_work);
41 ...
42 return request_irq(irq, compat_irq_dispatcher, flags,
43 name, comp);
44 }
45

46 static inline
47 void compat_free_threaded_irq(
48 struct compat_threaded_irq *comp)
49 {
50 free_irq(comp->irq, comp);
51 }
52

53 static inline
54 void compat_destroy_threaded_irq(
55 struct compat_threaded_irq *comp)
56 {
57 if (comp->wq)
58 destroy_workqueue(comp->wq);
59 comp->wq = NULL;
60 }
61

62 static inline
63 void compat_synchronize_threaded_irq(
64 struct compat_threaded_irq *comp)
65 {
66 synchronize_irq(comp->irq);
67 cancel_work_sync(&comp->work);
68 }
69 #endif

Fig. 5: Extensions to the backports library to support
request_threaded_irq

Each driver to backport that relies on threaded IRQs then

14Computed using David Wheeler’s SLOCCount,
http://www.dwheeler.com/sloccount/.

1 --- a/drivers/net/wireless/b43/b43.h
2 +++ b/drivers/net/wireless/b43/b43.h
3 @@ -805,6 +805,9 @@ enum {
4

5 /* Data structure for one wireless device (802.11 core) */
6 struct b43_wldev {
7 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,31)
8 + struct compat_threaded_irq irq_compat;
9 +#endif

10 struct b43_bus_dev *dev;
11 struct b43_wl *wl;
12 /* a completion event structure needed if this call
13 is asynchronous */
14 --- a/drivers/net/wireless/b43/main.c
15 +++ b/drivers/net/wireless/b43/main.c
16 @@ -4243,8 +4243,17 @@ redo:
17 if (b43_bus_host_is_sdio(dev->dev)) {
18 b43_sdio_free_irq(dev);
19 } else {
20 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
21 synchronize_irq(dev->dev->irq);
22 +#else
23 + compat_synchronize_threaded_irq(&dev->irq_compat

);
24 +#endif
25 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
26 free_irq(dev->dev->irq, dev);
27 +#else
28 + compat_free_threaded_irq(&dev->irq_compat);
29 + compat_destroy_threaded_irq(&dev->irq_compat);
30 +#endif
31 }
32 mutex_lock(&wl->mutex);
33 dev = wl->current_dev;
34 @@ -4290,9 +4299,17 @@ static int b43_wireless_core_start(
35 goto out;
36 }
37 } else {
38 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
39 err = request_threaded_irq(dev->dev->irq,
40 b43_interrupt_handler,
41 b43_interrupt_thread_handler,
42 IRQF_SHARED, KBUILD_MODNAME, dev);
43 +#else
44 + err = compat_request_threaded_irq(
45 + &dev->irq_compat, dev->dev->irq,
46 + b43_interrupt_handler,
47 + b43_interrupt_thread_handler,
48 + IRQF_SHARED, KBUILD_MODNAME, dev);
49 +#endif
50 if (err) {
51 b43err(dev->wl, "Cannot request IRQ-%d\n",
52 dev->dev->irq);

Fig. 6: Backporting the b43 driver

needs to be modified to make use of the new helper functions.
Fig. 6 shows the modifications for the b43 driver. Lines 1-13
update a header file to extend the driver’s private b43_wldev
structure type with a field containing the compat structure
when the kernel version is lower than the first one that supports
threaded irqs, i.e., Linux v2.6.31. Lines 14-52 replace each
threaded IRQ operation with its compat version, again for
kernels for which threaded irqs are not already supported.

The changes shown in Fig. 6 amount to 20 lines of
added code, over half of which are #ifdefs, and only apply
to a single driver. Note that the #ifdefs cannot be factorized
into the backports library, because they involve code that
references an added field of a driver-specific structure. As
of the linux-next of April 2, 2015, 170 files contain at least
one call to request_threaded_irq, and of these 16 are

in subsystems supported by the Linux backports project.15

Backporting all of the 170 files that use threaded IRQs to
Linux versions prior to v2.6.31 would require developing and
maintaining over 3000 lines of patch code.

