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ABSTRACT
Named constants are used heavily in operating systems code,
both as internal flags and in interactions with devices. De-
cision making within an operating system thus critically
depends on the correct usage of these values. Nevertheless,
compilers for the languages typically used in implementing
operating systems provide little support for checking the
usage of named constants. This affects correctness, when a
constant is used in a context where its value is meaningless,
and software maintenance, when a constant has the right
value for its usage context but the wrong name.

We propose a hybrid program-analysis and data-mining
based approach to identify the uses of named constants
and to identify anomalies in these uses. We have applied
our approach to a recent version of the Linux kernel and
have found a number of bugs affecting both correctness
and software maintenance. Many of these bugs have been
validated by the Linux developers.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]:Software/Program Verification–Statistical meth-
ods
General Terms: Algorithms, Design, Experimentation
Keywords: Variable-Constant Pairing Bugs, Anomaly De-
tection, Clustering, Linux

1. INTRODUCTION
Integer constants are heavily used in operating systems

code, in interpreting values read from devices, in constructing
values to be written to devices, and in representing flags.
Some constants are represented explicitly, as so-called “magic
numbers”. These are well-known to be extremely error-prone,
because their form is essentially meaningless: in writing the
code it is easy to mistype some digit, and in reading the
code it is impossible to tell what concept is intended to
be represented. Operating systems code thus often defines
named constants, either using #define or an enumeration
type declaration. In this way, a constant is associated with
a name that suggests its value, and the programmer can
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1. mboxes = mcp->out_mb; ... if (mboxes & BIT_0) ...
mboxes = mcp->in_mb; ... if (mboxes & BIT_0)

2. (endpoint->bEndpointAddress & USB_TYPE_MASK) ==
USB_DIR_OUT

3. tp->tg3_flags2 & TG3_FLAG_10_100_ONLY

Figure 1: Bugs in constant usage, in Linux 2.6.30, in
drivers/scsi/qla2xxx/qla mbx.c, drivers/net/wire-
less/zd1211rw/zd usb.c, and drivers/net/tg3.c, re-
spectively

use the constant without being aware of this value. Spelling
mistakes are likely to result in a reference to a non-existent
identifier, and the bug will be caught by the compiler.

Nevertheless, the use of #define and enumeration type
constants is not sufficient to prevent all errors. Indeed, com-
pilers provide little or no assistance in ensuring that a given
constant is used in the right context. #define constants are
seen by the compiler as the integer value that they expand
into, and in the case of C, values declared in an enumeration
type have type int [8]. Figure 1 illustrates the three kinds
of errors that can occur. In the first example, the constant
BIT_0 has the right value, but the wrong name (name bug).
The out_mb and in_mb fields should be combined with MBX_0,
which has the same value, as done elsewhere in the file. In the
second example, the value of USB_TYPE_MASK has the wrong
value for the context in which it occurs (value bug). The
result of the bit-and operation is compared to USB_DIR_OUT,
which only has 1 bits in positions where USB_TYPE_MASK has
0 bits, and thus the result of the comparison is always false.
Finally, in the third example, the right constant is used in the
wrong context (context bug). The TG3_FLAG_10_100_ONLY

constant should be used with the tg3_flags field, rather
than the tg3_flags2 field. Of these, a name bug does not
affect the behavior of the program, but can harm its readabil-
ity and future maintenance. A value or context bug produces
incorrect behavior: for example, a condition reported by a
device may never be detected, or a device may be provided
with an inappropriate value. Some of these bugs may be de-
tected quickly, e.g., if a device exhibits unexpected behavior.
Others may linger, due to the difficulty of finding such bugs
by manual inspection and the lack of appropriate tools.

Essentially, the problem of ensuring that the right constant
is used in the right context is a type checking problem. Indeed,
a group of constants that may be used in a particular kind
of context may be considered to form a type. Nevertheless,
the problem of inferring these types is more difficult than



the problem of ordinary type inference, because there are no
kinds of terms on whose types we can rely. Thus, we must
first identify what the types are, and then check that they are
respected by the code that uses these values. This problem
is further complicated by issues of dependent types, where
the type expected in one function argument or structure field
depends on the value contained in another one, of subtypes,
where one module may define supplementary constants that
are intended to be used in a context that expects constants of
another existing type, and of bugs, implying that any given
use of a constant cannot be assumed to be a correct use, and
thus cannot in itself imply a type definition.

