
AVoCS 2006

Automatic Veri�cation of
Bossa Scheduler Properties

Jean-Paul Bodeveixa, Mamoun Filalia,1 , Julia L. Lawallb and
Gilles Mullerc

a IRIT, Université Paul Sabatier, Toulouse, France
b DIKU, University of Copenhagen, Copenhagen, Denmark

c OBASCO Group, Ecole des Mines de Nantes-INRIA, LINA, Nantes, France

Abstract
Bossa is a development environment for operating-system process schedulers that provides numerous safety
guarantees. In this paper, we show how to automate the checking of safety properties of a scheduling policy
developed in this environment. We �nd that most of the relevant properties can be considered as invariant
or re�nement properties. In order to automate the related proof obligations, we use the WS1S logic for
which a decision procedure is implemented by Mona. The proof techniques are implemented using the
FMona tool.

Keywords: scheduling, re�nement, model-checking, WS1S

1 Introduction
A Domain-Speci�c Language (DSL) is a language designed around the precise con-
structs and abstractions that are relevant to a speci�c domain [8]. Such a language
captures domain expertise, guiding the programmer in the development of programs
that are concise, high level, and expressed in terms of common domain abstractions.
This technology has proved its value in easing program development in a variety of
areas in both research and industry [16].

In addition to easing the task of the programmer, DSL programs have the po-
tential to be highly safe and e�cient, because the language can be tuned to ease
veri�cation and optimization and because veri�cation and optimization tools can be
tuned to common domain idioms. Nevertheless, creating a veri�er or optimizer for a
programming language remains a di�cult task, which is further complicated in the
case of DSLs by the need to start from scratch for each new language. A solution is
to build on existing general-purpose veri�cation and optimization tools, but there

1 Email: filali@irit.fr
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Bodeveix Filali Lawall Muller

is little experience in this area. In this paper, we contribute to the understanding
of this area by presenting a case study in using an existing veri�cation tool to con-
struct a veri�er for the Bossa DSL for implementing operating system (OS) process
schedulers [17].

Bossa. Process scheduling is an old problem, but there is no single scheduling
policy that is perfect for all applications. Indeed, increasingly demanding applica-
tions in areas such as multimedia and embedded systems have motivated many new
scheduling algorithms [10,22,23]. As these algorithms are not available in standard
OSes, the developer of an application that requires a speci�c scheduling policy must
implement it himself at the OS level. This is di�cult and error-prone, requiring
substantial expertise in the target OS.

To address this issue, we have developed the Bossa environment for developing
operating system process schedulers [17]. Bossa provides two DSLs: a speci�cation
language for describing the scheduling requirements of a given OS and a programming
language for implementing scheduling policies. Both languages o�er abstractions
dedicated to the scheduling domain, allowing OS scheduling behavior and scheduling
policies to be described in a high-level and natural way. Bossa has been ported to
Linux and Chorus [12], and has been used in research [9] and teaching.

Bossa has a well-de�ned semantics and an ad-hoc veri�er [14]. The veri�er uses
abstract interpretation to check that the speci�cation of OS scheduling requirements
is consistent and that a Bossa scheduling policy satis�es the speci�ed requirements.
The veri�cation ensures that a scheduling policy considers as eligible for execution
only those processes that are able to run. Some other properties are also checked,
such as the absence of null-pointer dereferences. These checks ensure that a Bossa
scheduler does not crash or hang the OS. Other properties, such as fairness and
liveness could have been considered, but we have chosen to focus on properties
relating to the interaction with the OS, as these are typically outside the expertise
of the scheduling algorithm designer, and thus �t well with the goal of DSLs to
encapsulate expertise.

This paper. As the Bossa veri�er is hand-crafted and mixes the encoding and
checking of the relevant properties, we have found that it is hard to maintain, es-
pecially when extending the Bossa programming language. We have thus become
interested in implementing the Bossa veri�cations using an existing veri�cation en-
gine. Previously [5], we have studied how the Bossa methodology could be considered
within the B [1] formal method. This study showed that some of the veri�cations
made by Bossa could be expressed as proof obligations of B invariants or re�nements.
However, most of these proof obligations were not discharged automatically by the
provers available in atelier B [7]: a tool supporting the re�nement based B devel-
opment method [1]. The reasons include the lack of suitable decision procedures
and abstraction generators, particularly given the fact that the number of processes
manipulated by a Bossa policy is unbounded. We thus needed a logic that could
express Bossa properties in a natural way, to facilitate extension to new features,
and a veri�cation engine that would provide a decision procedure for this logic.

In this paper, we show that the WS1S logic, via the interface of the FMona
tool [4], is well-suited for expressing Bossa code and properties. A decision proce-

2

Bodeveix Filali Lawall Muller

dure for WS1S is provided by the Mona veri�cation tool [13]. We can thus automat-
ically verify all of the properties considered in our previous work, and cover other
properties considered by the Bossa veri�er. The rest of this paper is organized as
follows. Section 2 gives an overview of Bossa and presents the associated veri�cation
problem in more detail. Section 3 introduces the tools and techniques that we use.
Section 4 considers the veri�cation of the speci�cation of OS requirements. Section
5 presents the expression of scheduling policies and their veri�cation with respect to
the speci�cation of OS requirements. Section 6 considers the relation between the
veri�cation methods that we use and some others. Section 7 concludes and presents
some future work.