B. Backporting threaded IRQ support with Coccinelle

Fig. 7 shows a Coccinelle semantic patch that automates
these changes. Most rules are fairly trivial: replace one call
with another, with the new call using the backport data struc-
ture among its arguments. A typical example is illustrated in
the first rule (lines 1-24), where a call to request_threa-
ded_irq is replaced by a call to compat_request_-
threaded_irq. The new call takes the same arguments as
the old one, with the addition of the first argument (line 17),
which is the compat_threaded_irq structure.

A challenge in implementing this backport is where to
store the compat_threaded_irq structure. As a running
kernel may include multiple instances of a device, this structure
cannot simply be a global variable of the device driver. For the
b43 driver, we placed this structure into the driver’s existing
b43_wldev structure. To generalize this approach, we need
to find a suitable location for this structure in each driver to
which the semantic patch may be applied.

The need to support multiple instances of a data structure at
run time is a common problem in device driver development,
and the Linux kernel proposes a standard solution, the use of
a private data structure. An instance of this private structure
is created when a device is initialized, and then the driver
infrastructure makes this structure available to each driver
callback function, much like the implicit “this” argument found
in object-oriented languages. Normally, each driver defines a
specific private-structure type, containing the information that
is specific to its operation. We exploit this private structure to
store the compat_threaded_irq structure.

To use the private structure to store the compat_threa-
ded_irq structure, we must address two issues. First, for
each driver, we must find the type of the private structure and
extend the corresponding type declaration with a field for the
compat_threaded_irq structure. Second, we must find
the name of the current instance of the private structure at
each point where a reference to the compat_threaded_-
irq structure is needed for the backport process.

To address the first issue, we exploit the fact that Coccinelle
collects type information when analyzing the source code,
and makes it possible to manipulate this type information
via metavariables in a semantic patch. Fortunately, device
drivers typically already pass their private structure as the last
argument to request_threaded_irq, as the information
contained in the private structure is typically also needed by the
interrupt handler, which is installed by this function. By match-
ing this reference to the private structure, Coccinelle makes it
possible to obtain its type. Concretely, line 5 of Fig. 7 declares
a type metavariable T, which is then used in describing the
type of metavariable private. Matching private against
the code in the last argument of request_threaded_irq
has the side effect of storing the type of the matched code in

151 in ethernet, 7 in wireless, 0 in bluetooth, 2 in nfc, 0 in ieee802145, 4
in media, 2 in regulator.

1 @ threaded_irq @
2 identifier ret;
3 expression irq, irq_handler, irq_thread_handler, flags,
4 name;
5 type T;
6 T *private;
7 @@
8

9 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
10 ret = request_threaded_irq(irq,
11 irq_handler,
12 irq_thread_handler,
13 flags,
14 name,
15 private);
16 +#else
17 +ret = compat_request_threaded_irq(&private->irq_compat,
18 + irq,
19 + irq_handler,
20 + irq_thread_handler,
21 + flags,
22 + name,
23 + private);
24 +#endif
25

26 @ sync_irq depends on threaded_irq @
27 expression irq;
28 type threaded_irq.T;
29 T *threaded_irq.private;
30 @@
31

32 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
33 synchronize_irq(irq);
34 +#else
35 +compat_synchronize_threaded_irq(&private->irq_compat);
36 +#endif
37

38 @ free depends on threaded_irq @
39 expression irq, dev;
40 type threaded_irq.T;
41 T *threaded_irq.private;
42 @@
43

44 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
45 free_irq(irq, dev);
46 +#else
47 +compat_free_threaded_irq(&private->irq_compat);
48 +compat_destroy_threaded_irq(&dev->irq_compat);
49 +#endif
50

51 @ modify_private_header depends on threaded_irq @
52 type threaded_irq.T;
53 @@
54

55 T {
56 +#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,31)
57 + struct compat_threaded_irq irq_compat;
58 +#endif
59 ...
60 };

Fig. 7: Backporting threaded IRQs with Coccinelle

T, where it can be used by subsequent rules. In the fourth rule
(lines 51-60), T, referenced as threaded_irq.T, is used
to match and extend the definition of the private structure,
adding a new field irq_compat to the beginning of the
private structure when the kernel version is less than v2.6.31.