In this paper, we propose to address the issue of type
inference for named constants using a combination of program
analysis and data mining. In our approach, program analysis
is used to collect information about the use of constants,
and data mining is used to filter out probable anomalous
uses to be able to classify the constants into types. We have
applied our approach to the Linux 2.6.30 kernel,1 focusing
on constants that are used in bit-and and bit-or operations,
representing the processes of extracting information from
existing values and of constructing new values. In Linux
2.6.30, we have found 10 probable bugs, of which 7 have
been confirmed by Linux developers.2 This number of bugs
is not large, but the ability to find these bugs is unique to
our approach; existing bug-finding approaches typically focus
on sets or sequences of function calls [5, 11, 21, 24, 26], and
thus are not able to find bugs in the use of constants.

Concretely, the contributions of this paper are as follows:

• We identify the pattern of named constant usage in
Linux code, providing a basis for bug finding.

• We define a program analysis that provides insight into
the flow of named constants through Linux code.

• We define a data mining strategy based on clustering
that groups named constants into types. This approach
to clustering is novel in that it has no a priori knowledge
of the number of clusters, but is efficient enough to be
used with large and varied data sets.

• We provide a detailed evaluation of our approach on
the complete Linux 2.6.30 source code.

• We classify some forms of named constant usage that
are problematic for our approach, thus providing a
basis for future work.

The rest of this paper is organized as follows. Section 2
presents the program analysis used to collect information
about constant usage. Section 3 presents some aspects of the
implementation of this analysis that are needed to address
specific issues occurring in Linux code. Section 4 presents
the data mining techniques used first to group the constants
into clusters, representing types, and then to identify proba-
ble bugs in constant usage. Then, Section 5 evaluates our
results on Linux 2.6.30, Section 6 presents related work, and
Section 7 concludes.

1This is a recent version, but one that was released before
we had submitted any patches based on our work.
2The reactivity of the Linux maintainers varies, and thus we
have sometimes received no response to our enquiry.

2. ANALYSIS OVERVIEW
Constants are used within the Linux kernel to represent

internal flags, indicating various conditions, and to interact
with external devices, which communicate using bit sequences
of various sizes. For efficiency, bits having different purposes
are often packed into a single unit of addressable memory
(byte, word, etc.). Accessing information from such bit
sequences is carried out using the bit-and operator &, as
previously illustrated in Figure 1, and bit sequences are
constructed using the bit-or operator |. In this paper, we
focus on these operations. Constants are also involved in
equality tests and shift operations. We leave the extension
of our approach to these operators as future work.

Constants are typically first used to extract components
using the bit-and operator from some values that we designate
as sources, then are transmitted through the code structure
by the use of various assignments, and are finally used to
construct new values with the bit-or operator to be passed to
locations we designate as sinks. The goal of our analysis is to
associate constants to the sources and sinks with which they
interact. Sources and sinks can in principle be any sort of
expression, but to simplify the presentation, we assume that
they are specially designated variables. In the next section,
we will instantiate sources and sinks as structure fields. The
analysis is intraprocedural and flow-insensitive. It does not
take aliases into account. In our implementation, we provide
flow-sensitivity for local variables via prior conversion to
Static Single Assignment (SSA) form [1] and a weak form of
alias analysis via types, as described in the next section.

2.1 Syntax
We present the analysis in terms of the simple imperative

language defined in Figure 2. The actual implementation,
however, handles full C code, as described in the next sec-
tion. In the language of Figure 2, a program consists of
an unordered set of assignments of variables to expressions,
where the lack of ordering reflects the flow insensitivity of
the analysis. An expression is either a variable, a constant, a
bit-and operation or a bit-or operation. Some variables are
designated as sources or sinks.

c ∈ Constants source ∈ Sources ⊆ Variables
v ∈ Variables sink ∈ Sinks ⊆ Variables

prog ∈ Programs ::= P(Statements)
stmt ∈ Statements ::= v = expr
expr ∈ Expressions ::= c | v | expr & expr | expr | expr

Figure 2: Syntax

2.2 Analysis
The analysis collects an environment containing informa-

tion about the bindings of variables, to propagate this in-
formation between the various statements, and at the same
time uses the information in the environment to generate
an output describing the interaction between constants and
either sources or sinks. For example, if we consider the case
where sources and sinks are structure fields, then for the first
line of case 1 of Figure 1, the environment would contain a
mapping of mboxes to mcp->out_mb and the output would
indicate that mcp->out_mb interacts with BIT_0. The analy-
sis iteratively accumulates the environment and output until
reaching a fixed point.