2 Bossa in a Nutshell
In this section, we give an overview of the Bossa DSLs, and then consider issues that
arise in showing that a Bossa scheduling policy satis�es a speci�cation.

2.1 The Bossa DSL for programming scheduling policies

A process scheduler is the part of an OS that is responsible for electing processes to
have access to the CPU. To do this, it must keep track of the set of processes that are
eligible for election and have a means of electing one of them. A scheduling policy
describes the strategy taken by the scheduler in these operations. These operations
are thus the focus of the constructs and abstractions provided by the Bossa DSL for
programming scheduling policies.

Rate Monotonic (RM) [15] is a scheduling policy often used to manage periodic
processes in real-time systems. When a process should be elected to have access to
the CPU, this policy picks the eligible process with the shortest period. Figure 1
shows an extract of the Bossa implementation of this scheduling policy. The im-
plementation declares the process attributes (line 2), the process states (lines 3-10),
the ordering criteria (line 11) and the event handlers (lines 12-30). The process
attributes record policy-speci�c information about each process. In the RM policy,
this includes the process's period. The ordering criteria, which is only provided for
priority-based policies, speci�es the relative priority of processes. In the RM policy,
this speci�es that the process with the shortest period should be given the highest
priority. We describe the process states and the event handlers in the rest of this
section.

The RM policy de�nes six process states: running, ready, yield, blocked,
computation_ended, and terminated. A process managed by the policy is always
in exactly one of these states. Each process state is associated with a state class,
which describes the eligibility of processes in the state. The state classes are as
follows:
• RUNNING: active processes (at most one on a uniprocessor),
• READY: processes eligible for election,
• KERNEL_BLOCKED: processes that are ineligible due to their recent interaction with
the OS (e.g., request for I/O),

3

Bodeveix Filali Lawall Muller

• POLICY_BLOCKED: processes that are ineligible due to their recent interaction with
the scheduler (e.g., quantum expired),

• KERNEL_POLICY_BLOCKED: processes that are ineligible due to their recent interac-
tion with both the OS and the scheduler,

• TERMINATED: terminated processes
A policy may de�ne multiple states within each state class, to express further re-
�nements required by the policy. For example, the RM policy de�nes the ready
and yield states in the READY state class, to distinguish processes that are uncondi-
tionally ready to run (ready) from those that should only run if no other process is
available (yield). Finally, a data structure is associated with each state: a process
variable for a state that can contain at most one process or a queue for a state that
can contain any number of processes.

Event handlers describe how the scheduling policy reacts to various OS events
that a�ect the eligibility of processes. Examples include process blocking, which
makes a process ineligible, and process unblocking, which makes a process eligible
again. The set of events that must be handled is speci�c to the targeted OS. For
Linux 2.4, a policy must provide handlers for ten events.

scheduler RM = { 1
process = { time period; cycles wcet; timer period timer; int missed deadlines; } 2
states = { 3
RUNNING running : process; 4
READY ready : select queue; 5
READY yield : process; 6
KERNEL BLOCKED blocked : queue; 7
POLICY BLOCKED computation ended : queue; 8
TERMINATED terminated; 9

} 10
ordering criteria = { lowest period } 11
handler (event e) { 12
/* event block.*: e.target blocks */ 13
On block.* { e.target => blocked; } 14
/* event unblock.preemptive: e.target unblocks */ 15
On unblock.preemptive { 16
if (e.target in blocked) { 17
e.target => ready; 18
if ((!empty(running)) && (e.target > running)) { running => ready; } 19

} 20
} 21
/* event yield.user.*: e.target wants to yield to any eligible process */ 22
On yield.user.* { e.target => yield; } 23
/* event bossa.schedule: e.target OS requests process election */ 24
On bossa.schedule { 25
if (empty(ready)) { yield => ready; } 26
select() => running; 27
if (!empty(yield)) { yield => ready; } 28

} 29
} 30
interface = { . . . } } 31

Fig. 1. Extract of the Bossa Rate Monotonic scheduling policy

We describe the unblock.preemptive handler (lines 14-19) in detail, as it illus-
trates most of the language constructs. This handler is triggered when a process
unblocks and the OS allows the scheduling policy to preempt the running process,
if desired. The handler manipulates the process e.target, which is the process

4

Bodeveix Filali Lawall Muller

that is unblocking. It �rst checks that this process is currently blocked (e.target
in blocked, line 17). If so, the handler changes the state of the unblocking pro-
cess to ready (line 18) and then checks whether the running process should be
preempted (line 19). For the latter, it tests whether there is a running process
(!empty(running)) and whether the priority of the unblocking process is greater
than that of the running process (e.target > running). If both conditions are
satis�ed, then the state of the running process is changed to ready, requesting that
it be preempted.

The language also provides operations on integers and time, loops over queues,
etc. It does not provide unbounded loops or recursive functions.