To address the second issue, we exploit the fact that, within
a given driver, the Linux developers typically give the private
structure the same name, in every function in which it is used.
Thus, we simply inherit the term matched by the metavariable
private defined in the rule threaded_irq, and use that
term in the added calls in the synch_irq and free rules.
This solution is not safe, but it is pragmatic, in that it simplifies

the transformation and exploits properties of the Linux coding
style. In the free_irq case (lines 38-49), we could also use
the second argument to free_irq, which by definition of
the IRQ API should point to the same structure as the last
argument to request_threaded_irq.16 This value is not
immediately available in the sync_irq rule (lines 26-36), but
we could extend the rule to match a neighboring expression
of the right type, for a safer solution.

V. DISCUSSION

We now analyze the benefits of using Coccinelle for back-
porting, and then consider some correctness and performance
issues raised by the use of Coccinelle.

A. Benefits of using Coccinelle for backporting

Reimplementing the threaded IRQ backport using Coc-
cinelle revealed that the original manual backport was inconsis-
tent. Specifically, in the manual backport, the compat structure,
compat_thread_irq, was integrated into different kinds
of structures in different drivers. Backporting is intrinsically
risky, because the older code may not respect the invariants
required by the backported code. Backporting the code in a
consistent way reduces the set of issues that can arise. Doing
so also makes the results easier for developers to understand.
Reimplementing the threaded IRQ backport using Coccinelle
also revealed that the existing threaded IRQ patch series
also backported another collateral evolution, related to the
management of IRQ flags. Isolating each collateral evolution
in a separate patch benefits the backports project, by making
it easier to understand how to backport other drivers, which
may need only one of the changes. Using Coccinelle not only
makes the need for this split apparent, it also makes it easier to
manage the resulting set of changes. While two sets of changes
are now needed, each is performed by a single semantic
patch that can be applied to many files, rather than having
to implement and record each of the changes individually.

More generally, we define two metrics of efficiency, devel-
opment efficiency and maintenance efficiency. For development
efficiency, we start with the number of insertions and deletions
that a semantic patch generates, ignoring context information,
as reported by diffstat, and take the ratio of this number
with the size of the semantic patch, exclusive of comments and
whitespace. The number of insertions and deletions represents
the number of manual changes required when modifying the
code. Development efficiency thus represents the initial coding
savings induced by using semantic patches. For maintenance
efficiency, we compute the same ratio, but this time consider
the complete size of the patch, not only the insertions and
deletions, but also all the metadata information contained
within the patch generated by the semantic patch, including
file names, file offsets, and (unmodified) context lines; all
of this metadata must also be kept up to date so that the
patch command can apply the patch to the relevant files. A
development (resp., maintenance) efficiency value of 1 means
the semantic patch has the same number of lines as the changes
(resp., lines) in the patch series it replaces. A development
(resp., maintenance) efficiency value of 2 means the semantic

16Actually, unintentionally, in the second call that is added by this rule, this
strategy is used.

1 2 3 4 5 6 7 8 9 10111213141516171819202122

semantic patch

1

10

ef
fi

ci
en

cy

maintenance efficiency

development efficiency

1. 0001-group attr class
2. 0002-group attr bus
3. 0001-netlink-portid
4. 0019-usb driver lpm
5. 0031-sk data ready
6. get ts info

7. sriov configure
8. set vf spoofchk
9. ethtool eee

10. get module
11. rxnfc
12. igb pci error handlers

13. set vf rate
14. genl-const
15. features check
16. ptp getsettime64
17. 0055-netdev-tstats
18. skb no fcs

19. ethtool cmd mdix
20. no-pfmemalloc
21. 0054-struct-proto ops-sig
22. skb no xmit more

Fig. 8: Development and maintenance efficiency for the 22
semantic patches used in Linux v4.2 (projected). The semantic
patches are ordered by their age in the backports project.

patch is producing twice as many changes (resp., patch lines)
as the number of lines in the semantic patch.