The semantic domains used by the analysis are shown in
Figure 3. These are representations, summaries, environ-
ments, and output. A representation r is a pair of a set of vari-
ables and a set of constants. These are the variables and con-
stants that contribute in a particular way to the value of an
expression. A summary s provides the complete information
collected about the computation performed by an expression
as a tuple of three representations: 1) one indicating the set
of variables and constants to whose value the expression may
evaluate, 2) another indicating the variables and constants
involved in any bit-and operation that is used to compute the
value of the expression, and 3) a third providing the same in-
formation for bit-or operations. For example, in case 1 of Fig-
ure 1, the summary corresponding to mboxes & BIT_0 would
be 〈〈∅, ∅〉, 〈{mboxes, mcp->out_mb}, {BIT_0}〉, 〈∅, ∅〉〉. An en-
vironment ρ maps variables to summaries. A binding in
this environment is written as (v, s) and records the effect of
assignment statements. Finally, an output σ is a pair of rela-
tions from sources and sinks, respectively, to constants. The
constants in an output are annotated with the position (offset
from the start of the program) of the interaction between
the source or sink and the constant, and thus an output
provides information about both the kind and number of
such interactions.

r ∈ representations = P(Variables)× P(Constants)
s ∈ summaries =

representations× representations× representations
ρ ∈ environments = Variables→ values
σ ∈ output = (P(Sources× (Positions× Constants))×

(P(Sinks× (Positions× Constants))

Figure 3: Semantic domains used by the analysis

Representations are ordered as follows, where Vi is a set
of variables and Ci is a set of constants:

〈V1, C1〉 v 〈V2, C2〉 ⇐⇒ V1 ⊆ V2 ∧ C1 ⊆ C2

⊥ abbreviates the representation 〈∅, ∅〉. Summaries are or-
dered such that a pair of summaries is related if all of their
components are related. Environments are ordered similarly.
In each case, the least upper bound operation t is defined by
computing the union of corresponding sets of variables and
constants. Finally, output is ordered by the subset relation.
Each of these orderings forms a complete lattice.

The rules for expressions are defined in Figure 4. These
rules infer judgements of the form ρ ` expr : s, σ, where s is
a summary containing information about the variables and
constants that are used to compute the value of the expression
and σ represents the output. In each rule, only information
about the outermost kind of operator, bit-and or bit-or, is
collected. This strategy is based on the observation that e.g.
in (a & B) | C we do not know what named constant, if
any, the parenthesized subexpression represents. It is for this
reason that summaries contain separate components for &

and | information.
Among the rules for expressions, only the rule for bit-and

expressions generates output. Our understanding of bit-and
is that it is used to extract information from sources. In
this case, if a source is used in computing one of the bit-and
arguments and a constant is used in computing the other,
then the expression represents an interaction between them.
The construction of the output in this case uses the function
source(r) which returns the variables in the representation r

ρ ` v : ρ(v) t 〈〈{v}, ∅〉,⊥,⊥〉, ∅ ρ ` c : 〈〈∅, {c}〉,⊥,⊥〉, ∅

ρ ` expr1 : 〈r=1
, r&1

, r|1 〉, σ1 ρ ` expr2 : 〈r=2
, r&2

, r|2 〉, σ2

ρ ` expr1 & expr2 : 〈⊥, r=1
t r&1

t r=2
t r&2

,⊥〉,
{v 7→ c | v ∈ source(r=1 t r&1

) ∧ c ∈ cst(r=2 t r&2
)} ∪

{v 7→ c | v ∈ source(r=2
t r&2

) ∧ c ∈ cst(r=1
t r&1

)} ∪ σ1 ∪ σ2

ρ ` expr1 : 〈r=1
, r|1 , r|1 〉, σ1 ρ ` expr2 : 〈r=2

, r|2 , r|2 〉, σ2

ρ ` expr1 | expr2 : 〈⊥,⊥, r=1
t r|1 t r=2

t r|2 〉, σ1 ∪ σ2

Figure 4: Analysis rules for expressions

that are sources, and the function cst(r) which returns the
constants in the representation r. No output is generated
for a variable or constant expression, because these do not
involve any interactions. No output is generated for a bit-or
expression because it expresses only the construction of a
value, but not the communication of the constructed value to
a sink. Our implementation also collects information about
the use of == and !=. These operators add information to
the first component of a summary, analogous to the rules for
variables and constants.