2.2 The Bossa DSL for specifying OS scheduling requirements

A scheduling policy must interact with the target OS at the lowest level. At this
level, OSes vary widely, and thus the de�nition of a scheduling policy must be tuned
to the target OS. Thus, the set of event handlers, the requirements on their behavior,
and the possible interactions between them are not �xed, but speci�ed for each OS
by an expert in the OS's process management behavior. This speci�cation consists
of a set of event types and an event automaton.

The event types describe the set of required event handlers and the requirements
on their behavior. The latter are speci�ed in terms of preconditions and postcon-
ditions on the states of relevant processes, such as the process generating the event
(the source) or the process a�ected by the event (the target). Each event type rule
describes a mapping of processes to states that can occur when the event is gener-
ated and the set of mappings of processes to states that are allowed on completion
of the event handler. The speci�cation is expressed in terms of the state classes, to
be policy independent. As an example, the requirements on the block.* handler
might be expressed as follows:
block.* : [tgt in RUNNING] -> [tgt in KERNEL_BLOCKED]

This rule speci�es that when a process (tgt) blocks, it must be in a state of the
RUNNING state class, and the handler must put the blocking process in a state of
the KERNEL_BLOCKED state class, to record that the process is ineligible. This rule,
however, is not su�cient to capture the possible interactions between the scheduler
and the OS that can occur in e.g. Linux 2.4. The appendix presents the more
complex Linux 2.4 block.* event type.

The event automaton describes the sequences in which the OS generates the
various events. For example, to terminate a process in Linux 2.4, the OS �rst blocks
the terminating process, then elects some other process, and eventually generates
a process.end event to remove the process from the scheduler. Some sequences
are uninterruptible; for example, Linux 2.4 always requests the election of a new
process immediately after blocking a process, with no interruption possible between
them. For the interruptible sequences, the OS expert also provides information
about which events can occur during interrupts. The Bossa event type compiler
augments the event automaton with all permutations of these events at each step in
any interruptible sequence.

5

Bodeveix Filali Lawall Muller

2.3 The Bossa veri�cation problem

The Bossa veri�er applies various consistency checks to the OS speci�cation and to
scheduling policies. We describe these checks below.

For the OS speci�cation, the main goal is to ensure that the event types are
consistent. Bossa distinguishes between context sensitive and automatic events.
Context-sensitive events occur only if the mapping of processes to states satis�es the
preconditions of the corresponding event types. An example is unblocking, which
originates at the OS level, where process states are known. There are no consistency
requirements in this case. Automatic events occur regardless of the current mapping
of processes to states. An example is blocking, which derives from actions at the
user level where process states are unknown. Consistency requires that the event
type specify at least one allowed behavior for each mapping of processes to states
that can hold when the event occurs. To check this, the veri�er takes into account
all possible sequences of events as speci�ed by the event automaton, and all possible
e�ects of the events along these sequences, as speci�ed by the event type rules.

For a policy, the main goal is to ensure that the event handlers are well de�ned
(e.g., no null-pointer dereferences) and that they respect the event types. In this,
the veri�er uses the event types, instantiated according to the states de�ned by the
policy, and the event automaton, to identify inter-handler e�ects. For each mapping
of processes to states that is allowed by the event types and reachable according to
the event automaton, the veri�er analyzes each execution path through the event
handler to determine the e�ect on the process states. The resulting mapping of
processes to states must be compatible with the postconditions speci�ed by the
event type rules. This part of the veri�er has been presented in detail previously
[14].

Both forms of veri�cation rely on analysis of all possible execution paths, suggest-
ing that model checking would be appropriate. Standard model checking techniques,
however, are limited to �nite state spaces. In the case of Bossa, the size of the state
space is determined by the number of processes, which in general is not bounded. We
thus turn to the Mona tool [13], which is able to reason in the presence of unknown
integer values.

3 The Mona veri�cation tool
We �rst review the Mona tool [13] and then describe transition systems, properties,
and veri�cation techniques in this setting.

3.1 Mona

Mona implements a decision procedure for the logic WS1S, de�ned as follows:
De�nition 1 (The WS1S logic) Let {x1, . . . , xn} be a set of �rst-order variables
and {X1, . . . , Xn} a set of second-order variables. A minimal grammar for the WS1S
logic as follows:
• a term t is de�ned by: t ::= 0 | xi | s(t), where s is the successor symbol.

6

Bodeveix Filali Lawall Muller

• a formula f is de�ned by:

f ::= t ∈ Xi | ¬f | f ∧ f | ∃1xi. f | ∃2Xi. f (1st and 2nd order quanti�cation)

A closed formula is WS1S valid if its interpretation over the set N of natural numbers
is valid. First-order variables denote natural numbers and second-order variables
denote �nite subsets of N. The logic is decidable.

To express properties relevant to Bossa, we use the FMona [4] high-level interface
for Mona. This interface allows declaring enumerated types, records with updates,
quanti�cation over �nite structured types, and parameterized higher-order macros.
FMona code is automatically translated into Mona.