Fig. 8 shows the development and maintenance efficiency
of each semantic patch planned for Linux v4.2. As mainte-
nance efficiency takes into account all of the same patch lines
as development efficiency, plus the metadata, the maintenance
efficiency is always greater than the development efficiency. A
number of the semantic patches have a development efficiency
of less than one. 12 of our 22 semantic patches affect only
one file, and the need to declare metavariables in a semantic
patch increases the semantic patch size, as compared to the
number of lines in a single change. Still all of our 22 semantic
patches have a maintenance efficiency greater that or equal to
than 1. Any variance in the maintenance efficiency, whether an
increase or decrease from one release to another, implies that
if semantic patches were not used manual work would have
had to be done to account for new code additions or removals
from a patch. Developers would have to manually make such
changes for each new release of Linux. In contrast, a semantic
patch can adapt to small changes in the source code that are
not relevant to the backport, and thus the same semantic patch
can be used for multiple versions. Furthermore, some existing
semantic patches may also be found to be applicable when
backporting support is added for new drivers, thus increasing
the ease and dependability of the backport process.

B. Correctness of Coccinelle and the semantic patches

For the traditional uses of Coccinelle, for bug finding and
collateral evolutions [3], [6], a developer runs Coccinelle once
on a code base, checks and possibly adjusts the results, and
submits a patch upstream for review by kernel maintainers. The
patch is integrated into the Linux kernel just like a manually
generated patch, and Coccinelle is no longer involved. The
use case for backports is, however, rather different. Here,
the developer typically starts with a collection of patches,
reflecting the result of backporting a number of drivers by
hand. The developer then generalizes the existing patches into
a semantic patch, which is then applied every day, as linux-next
and the various stable kernels evolve. In this context, manually
studying each result is not practical, and would likely not be
reliable. Thus, it is necessary to account for the possibility
of errors in the automatically generated result, either in the

semantic patch definition or in Coccinelle itself. Indeed, some
improvements to Coccinelle were required to enable its use for
backporting, such as improving the support for adding #ifdefs
around complete function definitions. In this section, we ex-
amine some of the issues that affect, positively and negatively,
the dependability of the semantic patch application process,
and thus the dependability of our backporting approach.

Coccinelle has been designed according to pragmatic goals,
balancing ease of use and expressiveness with the need for
correctness. As such, it is primarily based on matching of
syntax, augmented with control-flow and type information. The
only correctness check that is performed is to ensure that at
the top-level, terms are replaced by terms of the same kind,
ensuring that syntactic well-formedness is preserved. Thus,
Coccinelle’s analysis engine is unaware of semantic issues
such as variable values and interprocedural effects, and may
potentially generate incorrect code as a result. In practice,
however, due to the nature of the glue code involved in
backports, transformations dependent on variable values and
interprocedural effects rarely arise. Indeed, most of the rules
depend only on the names of functions, structure fields, and
types, all of which are global and constant. Among the 22
semantic patches currently used by the backports project, only
three contain a rule that involves matching and then non-locally
reusing names of local variables. Aside from these three rules,
there should be essentially no risk of making a semantically
incorrect transformation. The three rules that raise some risk
have furthermore not yet posed any problem in practice.

Besides the danger of making a semantically incorrect
transformation, there is also the risk of not making a transfor-
mation where one is needed. Several factors work together to
help mitigate this risk. First, the drivers to which backporting
is applied are already part of the mainline Linux kernel.
They have undergone a rigorous review process before being
accepted into the kernel, and this review process has a tendency
to uniformize the coding style, choice of API functions, etc.
These properties were indeed the basis of the initial design
of Coccinelle [3], which was found to be able to completely
express 93% of 62 representative collateral evolutions from
Linux 2.5 and 2.6, involving over 5800 device driver files.
Since a backport is typically just the inverse of such a collateral
evolution, we expect to achieve a similar success rate, or
even better due to the factorizing of the complex parts of the
backports into the backports library. Finally, in practice the
changes in backported code are mostly motivated by compiler
errors identified when trying to use new code or enabling new
device drivers in an old release of the Linux kernel. If a needed
semantic patch does not apply to a given driver, the resulting
driver is likely to trigger a compiler error, and the problem
will be quickly detected.