The rules for statements are defined in Figure 5. These
rules infer judgements of the form ρ ` stmt : ρ′, σ, where
ρ′ contains information about the assigned variable and σ
represents the output. If the left-hand side variable is not
a sink, the only effect is to extend the environment with a
binding of the variable to the value obtained by analyzing
the expression. If the variable is a sink, then output is
also generated. This output maps the sink to each possible
constant in the bit-or information contained in the summary
resulting from analyzing the right-hand side expression expr.

v 6∈ Sinks ρ ` expr : s, σ
ρ ` v = expr : ρ t {(v, s)}, σ

v ∈ Sinks ρ ` expr : 〈r=, r&, r|〉, σ
ρ ` v = expr : ρ t {(v, 〈r=, r&, r|〉)}, {v 7→ c | c ∈ cst(r|)} ∪ σ

Figure 5: Analysis rules for statements

The rule for programs iterates the rules for statements
over the set of statements in the program until the resulting
environment and output reach a fixed point. This iteration
terminates because environments and outputs form a com-
plete lattice, and because each iteration only monotonically
adds information to each of these entities. The final result is
the output at the end of this iteration.

2.3 Example
To illustrate the analysis, we consider the program shown

below, where source is a source, sink is a sink, x, y, and z

are neither sources nor sinks, and A, B, C, D are constants.

1. x = source & A 3. z = y | C
2. y = x & B 4. sink = z | D

To emphasize the flow-insensitive nature of the analysis,
we first analyze all of the expressions based on the initial
environment, then analyze the enclosing statements, and then
iterate. The analysis steps are shown in Table 1. Each row in
the table corresponds to one of the above statements. Within
each row, the top line is the resulting value or environment,
as appropriate, and the bottom line is the added output
(positions are elided). A column labelled “exp” contains the



exp stmt exp stmt
1. x = source & A a1,1 = 〈⊥, 〈{source}, {A}〉,⊥〉 {(x, a1,1)} a1,2 = a1,1 {(x, a1,2)}

source 7→ A none none none
2. y = x & B a2,1 = 〈⊥, 〈{x}, {B}〉,⊥〉 {(y, a2,1)} a2,2 = 〈⊥, 〈{source, x}, {A, B}〉,⊥〉 {(y, a2,2)}

none none source 7→ B none
3. z = y | C a3,1 = 〈⊥,⊥, 〈{y}, {C}〉〉 {(z, a3,1)} a3,2 = a3,1 {(z, a3,2)}

none none none none
4. sink = z | D a4,1 = 〈⊥,⊥, 〈{z}, {D}〉〉 {(sink, a4,1)} a4,2 = 〈⊥,⊥, 〈{y, z}, {C, D}〉 {(sink, a4,2)}

none sink 7→ D none sink 7→ C

Table 1: Analysis trace

result of processing the right hand side of an assignment
according to the environment that is the least upper bound
of the environments generated by the previous column, if any.
A column labelled “stmt” contains the result of processing
the complete assignment according to the same environment.

The analysis reaches a fixed point after the two iterations
shown in Table 1. The result is then the accumulated out-
put: source 7→ A resulting from source & A, source 7→ B

resulting from x & B, and sink 7→ C and sink 7→ D resulting
from sink = z | D.

3. IMPLEMENTATION OF THE ANALYSIS
To successfully treat Linux code, the analysis must parse

the source code, identify named constants, and select a no-
tion of source and sink. In practice, we have also found it
necessary to implement flow sensitivity for local variables.

Parsing. Tools that process C code typically first apply the
C preprocessor to eliminate all preprocessor directives. This
is, however, not appropriate in our case, as it eliminates the
names of constants that are defined using #define. Further-
more, to collect a maximum of information about constant
usage, we would like the analysis to consider as much of the
source code as possible, including portions of code that are
specific to the more obscure hardware configurations. To
address these issues, we use the C parser of the Coccinelle
program matching and transformation tool [18, 19], which
parses C code without expanding macro definitions. This
parser can parse around 97% of the Linux 2.6.30 kernel.