As an example, we consider the de�nition of a notion similar to superposition [6].
We suppose that we have an automaton, the states of which are identi�ed by the
Location type, and a relation tr over the data type Data. The superposition
of tr to a transition is a new relation that is de�ned over the �superposed� type
record{d:Data; w:Location;} as follows:
pred superpose(type Data, type Location, pred(var Data d,d') tr,

var Location l,l', var record{d: Data; w: Location;} s,s') =
s.w = l ∧ s'.w = l' ∧ tr(s.d,s'.d);

Partial application is possible. For example, if l1 and l2 are locations, then
superpose(tr,l1,l2) is a predicate over pairs of the superposed type. Type pa-
rameters are automatically synthesized.

3.2 Transition systems and properties

We de�ne a transition system as a triple composed of a state space, an initialisation
predicate and a binary transition relation. In our case, systems are parameterized
by the number of processes. Mona can analyze properties of such systems even if the
parameter has not been instantiated, which is the essential advantage of Mona over
traditional model checking in our context. In this paper, we consider safety prop-
erties expressed as invariants. Following Mona terminology, we do not distinguish
between a property and a predicate.
De�nition 2 (Invariant) A predicate P is said to be invariant with respect to a
transition system if it is true in the transition system's initial states and is preserved
by its transition relation.

Invariance properties rely on stability and do not consider actual executions.
When invariance cannot be established, we can consider a weaker property: the
predicate always true [19], i.e., satis�ed over all the reachable states.
De�nition 3 (always true predicate) A state s is said to be reachable with re-
spect to a transition system S if there exists a sequence s0, . . . , sn = s such that s0

is an initial state of S and for each i < n the states si and si+1 are related by the
transition relation. The predicate P is said to be always true if it is satis�ed by each
reachable state.

In FMona, we introduce the macro always_true, which is parameterized by
the type of the state space, the predicate we wish to check as always true, the
initialisation predicate, and transition relation:

7

Bodeveix Filali Lawall Muller

pred always_true(type State,pred(var State s) p,
pred(var State s) init,pred(var State s,s') tr) =

all State s: reachable(init,tr,s) ⇒ p(s);
pred reachable(type State, pred(var State s) init, pred(var State s,s') tr, var State s) =
ex array nat of State A: ex nat i: A[i]=s ∧ init(A[0]) ∧

all nat j where j < i: tr(A[j],A[j+1]);

3.3 Veri�cation techniques

We use re�nement to prove that a concrete speci�cation is correct with respect to
an abstract speci�cation, abstraction to prove that a property holds in a concrete
system, and iteration to calculate �xed points. We recall the de�nitions of re�nement
and abstraction, and show how iterative techniques are implemented within FMona.
De�nition 4 (Re�nement) A transition system Sc (said to be concrete) re�nes
a transition system Sa (said to be abstract) if there exists a relation ϕ between the
states of the concrete transition system and the states of the abstract one such that:
• Each initial state of the concrete transition system is related by ϕ to an initial
state of the abstract transition system.

• Given a concrete state c and an abstract state a related by ϕ, then for each element
c' related to c by the concrete transition relation, there exists an element a' related
to a by the abstract transition relation.

De�nition 5 (Abstraction) Let C = (Sc, Ic,→c) be a transition system, Sa a
state space called �abstract� and ϕ a relation over Sc × Sa. The abstraction of C

through ϕ is a transition system (Sa, Ia,→a) where
• Ia is the image by ϕ of Ic: Ia = ϕ(Ic),
• →a is the set of images by ϕ of pairs connected through →c.

sa →a s′a , ∃sc s′c : ϕ(sc, sa) ∧ ϕ(s′c, s
′
a) ∧ sc →c s′c

The implementation of iterative techniques. Most of the temporal properties
that we are interested in can be expressed as �xed points [2]. However, since we do
not have general decidability results for reaching the �xed point, we must provide
a bound on the number of iterations required to reach it. The macro backward
is parameterized by the number of iterations N , the transition system de�ned by
the predicates init and tr and the predicate to verify inv. Starting from a state
characterized by the negation of inv, after n iterations (through the recursive macro
iterate) of the inverse of the transition relation, we check that a �xed point has
actually been reached (through the stable predicate) without reaching any initial
state. In this way, we verify that a path between an initial state and a state satisfying
¬inv does not exist.
pred backward(type S,var nat N,pred(var S s) init,pred(var S s,s') tr, pred(var S s) inv) =

check_bwd(init,tr,iterate(N,NOT(inv),inverse(tr)));
pred iterate(type S, var nat N, pred(var S s) start, pred(var S s,s') tr, var S s) =
if N = 0 then start(s) else ex S s': iterate(N−1,start,tr,s') ∧ (s' = s | tr(s',s)) endif;

pred check_bwd(type S, pred(var S s) init, pred(var S s,s') tr, pred(var S s) bad)=
stable(bad,inverse(tr)) ∧ all S s: bad(s) ⇒ ∼init(s)

4 Verifying the OS Speci�cation using Mona
We now present the translation of the event types and event automaton into FMona
and how some of their properties are expressed. The properties include the preser-

8

Bodeveix Filali Lawall Muller

vation of the representation invariant and of the number of processes in the system,
and the satisfaction of event preconditions. The translation of the event types and
event automaton has been automated. The properties are automatically checked by
Mona for any number of processes.