The effects of transformations of collateral evolutions
expressed with semantic patches are test compiled prior to
a backports release – typically daily. Each release is then
tested by various backports users. Thus, incorrect changes
are likely to be detected quickly, and to be addressed by
changes in the semantic patch. We can thus use the number of
changes in the semantic patches over time as a proxy for their
dependability. The 22 semantic patches currently used by the
backports project range in age from 1 year and 3 months (5
semantic patches) to 1-4 months (17 semantic patches). In this

time, only 5 semantic patches, all but one originating from 1
year and 3 months ago, have been revised. In two cases, the
changes involve removing two #ifdefs and #endifs per semantic
patch, in one case the change involves adding an #ifdef and
the corresponding #endif, in one case, the change involves
refactoring the semantic patch to use typed expressions to
improve its robustness, and the remaining case fixed a type
name. These changes resulted in a total of 7 inserted lines and
21 removed lines, out of a total of 562 lines of semantic patch
code. This low rate of change, to rules that are applied every
day to evolving code, further testifies to the dependability of
the Coccinelle-based backporting process. In contrast, the 70
standard patches currently maintained by the backports patches
have on average undergone 3.61 changes after their initial
creation, and five of these patches have changed 15 or more
times.

While we argue that the semantic patches currently main-
tained by the backports project are dependable, developing
a semantic patch amounts to a programming task, and as
for other programming tasks, the developer may not produce
a completely correct specification immediately. To help in
understanding a backporting problem and debugging the se-
mantic patch, the developer can manually create some standard
patches that address the specific issue. Indeed, some may be
available already, if there has been a prior effort to backport
the code. We have developed a simple tool that applies
the manually developed patches and the semantic patches to
separate copies of the Linux kernel source code, and then
checks that the results are equal, to provide a check on the
correctness of the semantic patch.

The latter checking methodology only applies when the
source code to which the semantic patch is applied is the
same as the source code for which the standard patch has
been designed. It could be possible to gain further confidence
in the correctness of a semantic patch via regression testing.
However, in our case, the relevant input, i.e., the current
version of version of a driver in a Linux kernel release or
release candidate, in linux-next, or in a stable tree, is a moving
target, changing weekly or even daily. Thus, the result of
backporting a driver at one point in time is not likely to be
identical to the result of backporting the most recent version
of the same driver at a later time. Nevertheless, it could be
possible to design a regression test system that checks only
the parts of the code to which the semantic patches apply. We
leave this to future work.

C. Performance of Coccinelle

Each day, the Linux kernel backports project generates
and compile tests backport releases for all supported kernels,
of which there are currently 19. Generation for all of them
takes around 1.5 minutes on our 32-core machine, and compile
testing of the 19 resulting patched kernels takes 44 minutes
of real time, comprising 1234 minutes of user time and 147
minutes of system time. Given the long compilation time, it
is important to minimize the time for generating backports.
Several solutions were explored to avoid the use of Coccinelle
overwhelming the backporting time. Figs. 9 and 10 relate the
backport generation time for each version, according to the
method used at the time of the release of that version, to the

v3.11

v3.12

v3.13

v3.14

v3.15

v3.16.2

v3.17-rc3

v3.18.1

v3.19-rc1

v4.0
v4.1

v4.2

0

50

100

150

200

250

generation time (sec)

number of patches

number of semantic patches

number of supported kernels

Fig. 9: Generation time compared to the number of patches,
the number of semantic patches, and the number of supported
kernel versions in the backports releases for various Linux
kernel versions

v3.11

v3.12

v3.13

v3.14

v3.15

v3.16.2

v3.17-rc3

v3.18.1

v3.19-rc1

v4.0
v4.1

v4.2

600

650

700

750

800

b
a
ck

p
o
rt

ed
 d

ri
v
er

s
backported drivers

Fig. 10: Number of backported drivers, for recent kernels

number of supported kernels, patches, and resulting backported
drivers for recent kernels.

In the first two versions shown, v3.11 and v3.12, the
backports project did not use Coccinelle, resulting in a high
number of standard patches, that had to be maintained individ-
ually. The backport generation time, however, is low, below 50
seconds, because patches are applied efficiently, in a single-
threaded manner, on a line-by-line basis, without parsing the
code. In version v3.13, three semantic patches were introduced.
Coccinelle is designed to apply only one semantic patch at
a time. The first strategy taken to apply multiple semantic
patches was to concatenate them, and apply the resulting
semantic patch in a single thread. This approach saves the
cost of starting up Coccinelle for each semantic patch, but the
need to parse the semantic patch and the source code entails
a high backport generation time. This approach furthermore
does not exploit the parallelism inherent in applying a single
specification to the hundreds of drivers supported by the
backports project. Coccinelle supports static parallelism via
an external script that starts up n instances of Coccinelle and
causes each of them to process 1/n of the files in the code base.
With this optimization, semantic patch support can be less
expensive than the sequential application of the corresponding
patches. For example, for v3.16.2, the number of supported
drivers increases significantly (Fig. 10), but the generation time
actually goes down slightly.