Identification of named constants. Linux constants typ-
ically have names that are constructed entirely of capital
letters. Nevertheless, this strategy is not always followed.
Furthermore, some constants may be defined in multiple files,
potentially with a different meaning in each case. To be able
to identify constants accurately, the analysis initially collects
for each file a list of the constants that they define, and the
position in the file of that definition. Subsequently, in pro-
cessing each .c file, the analysis phase recursively unwinds
all of the include directives, collecting for each included
file the set of named constants that it defines. Finally, the
constants defined by the .c file are added to this set. This
process does not take into account #ifdef directives, and
thus information about all defined constants is available.
A constant may be defined multiple times, under different
#ifdefs, potentially leading to ambiguity. We assume that
the multiple definitions may change the value of the constant,
but not its purpose; this assumption has not lead to any
problems in practice.

Selection of sources and sinks. We have chosen to use
structure fields as our notion of both sources and sinks.
Linux structures are heavily used to communicate complex
information between different parts of the kernel, and thus
their fields tend to have a fixed semantics. Indeed, we have
found that a given field of a given structure type is often
always used in the same way, regardless of the structure
instance with which it is associated.3 Thus, we choose to
represent a structure field as a pair of the type of the structure
and the name of the field, thus unifying the information
collected for all occurrences of a given structure field. This
indeed provides a weak form of alias analysis, as long as
structures are used in a well-typed way.

This choice of the representation of structure fields raises
the need to determine the type of each referenced structure.
When the structure is referenced as a variable, its type can
be obtained from the variable declaration, without knowing
the structure definition. When the structure is expressed
as a more complex expression, typically another structure
field reference, the definition of the type of the containing
structure is required to determine the type of the structure
itself. For this, the pass that identifies constants also collects
typedefs and structure declarations. This information is then
used to infer the types of structure fields.

Implementation of flow sensitivity. Flow insensitive anal-
ysis is less expensive than flow sensitive analysis, and is
typically sufficient when the tracked locations are mostly
used in a uniform way. We have argued that this is often the
case for structure fields. Nevertheless, we have found that it
may not be the case for local variables in Linux code. Indeed,
it is common to declare an integer-typed local variable with a
generic name such as data and use it in for multiple purposes
within a single, often large and complex, function.

Figure 11 illustrates a typical case.4 The code is essentially
divided into two regions, with the first extending from line 1
to line 9, and the second extending from line 11 to line 12.
In the first part, the variable flag interacts with constants
of the form TDES1_*, while in the second part, the variable
flag interacts instead with constants of the form TDES0_*.
In each case, the value of flag is ultimately stored in the
same structure, but in fields having different purposes. In our
data-mining based approach, it important to keep the various
uses of the variable separated from each other. Otherwise,
the two sets of constants could be merged, which would lead

3We will, however, revisit this assumption in Section 5.4.
4In this code, the structure field initializations involve the
macro cpu_to_le32. This function, and others like it, affect
only the bit order, and are considered by our implementation
to be the identity function.



to overlooking a bug in the case of an interaction between
them. And if the sets of constants are not merged, but the
variables remain identical, then one of the initializations of
a field of the priv structure (line 9 or line 12) would be
reported as a bug, amounting to a false positive.

if (priv−>cur tx − priv−>dirty tx == priv−>tx ring size / 2) 1
flag = TDES1 CONTROL IC | TDES1 CONTROL LS | 2

TDES1 CONTROL FS; 3
else 4

flag = TDES1 CONTROL LS | TDES1 CONTROL FS; 5
. . . 6
if (entry == priv−>tx ring size − 1) 7

flag |= TDES1 CONTROL TER; 8
priv−>tx ring[entry].length = cpu to le32(flag | skb−>len); 9

10
flag = TDES0 CONTROL OWN | (plcp signal << 20) | 8; 11
priv−>tx ring[entry].status = cpu to le32(flag); 12

drivers/net/wireless/adm8211.c::1630-1651

Figure 6: Illustration of the need for flow sensitivity
in different regions of code

To address this problem, we adopt a standard approach to
providing flow-sensitivity: conversion of the source program
to Static Single Assignment (SSA) form [1]. In this form,
local variables are renamed such that every local variable is
defined at only one position in the source code. So-called φ
functions are inserted at merge points, such as the end of a
conditional, to collect the variables that can contribute to
the value of each variable that is live after the merge point.
This has the effect of renaming local variables, but has no
impact on the set of structure fields and thus no impact on
the set of sources and sinks considered by the analysis. In
the result of the conversion to SSA form, the TDES1_* and
TDES0_* constants are accumulated in different variables, and
are transmitted separately to the different fields of the priv

structure by the analysis.