4.1 Translation of the event types

We represent a Bossa state class by the set of processes associated with it. The state
of the system is then represented by the record Classes where each �eld represents
a state class. The additional state class NOWHERE represents processes that are not
managed by the scheduler.
var nat NProc; # maximal number of processes
type Proc = ... NProc; # interval type: 0..NProc-1
type Classes = record {
RUNNING, READY, KERNEL_BLOCKED, POLICY_BLOCKED, KERNEL_POLICY_BLOCKED,
TERMINATED, NOWHERE: set of Proc;};

We represent the event type associated with a given event by a �before-after�
predicate that is the disjunction of the relations associated with the various type
rules. For example, if block.* had the single type rule:
block.* : [tgt in RUNNING] -> [tgt in KERNEL_BLOCKED]

then the following predicates would be automatically generated:
• Eblock_, which de�nes a before-after relation between elements of type Classes,
parameterized by the source (src) and target (tgt) processes. (block.* does not
have a source process, but the signatures of the translated types are all the same,
for simplicity.)
pred Eblock_(var Proc src, tgt, var Classes s,s') =

(({tgt} ⊆ s.RUNNING) ∧ (s' = s with {
RUNNING := s.RUNNING \ {tgt}; READY := s.READY \ {tgt};
KERNEL_BLOCKED := s.KERNEL_BLOCKED \ {tgt} ∪ {tgt};}));
POLICY_BLOCKED := s.POLICY_BLOCKED \ {tgt};
KERNEL_POLICY_BLOCKED := s.KERNEL_POLICY_BLOCKED \ {tgt};
TERMINATED := s.TERMINATED \ {tgt};
NOWHERE := s.NOWHERE \ {tgt};

To simplify the FMona code generation, the processes occurring on the left
side of a rule are always subtracted from every state class. This approach is
mainly useful when the left hand side contains a disjunction of �lters, as it is then
unnecessary to examine them separately. The FMona code is verbose, but does
not need to be simpli�ed since Mona generates an equivalent automaton-based
internal representation for all equivalent formulas.

• block_, which is the disjunction of the transitions Eblock_ for any possible values
of src and tgt.
pred block_(var Classes s,s') = ex Proc src, tgt: Eblock_(src,tgt,s,s');

4.2 Veri�cation of intra-event properties

The event type should not allow a scheduling policy to put a process in more than
one state, to put multiple processes in the state of the RUNNING state class, or to drop
processes. These properties are straightforwardly encoded as invariant properties or
as the preservation of a state expression.

9

Bodeveix Filali Lawall Muller

4.3 Veri�cation of inter-event properties

The sequencing of events is described by the Bossa event automaton. Within this au-
tomaton, Bossa distinguishes between automatic events and context-sensitive events.
The event types must be constructed such that at every point in the automaton
where an automatic event appears, the state of the system obtained by every path
to that point is compatible with at least one of the preconditions indicated by the
event's type.

To check this property, we must take into account the complete dynamics of the
system. This is represented by the combination of the event automaton, the event
types, and the system state (Classes) to describe the mapping of processes to state
classes before and after each event. The resulting transition relation is de�ned on
the state space NClasses:
type Location = ... 12; # number of automata states
type NClasses = record { d: Classes; w: Location; };

The transition relation itself, NNext, is de�ned by superposing the relations describ-
ing the event types (block_, etc.) to the transitions in the event automaton. The
disjunction of the representations of the event types for the events occurring in in-
terrupts is superposed to automata states that represent interruptible points in the
event sequences. The representations of the remaining type rules are superposed to
the corresponding automaton transitions.
pred interrupts(var Classes s,s') = # interrupt events

unblock_preemptive(s,s') | unblock_timer_target_(s,s') | ...;
pred NNext(var NClasses s,s') = # Labeling of automaton transitions by events

superpose(interrupts,2,2,s,s') | superpose(interrupts,4,4,s,s') | ...
| superpose(block_,0,1,s,s') | superpose(bossa_schedule,1,4,s,s') | ...;

Our goal is to check that every reachable state of the system satis�es the pre-
conditions of the automatic events allowed from this state. However, computing
the reachable states of the system cannot be automatic in general because the state
space is parameterized by the number of processes. Thus, we use a �nite abstraction
of the state space where a boolean is associated to each class indicating whether the
class is empty (false value) or not.
type AClasses = record {
RUNNING, READY, KERNEL_BLOCKED, POLICY_BLOCKED, KERNEL_POLICY_BLOCKED,
TERMINATED, NOWHERE: bool;};

This type is extended by the state locations of the automaton:
type NAClasses = record { d: AClasses; w: Location;};

The abstraction relation between the state space of classes and its abstraction
AClasses contains the representation invariant inv (4.2) and the de�nition of each
boolean �eld:
pred state_abs(var Classes s, var AClasses a) =
inv(s) ∧ (a.RUNNING ↔ s.RUNNING 6= ∅) ∧ (a.READY ↔ s.READY 6= ∅) ∧
(a.KERNEL_BLOCKED ↔ s.KERNEL_BLOCKED 6= ∅) ∧
(a.POLICY_BLOCKED ↔ s.POLICY_BLOCKED 6= ∅) ∧
(a.KERNEL_POLICY_BLOCKED ↔ s.KERNEL_POLICY_BLOCKED 6= ∅) ∧
(a.TERMINATED ↔ s.TERMINATED 6= ∅) ∧ (a.NOWHERE ↔ s.NOWHERE 6= ∅);

The predicate nabs extends the abstraction relation to the state space of the
superposed automaton. It takes as argument a concrete value of type NClasses and
an abstract value of type NAClasses, and maps state locations to themselves and
abstracts the process sets attached to each class to booleans.