In the last two versions considered, Linux v4.1 and v4.2,

the semantic patch application time has risen considerably,
with a similar increase in the number of semantic patches
supported, from 5 in v4.0 to 22 currently in the upcoming
v4.2. Further optimizations may be possible. One possible
optimization is to use index information, precollected by a tool
such as glimpse,17 to identify the subset of files that may be
relevant to a given semantic patch. While Coccinelle already
supports the use of glimpse, library incompatibility issues
have prevented its use with the backports project. Instead,
the backports project uses Coccinelle’s internal support for
a form of grep that scans files for tokens known to be
essential to the application of the semantic patch. Another
possible optimization is to reduce the need to parse header
files, either by sharing the parsed code between the application
of different semantic patches or by ignoring header files when
the semantic patch does not require the information, such
as type information, that they may contain. Finally, dynamic
scheduling of parallel threads has recently become possible
within Coccinelle via the OCaml library Parmap [7]. The use
of dynamic scheduling may reduce the risk of load imbalances.

D. Semantic patch design issues

Normally, the developer can write the semantic patch rules
in any order, as long as the information required to perform a
transformation is available. In some cases, however, obtaining
reasonable performance requires taking into account some
details of how Coccinelle applies semantic patches, which may
not be obvious for a kernel developer. Specifically, Coccinelle
applies the rules of a semantic patch in order, from first to last,
with any changes specified by a rule being performed as soon
as the rule is matched. This can lead to extra matching and
undesired modifications if a semantic patch starts with rules
that perform generic transformations. Consider the following
rule that begins a semantic patch for backporting PCI drivers:

1 @ simple_dev_pm depends on module_pci @
2 identifier ops, pci_suspend, pci_resume;
3 declarer name SIMPLE_DEV_PM_OPS;
4 declarer name compat_pci_suspend;
5 declarer name compat_pci_resume;
6 @@
7 +compat_pci_suspend(pci_suspend);
8 +compat_pci_resume(pci_resume);
9 SIMPLE_DEV_PM_OPS(ops, pci_suspend, pci_resume);

This rule collects some information from each SIMPLE_-
DEV_PM_OPS structure, and introduces some PCI-specific
calls from the backports library. The rule applies to every
SIMPLE_DEV_PM_OPS declaration, and is not specific to PCI
drivers in any way. Not only does it transform code that should
not be transformed, it also can potentially have a significant
performance impact. In the linux-next files backported as of
June 26, 2015, 32 files contain a SIMPLE_DEV_PM_OPS
declaration, while only 18 of these are PCI drivers. All of these
extra files will be parsed and (unnecessarily) transformed if the
semantic patch is written in this way.

A solution is to add an initial rule that matches against
some other more specific term that must be present if any
transformation is needed. Subsequent rules can then depend
on the success of matching this rule. Essentially, this rule acts
as a “needle in a haystack” to find the source files where the

17http://webglimpse.net/. As a side effect of this work, the first author
convinced the developers of glimpse to release glimpse as open source.

transformation is actually relevant. In this particular case, we
observe that PCI drivers contain a MODULE_DEVICE_TABLE
declaration with pci as the first argument. We thus add the
following rule at the beginning of the semantic patch:

1 @ module_pci @
2 declarer name MODULE_DEVICE_TABLE;
3 identifier pci_ids;
4 @@
5 MODULE_DEVICE_TABLE(pci, pci_ids);

The SIMPLE_DEV_PM_OPS rule can now be declared to
depend on the rule module_pci, ensuring that it is only
applied to PCI drivers:

1 @ simple_dev_pm depends on module_pci @
2 identifier ops, pci_suspend, pci_resume;
3 declarer name SIMPLE_DEV_PM_OPS;
4 declarer name compat_pci_suspend;
5 declarer name compat_pci_resume;
6 @@
7 +compat_pci_suspend(pci_suspend);
8 +compat_pci_resume(pci_resume);
9 SIMPLE_DEV_PM_OPS(ops, pci_suspend, pci_resume);

The final rule to perform the backport uses metavariables
that are defined by the previous one, and thus by that rule’s
dependence will also only be applied to PCI drivers:

1 @@
2 identifier backport_driver;
3 expression pm_ops;
4 fresh identifier backports_pci_suspend = simple_dev_pm.

pci_suspend ## "_compat";
5 fresh identifier backports_pci_resume = simple_dev_pm.

pci_resume ## "_compat";
6 @@
7 struct pci_driver backport_driver = {
8 +#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))
9 .driver.pm = pm_ops,

10 +#elif defined(CONFIG_PM_SLEEP)
11 + .suspend = backports_pci_suspend,
12 + .resume = backports_pci_resume,
13 +#endif
14 };

VI. RELATED WORK

The specific problem of backporting has not received much
attention in the research community. Backporting is, however,
related to more general issues of change management, as arise
when merging trees in a source code management system
and when integrating changes developed for one branch of
a software product line into another branch.

Uquillas Gómez et al. [8] propose visualization tools to
aid the developer in integrating a patch developed for one
branch of a software project into another branch of the software
project. They focus on individual changes and on helping
the developer to identify semantic issues that may affect the
correctness of the change in the new context. Other work
on change impact analysis includes that of Gallagher and
Lyle [9], who use program slicing [10] to collect information
about the impact of a change, and the tool Chianti, which
identifies change impact using test cases [11]. The work on
change impact is complementary with ours. In our case, the
correct backport is already identified, and we are concerned
with expressing it in a concise and robust way. In the future,
we could combine change impact analysis with our approach,
to further check the correctness of the backported code.

Fiuczynski et al. faced the challenge of keeping an exter-
nally maintained patchset up to date with the evolutions in

the Linux kernel [12]. They proposed a preliminary solution
based on aspect-oriented programming [13] to re-express these
patches in a more generic and robust way. To the best of our
knowledge, this tool remained in a prototype stage.

Integrated development environments, such as Eclipse,
are able to perform certain classes of refactorings [14], i.e.,
semantics-preserving code transformations, automatically, and
to record sequences of refactorings for subsequent replay on
other code. The transformations that we require in the context
of backporting, however, are not general purpose, but instead
rely on the specific semantics of the functions of the backports
compatibility library. Thus, the general-purpose refactorings
provided by IDEs are typically not sufficient for the kinds of
transformations that are required.

VII. CONCLUSIONS AND FUTURE WORK

The Linux backports project currently, as of commit
065a5d39 (“backports-update-manager: bump 4.1-rc1 to 4.1-
rc8”)18, supports 22 semantic patches totaling 562 lines of
SmPL code. These semantic patches affect 63 files on linux-
next next-20150612 (preparation for v4.2). The corresponding
standard patch they generate contains 2558 lines of code, in-
cluding change lines and context information, implying that the
SmPL patches provide a code maintenance savings of 47.40%.
Still, some glue code is implemented by direct modification to
the driver code. Using a semantic patch is appropriate when
the changes are complex, are relevant to many drivers, and are
susceptible to be affected by other evolutions in the code, but it
may be overkill when a specific change is required in only one
place, i.e., when the maintenance efficiency is near 1. Overall,
the use of Coccinelle has contributed to the dependability
of the backport process. Indeed, another developer on the
backports project recently stated “All the patches that broke
often in the early days are now using coccinelle or are removed
because they were only needed for the older kernel versions.”19

Our work on backports raises a number of directions for
future work. One direction would be to reduce the need for
glue code by integrating upstream the needed static inline
functions for accessing and updating key data structures.
Patches to address this have been submitted and have now
started to be accepted, at least on the networking subsystem,
specifically to help reduce the amount of work to backport the
ieee802154 subsystem.20 One such change was merged as part
of the v3.18-rc1 release.