4. MINING ALGORITHM
The goal of our mining algorithm is to discover anomalous

variable-constant pairings automatically. It works in three
steps as shown in Figure 7. The first step constructs a
graph to represent the relationships between variables and
the constants they are paired with by the analysis. The
second step then uses this graph to cluster related constants
together. Finally, based on these clusters, the third step
detects anomalous variable-constant pairings.

Construct Constant−Variable Bi−Partite GraphsStep 1

Create Constant ClustersStep 2

Detect Anomalous Variable−Constant PairingsStep 3

Figure 7: High-level steps

Step 1. Graph Construction. Our goal is to construct
a bi-partite graph capturing the relationships between con-
stants and variables. One side of the graph contains all the
constants, and the other side of the graph contains all the
variables.5 One side of the graph contains all the constants,
5In this section, we use “variable” to refer to sources and
sinks, i.e., structure fields in our case.
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Figure 8: Constant-variable bi-partite graph

and the other side of the graph contains all the variables.
There is an edge from a constant to a variable if the vari-
able is used together with the constant. The label on the
edge shows the number of times a constant is used with the
variable. In the graph, we merge any variables V1 and V2, if
the set of constants C1 associated with V1 is a subset of the
set of constants C2 associated with V2. An example graph is
shown in Figure 8.

Step 2. Create Constant Clusters. This step groups
constants based on their behavior usage profile i.e., the num-
ber of times they are paired with various variables. Our goal
is to create clusters where all the constants in the cluster are
used with a similar set of variables. Each cluster of constants
can be viewed as a weak “type” i.e., they are used in the
same way.

Distance Metrics. To create a constant cluster, we first
define a measure of distance between two constants. Each
constant is associated with a corresponding behavior usage
profile which is a vector containing an entry for each variable.
An entry in this vector contains the number of times the
constant is paired with the corresponding variable multiplied
by a weight denoting the importance of that particular vari-
able. This weight is determined by considering how many
constants that variable is paired with in the dataset:

weight(v) =
1

|Constants paired with v |
This strategy is based on the concept of inverse document fre-
quency (or IDF) commonly used in information retrieval [14].

Based on this vector, metrics from information retrieval
can be used. Of these metrics, we choose cosine similarity [14].
Cosine similarity performs normalization with respect to the
size of the vector and is thus less sensitive to this size. Since
the vectors tend to be sparse (i.e., a constant is normally
used with only a few variables), cosine similarity is more
accurate than other similarity metrics, including Euclidean
and Jaccard similarity [6, 14]. Cosine similarity is defined as
follows:

cos(V1, V2) =
V1 • V2

|V1||V2|
The numerator is the dot product of the two vectors, and
the denominator is the product of the magnitude of the first
vector, i.e., the square root of the dot product of the vector
with itself, with that of the second vector. We then define
distance as follows:

dist(V1, V2) = 1− cos(V1, V2)



Consider for example two constants C1 and C2. C1 is used
with variables V1 and V2 while C2 is used with variable V2.
The vectors corresponding to C1 and C2 are [1 1] and [0 1]
respectively. The cosine similarity of the two vectors are
1/(
√

2×
√

1) = 0.71. The distance is equal to 1-0.71 = 0.29.
As a cluster is a collection of constants, we can aggregate

the constants’ behavioral usage profile to form the profile of
a cluster. The profile of a cluster is a vector where each entry
is the sum of the values of the corresponding vector entries of
all constants belonging to that cluster. The distance between
a cluster and a constant, or a cluster and another cluster, is
then computed in a similar way as the distance between a
constant and another constant.

Clustering. Many existing clustering algorithms require
specifying the number of clusters, which is not known in our
case. We propose a new heuristic-based clustering algorithm
that works without the need to know the target number of
clusters in advance:

1. Create an initial set of clusters. This step greedily
scans each constant and assigns it to the best cluster
created so far whose distance is close enough based on
a user-defined threshold θ. If no cluster is found, a new
cluster is created.