10

Bodeveix Filali Lawall Muller

pred nabs(var NClasses c,var NAClasses a)= c.w=a.w ∧ state_abs(c.d,a.d);

The satisfaction of preconditions can now be expressed at the abstract level:
each concrete counterpart of an abstract state must satisfy the preconditions of au-
tomatic events. We �rst introduce a predicate check_pre over concrete states of type
NClasses, asserting that the guards of automatic events allowed by the automaton
at the current state are satis�ed. The abstract level predicate check(var NAClasses
a) expresses that all the concretisations of a through nabs satisfy check_pre.

Backward analysis of the abstract system, which terminates here after one step,
veri�es this property on each reachable abstract state and thus on a superset of
the reachable concrete states. Given macros AInit and ANext that compute the
abstraction of the initialisation and the transition relation of the concrete system,
the property is checked by the following assertion:
backward(1, ANext(NNext,nabs), AInit(NInit,nabs),check);

Remarks
• This study revealed an error in the abstraction of the behaviour of the Linux
kernel as described by Bossa event types. The analysis performed by Bossa tools
did not detect the error because it performs a less accurate analysis: it considers
an abstraction of state classes using three values (empty, nonempty, unknown),
and no veri�cations are performed on unknown states.

• Even if it is theoretically possible to compute the set of reachable states of the ab-
stract system, its computational complexity makes doing so hard. This is why we
have applied an iterative method. Its convergence is however guaranteed because
the abstract state space is �nite, even though the transitions are parameterized
by the number of processes.

• The analysis performed here amounts to model checking, but because the tran-
sition relations over the state space NAClasses are parameterized, a �nite-state
model checker is not directly applicable. The use of a �nite state model checker
would require a program transformation, which is usually hard to validate. In
our proposal, abstraction is speci�ed at the semantic level. The correctness of the
method relies on a simple meta-level theorem.

5 Verifying Scheduling Policies using Mona
We now show how the process states and event handlers de�ned by a Bossa schedul-
ing policy (see Figure 1) are translated into FMona, and how their conformance to
the event types is veri�ed.

5.1 Bossa speci�cation of process states and event handlers

Process-state declarations are automatically translated into FMona as a type dec-
laration, which associates each state with a set of processes, and a gluing invariant
relating states and classes. This gluing invariant also includes a representation in-
variant for states, building on the one for state classes:

11

Bodeveix Filali Lawall Muller

type Bstates = record {
running: set of Proc;
ready: set of Proc;
yield: set of Proc;
blocked: set of Proc;
computation_ended: set of Proc;
terminated: set of Proc;

};

pred Bstates2Classes(var Bstates c,
var Classes a) =

inv(a) ∧ # representation invariant
a.RUNNING = c.running

∧ a.READY = c.ready ∪ c.yield
∧ c.ready ∩ c.yield = ∅
∧ a.KERNEL_BLOCKED = c.blocked
∧ a.POLICY_BLOCKED = c.computation_ended
∧ a.KERNEL_POLICY_BLOCKED = ∅
∧ a.TERMINATED = c.terminated;

The translation of event handlers to FMona relies on a weakest precondition
calculus over the Bossa statements. An abstraction of subexpressions that cannot
be translated into FMona (arithmetic expressions, etc.) is also performed. State
updates and emptiness checks are preserved.

Bossa event handlers can be partially de�ned. For example, it is only allowed to
put a process in a state designated as a process variable if the state is empty. In
order to guarantee the wellformedness of event handlers, preconditions are generated
in such cases. For example, in the following handler, because the state yield is
implemented as a variable (see Figure 1, line 6), the transition to yield is only valid
if yield is empty:

On yield.user.* { e.target => yield; }

The FMona translation of this handler includes the condition yield=∅ which, when
not satis�ed, blocks the transition. We will prove that this cannot occur.
pred Byield_system_pause_(var Proc src, tgt, var Bstates s,s') =
((s.yield = ∅) ∧
(s' = s with { running := s.running \ {tgt}; ready := (s.ready \ {tgt});

yield := s.yield ∪ {tgt}; blocked := (s.blocked \ {tgt});
computation_ended := s.computation_ended \ {tgt};
terminated := s.terminated \ {tgt};}));

5.2 Veri�cation of a policy

We now show how to use FMona to express the conformance of a policy with the
event types. This property is based on the existence of a re�nement relation between
transitions over the Classes type, said to be abstract, and transitions over the
Bstates type, said to be concrete. It amounts to instantiating the event type rules,
which are de�ned in terms of state classes, with respect to the states de�ned by a
given policy.