Another direction would be to infer semantic patches. For
many of our backports, we have a collection of manually
written patches that make the same change. Backporting could
be further streamlined by inferring semantic patches from
these examples. Preliminary work has indeed been done on
the automatic inference of change specifications [15], [16].
Alternatively, we observe that our additions of glue code
amount to (the inverses of) collateral evolutions. If a library
change is accompanied by a semantic patch, to ease updating
the library’s clients, then it might be possible to systematically

18git.kernel.org/cgit/linux/kernel/git/backports/backports.git/commit/?id=
065a5d394ff78dffcbe32a78227f5544d77f779d

19Hauke Mehrtens, private email of October 23, 2014.
20lkml.kernel.org/r/1397784176-15809-2-git-send-email-mcgrof@do-not-

panic.com

invert this semantic patch for subsequent backporting. Another
direction would be to infer the glue code itself.

Finally, it is always a concern that a code change may break
semantic invariants. We leave as future work to investigate
whether change impact analysis, as described above, can be
relevant here. Backporting is also relevant to other kinds
of infrastructure software, where users may rely on older
versions, but need to use more recent modules. We leave the
exploration of whether it is beneficial to use Coccinelle to
express the kinds of changes needed in such software to future
work.

A. Acknowledgements

The original work on backports was funded by Rutgers
University. Backports using Coccinelle was initially supported
by funding from Inria and the IRILL. Ongoing research in this
area is also supported by SUSE Labs. Finally, we would also
like to thank the ongoing contributors to the backports project,
in particular Johannes Berg and Hauke Mehrtens.

REFERENCES

[1] G. Kroah-Hartman, “The Linux kernel driver interface,” Linux 3.17:
Documentation/stable api nonsense.txt, section: “What to do”.

[2] D. MacKenzie, P. Eggert, and R. Stallman, Comparing and Merging
Files With Gnu Diff and Patch. Network Theory Ltd, Jan. 2003,
Unified Format section, http://www.gnu.org/software/diffutils/manual/
html node/Unified-Format.html.

[3] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting and
automating collateral evolutions in Linux device drivers,” in EuroSys
2008. Glasgow, Scotland: ACM, Mar. 2008, pp. 247–260.

[4] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and G. Muller, “A
foundation for flow-based program matching using temporal logic and
model checking,” in POPL, Jan. 2009, pp. 114–126.

[5] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding collateral
evolution in Linux device drivers,” in EuroSys, Apr. 2006, pp. 59–71.

[6] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, and
G. Muller, “WYSIWIB: exploiting fine-grained program structure in a
scriptable API-usage protocol-finding process,” Software: Practice and
Experience, vol. 43, no. 1, pp. 67–92, Jan. 2013.

[7] M. Danelutto and R. Di Cosmo, “A “minimal disruption” skeleton
experiment: Seamless map & reduce embedding in OCaml,” Procedia
Computer Science, vol. 9, pp. 1837–1846, 2012.

[8] V. Uquillas Gómez, S. Ducasse, and T. D’Hondt, “Visually supporting
source code changes integration: The Torch dashboard,” in WCRE,
Beverly, MA, USA, Oct. 2010, pp. 55–64.

[9] K. B. Gallagher and J. R. Lyle, “Using program slicing in software
maintenance,” Transactions on Software Engineering, vol. 17, no. 18,
pp. 751–761, Aug. 1991.

[10] M. Weiser, “Program slicing,” in ICSE, 1981, pp. 439–449.
[11] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley, “Chianti: A tool

for change impact analysis of Java programs,” in OOPSLA, Vancouver,
BC, Canada, Oct. 2004, pp. 432–448.

[12] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker, “Patch (1)
considered harmful,” in 10th Workshop on Hot Topics in Operating
Systems (HotOS X), Santa Fe, NM, Jun. 2005.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in ECOOP, ser. LNCS, no. 2072,
Budapest, Hungary, Jun. 2001, pp. 327–353.

[14] M. Fowler, Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

[15] J. Andersen and J. L. Lawall, “Generic patch inference,” Automated
Software Engineering, vol. 17, no. 2, pp. 119–148, Jun. 2010.

[16] N. Meng, M. Kim, and K. S. McKinley, “LASE: locating and applying
systematic edits by learning from examples,” in ICSE, 2013, pp. 502–
511.