2. Iteratively refine the set of clusters. After a temporary
cluster is formed, we try to re-locate each data point to
the cluster whose distance is closest. At each iteration,
constants are moved to their respective nearest clus-
ter. After this reshuffling, the profile of each cluster
is recomputed. We repeat this process until a fixed
point is reached and no constants can move to another
cluster. In our experiments, a fixed point is reached in
3 iterations.

3. Merge clusters that are very close based on the user
defined threshold θ.

The algorithm is described in more detail in Figure 9. We
use 0.35 as the value of θ. We determined the thresholds
empirically based on a number of good clusters that we
knew in advance. The threshold of 0.35 keeps many of these
good clusters. We compare our algorithm to some existing
clustering algorithms in Section 6.

Step 3. Anomaly Detection. In the third step, we detect
anomalies by looking for variables that are shared by more
than one cluster. On finding an anomaly, a bug report, con-
sisting of a variable V , a constant C, and a cluster L, denoted
as 〈V,C, L〉, is generated. We rank our bug reports based on
their suspiciousness. It is our intuition that suspiciousness
of a variable V being paired to a constant C in a cluster L
is related to the following:

Size of the cluster L. The size of a cluster is the number
of constants that it contains. We denote the size as size(L).
It is our intuition that the more elements a cluster L has,
the more likely a programmer is to make a mistake in using
the constant in L.

Strength of the association between the variable V
and the cluster L containing C. Let us define freq(V,C)
to be the number of times a variable V is paired to a constant
C. We define the strength of this association as follows:

Procedure ClusterConstants
Inputs:

CONSTANTS : Set of constants to be clustered
θ1 : Initial Clustering Threshold
θ2 : Cluster Merge Threshold

Output: Clusters of Constants
Method:
//Step i: Create an initial set of clusters
1: Let CLUSTERS = {}
2: For each constant v in CONSTANTS
3: For each cluster c in CLUSTERS
4: If (dist(v,c) < θ1∧ v is closest to c)
5: Add v to c and break
7: If (v is not added to any c)
8: Create a new cluster c’ containing v
9: Add c’ to CLUSTERS
// Step ii: Cluster Refinement
10: Do
11: For each cluster c in CLUSTERS
12: For each constant v in c
13: If ∃ c’ ∈ CLUSTERS dist(v,c’) < dist(v,c)
14: Reshuffle v to c’
15: Recompute statistics per cluster in CLUSTER
16: While (a constant is reshuffled)
// Step iii: Cluster Merge
17: For each cluster c in CLUSTERS
18: If ∃ c’∈ CLUSTERS. c’6= c ∧ dist(c,c’) < θ2
19: Merge c with c’
20: Output CLUSTERS

Figure 9: Constant clustering algorithm

strength(V,C) =
ΣCi∈L.freq(V,Ci)

MaxL′!=L.ΣC′
i∈L′ .freq(V,C′

i)

From the above formula, V is weakly associated to L if
the constants in L are paired to V much less than constants
in another cluster L′ are paired to V . It is our intuition that
the weaker the association between a variable V and L the
greater is the likelihood that 〈V,C, L〉 is a real bug.

The number of clusters that are related to V . The
number of clusters related to V is the number of different
clusters that constants paired to V belong to. We denote
this as vDeg(V ). It is our intuition that if a variable V
is used with constants from many clusters, there is no or
little restriction in pairing V with an arbitrary constant.
Such a V might be “polymorphic” as it could be used with
various “types” corresponding to various clusters of constants.
Anomalies involving such a V are less likely to be real bugs.

Based on the above intuitions, we sort the candidate bug
reports by the following formula:

suspiciousness(V,C, L) =
size(L)× log(size(L))

strength(V,C)× (vDeg(V )− 1)2

The larger the size of the cluster L, the more suspicious is
the pairing. The weaker the association between V and C,
the more suspicious is the pairing. Also, the more clusters
V is related to, the less suspicious is the pairing. We give
a higher weight to the size of the cluster L as compared to
the association between V and C, by multiplying the size
of the cluster L with the log of itself. Again, we give a
higher weight to the number of clusters that V is related to
(i.e., vDeg(V )) than the other two. To do so, we take the



square of vDeg(V ). As all bug reports intrinsically have a
vDeg(V ) of at least 2, we subtract vDeg(V ) by one before
taking the square. Thus vDeg(V ) does not contribute to the
suspiciousness score when it is equal to 2.