The generic re�nement property for preconditioned transitions (used here) is
instantiated and expressed as a predicate over the concrete type:
pred check_ref(type State_c, type State_a,
pred(var State_c s_c,var State_a s_a) ϕ,
pred(var State_c s_c, s_c') tr_c,
pred(var State_a s_a, s_a') tr_a, var State_c s_c) =

(all State_c s_c': all State_a s_a:
(tr_c(s_c,s_c') ∧ ϕ(s_c,s_a) ∧ pre(tr_a,s_a))

⇒ ex State_a s_a': tr_a(s_a,s_a') ∧ ϕ(s_c',s_a')) ∧
all State_c s_c: all State_a s_a: (ϕ(s_c,s_a) ∧ pre(tr_a,s_a))
⇒ pre(tr_c,s_c);

This re�nement property, however, is not usually valid. For example, a transition
towards the yield state is only possible if this state is empty. As the event type does
not require the associated state class READY to be empty, there is no re�nement. We
must thus take into account executions allowed by the automaton and only check
the re�nement on concrete states of type Bstates of which a given abstraction is
reachable. This abstraction is obtained by representing each state by a boolean that

12

Bodeveix Filali Lawall Muller

is true if the state is not empty. The concrete and abstract states are superposed
to those of the automaton. The re�nement property is then veri�ed for all concrete
counterparts of reachable abstract states. Only allowed transitions from a given
state are taken into account. In our case, convergence was obtained after three
backward applications of the abstract transition. In general, the convergence of the
iterative method is ensured because the abstract state space is �nite. The size of
the state space can, however, be much larger than the number of iterations required
(640 vs. 3 in the case of the RM policy).

6 Related work
In this paper, we have automated the proof of Bossa scheduler properties using the
WS1S logic and Mona. It is interesting to remark that, although the worst-case
complexity of this logic is non-elementary, the computations required by the consid-
ered scheduling structures seem to be feasible. This con�rms the results obtained
for other domains, such as the static analysis of data structures [11] and software
structures [21].

Other methods and proof techniques could have been used. Concerning methods,
we mention the B method, which we have used in our previous study [5]. Never-
theless, the approach presented here requires some features that are not supported
by B, namely taking into account the event automaton and the use of abstractions.
Our use of these features widened the set of properties that could be expressed,
while remaining within WS1S logic. This, in turn, allowed the proof obligations to
be discharged automatically.

Concerning proof techniques, states could have been represented by counters.
Since Mona implements Presburger arithmetic, Mona could have been used. How-
ever tools dedicated to arithmetic such as FAST [3] should be more e�cient. The use
of the WS1S logic allowed us to avoid abstracting sets as counters. Petri nets [20]
could also have been used. Although the use of counters is restricted in this case,
it should be possible to elaborate models. In both cases, the considered properties
cannot be decided automatically and require either making abstractions or applying
convergence accelerations.

7 Conclusion
In this paper, we have shown how to use Mona to check Bossa properties that were
previously checked by speci�c tools. This approach separates the generation of proof
obligations, which remains Bossa-speci�c, from the construction of the associated
proofs, which is performed by a generic tool. Because the generation of proof obliga-
tions is much simpler than proof construction, this approach should make it easier to
extend and modify the Bossa veri�er as the needs of the language evolve. Extensions
can furthermore transparently use features of the automated prover that were not
built into the Bossa veri�er, such as reasoning about integers. Nevertheless, while
this study considers the safety properties checked by the Bossa veri�er, it does not
address some properties that are used by the Bossa compiler to generate optimized
code. For this, a stronger coupling between Bossa and FMona is needed.

13

Bodeveix Filali Lawall Muller

Using a general purpose veri�er may seem potentially less e�cient than a veri�er
dedicated to Bossa. Nevertheless, there has been substantial research dedicated
to improving the e�ciency of general-purpose provers, which goes beyond what is
typically available for developing tools for a domain-speci�c language. In practice,
we have observed that our approach gives the same performance as the Bossa veri�er,
around one minute to verify a typical scheduling policy. In particular, our use of
iterative techniques, which avoid second-order quanti�cation, greatly improves both
the execution time and memory usage.

The Bossa veri�er checks properties related to the scheduling requirements of
the OS. Using our approach, properties concerning the scheduling algorithm and
the scheduled application can now also be considered. For instance, does the imple-
mentation of a scheduler satisfy a given property? And will an application meet its
deadlines under a given scheduler? Finally, the generation of certi�ed code as well
as proof annotated code [18] could be considered.

���� This work was supported in part by the Danish Research Council, grant 21-03-0545 and in part by
the project CORSS : Composition et ra�nement de systèmes sûrs of program �ACI Sécurité Informatique�
supported by the French Ministry of Research and New Technologies.

Availability Bossa is available at http://www.emn.fr/x-info/bossa/.

References
[1] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press, 1996.

[2] A. Arnold. Finite transition systems. Prentice-Hall, 1994.

[3] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast acceleration of symbolic transition systems.
In Proc. 15th Conf. Computer Aided Veri�cation (CAV'2003), volume 2725 of LNCS, pages 118�121.
Springer, 2003.

[4] J.-P. Bodeveix and M. Filali. A generic tool for expressing the development of validations . In 11th
Nordic Workshop on Programming Theory NWPT'99, pages 37�37, Uppsala University, 6-8 October
1999. Bjorn Victor and Wang Yi.

[5] J.-P. Bodeveix, M. Filali, J. Lawall, and G. Muller. Formal methods meet domain speci�c languages. In
Fifth International Conference on Integrated Formal Methods (IFM), Eindhoven Netherlands, volume
3771 of LNCS, pages 187�206, 29 November-2 December 2005.

[6] K. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-Wesley, 1988.

[7] CLEARSY. L'atelier B. version 3.6. Technical report, http://www.atelierb.societe.com/.

[8] C. Consel and R. Marlet. Architecturing software using a methodology for language development. In
C. Palamidessi, H. Glaser, and K. Meinke, editors, Proceedings of the 10th International Symposium
on Programming Language Implementation and Logic Programming, volume 1490 of Lecture Notes in
Computer Science, pages 170�194, Pisa, Italy, Sept. 1998.

[9] J. Cordry, N.Bouillot, and S. Bouzefrane. Bossa et le concert virtuel réparti, intégration et paramètrage
souple d'une politique d'ordonnancement spéci�que pour une application multimédia distribuée. In 13th
International Conference on Real-Time Systems, Paris, France, Apr. 2005.

[10] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. In Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP'99), pages 261�276, Kiawah Island Resort, SC, Dec. 1999.

[11] J. Elgaard, A. Møller, and M. I. Schwartzbach. Compile-time debugging of C programs working on
trees. In Proc. Programming Languages and Systems, 9th European Symposium on Programming,
ESOP '00, volume 1782 of LNCS, pages 182�194. Springer-Verlag, March/April 2000.

[12] Jaluna. Jaluna Osware. http://www.jaluna.com.

14

Bodeveix Filali Lawall Muller

[13] N. Klarlund. Mona & �do: The logic-automaton connection in practice. In Computer Science Logic,
CSL '97, LNCS, 1998. 1414.

[14] J. Lawall, A.-F. Le Meur, and G. Muller. On designing a target-independent DSL for safe OS
process-scheduling components. In Third International Conference on Generative Programming and
Component Engineering (GPCE'04), volume 3286 of LNCS, pages 436�455, Vancouver, October 2004.
Springer-Verlag.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46�61, Jan. 1973.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-speci�c languages. ACM
Computing Surveys, 37(4):316�344, 2005.

[17] G. Muller, J. L. Lawall, and H. Duchesne. A framework for simplifying the development of kernel
schedulers: Design and performance evaluation. In HASE 2005 - High Assurance Systems Engineering
Conference, pages 56�65, Heidelberg, Germany, Oct. 2005. IEEE.

[18] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In OSDI96, pages 1�13,
Seattle, October 1996.

[19] J. S. Pettersson. Comments on "Always-true is not invariant": assertional reasoning about invariance.
Information Processing Letters, 40(5):231�233, December 1991.

[20] C. Reutenauer. The mathematics of Petri nets. Prentice-Hall, 1990.

[21] A. Sandholm and M. I. Schwartzbach. Distributed safety controllers for web services. In E. Astesiano,
editor, Fundamental Approaches to Software Engineering, number 1382 in LNCS, pages 270�284.
Springer-Verlag, March/April 1998.

[22] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. A feedback-driven proportion
allocator for real-rate scheduling. In Proceedings of the Third USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 145�158, New Orleans, LA, Feb. 1999.

[23] W. Yuan and K. Nahrstedt. Energy-e�cient soft real-time CPU scheduling for mobile multimedia
systems. In Proceedings of the 19th ACM Symposium on Operating System Principles, pages 149�163,
Bolton Landing (Lake George), NY, Oct. 2003.

A The block.* event type for Linux 2.4
The requirements on the block.* event in the context of Linux 2.4 are speci�ed as
follows:
block.*: [tgt in RUNNING]->[tgt in KERNEL_BLOCKED]
block.*: [[] = RUNNING,tgt in READY]->[tgt in KERNEL_BLOCKED]
block.*: [[] = RUNNING,tgt in POLICY_BLOCKED]->[tgt in KERNEL_POLICY_BLOCKED]

A process is always executing when it blocks. The �rst rule thus speci�es that when
the blocking process (tgt) is in the state of the RUNNING state class, the handler must
put the blocking process in a state of the KERNEL_BLOCKED state class, to record that
the process is ineligible. An executing process, however, is not always in the state
of the RUNNING state class. As illustrated by unblock.preemptive handler (line 17,
Figure 1), a handler can request preemption of the executing process, by changing its
state from the state of the RUNNING state class to a state of the READY state class, if
the process is still considered eligible for election, or to a state of the POLICY_BLOCKED
state class, if not. The remaining rules thus consider the cases where preemption
has been requested in this manner. In the former case, the blocking process must
be put in a state of the KERNEL_BLOCKED state class to record that it is ineligible
due to its interaction with the OS. In the latter case, it must be put in a state of
the KERNEL_POLICY_BLOCKED state class to record that when the process unblocks,
becoming eligible from the point of view of the OS, it is still ineligible from the point
of view of the scheduling policy.

15