At the end of the three steps, we report a candidate set of
anomalies to be provided to the user for verification.

5. EVALUATION
In this section, we first present our experimental setting,

followed by the results of applying our algorithm to the
Linux 2.6.30 source code. We then consider some threats to
the validity of our results and finally describe some uses of
constants that were identified in analyzing our results, but
that go beyond the scope of the current work

5.1 Experimental Setting
The analysis process was implemented using OCaml and

carried out on a HP ProLiant server with two 3 GHz quad-
core Xeon processors and 16 GB memory, of which only one
core was used. The mining process was implemented using
C#.Net 2.0 and carried out on an Intel Core2 Duo 2.40GHz
3.24GB RAM Windows XP Tablet PC. The total time for
processing Linux 2.6.30 was around 4 hours, with all but a
few minutes for the analysis.

We consider three strategies for the clustering process.
In the “Pos” strategy, constants are only clustered by the
position of their definition, i.e., constants that are defined ad-
jacently (no blank line between their definitions) are clustered
together. In the “Pos&Beh” strategy, we first cluster accord-
ing to position, and then refine the result using the clustering
algorithm taking into account constant usage (behavior), as
presented in Section 4. Finally, in the “Beh” strategy, we
cluster only using behavior, as presented in Section 4. In
all cases, reports are ranked, as described in Section 4. We
consider only the top 20 reports in each list, as real bugs
were quite sparse after this point in every case.

5.2 Results
The set of real and probable bugs obtained by applying

our algorithm to the Linux 2.6.30 source code and manually
analyzing the results is shown in Table 2. We consider a
real bug to be one that has been fixed or acknowledged by
the Linux developers, and a probable bug to be one that we
believe to be a bug based on our study of the code.

The Pos strategy gives the worst results, with only a
25% precision among the top 20 results.6 Next is Pos&Beh,
with a 30% precision. Finally, is Beh, with a 50% precision.
This suggests that position of definition is not a completely
satisfactory indicator of the meaning of a constant, as some
constants may be declared contiguously, but have a different
purpose, while others may have definitions that are slightly
separated, even though this placement might have no intrinsic
meaning. The purely behavior based approach is sufficient to
reconstruct the position relationships, when they are relevant,
and to identify new relationships that are not made apparent
by the positions alone. Finally, we observe that many of
these bugs have been present for multiple years.7 The long

6We use the common measure of precision at k from infor-
mation retrieval [14]. Recall is hard to measure in this case
as the total number of variable-constant pairing bugs in the
target program is not known.
7Linux versions are released roughly every 3 months.

lifetimes of these bugs suggests that this type of bug is not
being identified by other approaches, whether automated
tools or manual inspection.

The false positive with the highest suspiciousness score (i.e.,
19,030, rank 5) when employing clustering by behavior only,
is the bug report involving the constant SUPPORTED_Pause

and the field supported of a structure of type ethtool_cmd.
SUPPORTED_Pause is in a rather large cluster and has a low
score for strength(V,C), causing our approach to list it as a
potential bug. In this case, there are two sets of constants
that each have the same set of values. It sometimes occurs
that the value of a variable containing one is copied into a
variable containing the other, causing the constants to appear
to be used with the wrong type of variable. The constant
SUPPORTED_Pause is involved in a bit more such copies than
most of the other constants with which it should be associ-
ated, and it is used a bit less often than those constants with
the variables associated with its own cluster. This essentially
represents a borderline case, and the algorithm unfortunately
makes the wrong decision, putting this constant and two
others with similar properties in the wrong cluster.

5.3 Threats to validity
As we verify our detected bugs with the Linux developers,

we may assume that our identification of real bugs is accurate.
Nevertheless, the Linux developers can only comment on
results that they are asked about, and thus there is a danger
of false negatives. In our approach, there are three primary
sources of false negatives: parse errors, missing include files,
and overly conservative manual evaluation of the results.

Our approach works primarily at the level of the abstract
syntax tree, and thus it must be possible to parse the source
code. As noted in Section 3, our parser does not apply the
C preprocessor, and instead parses C preprocessor directives
according to heuristics [18]. These heuristics, however, are
not sufficient to parse some functions, and thus we are not
able to collect information from them or find bugs in them.
Additional heuristics could be added, however, we currently
parse 97% of the Linux 2.6.30 code.

Our approach also relies on information contained in header
files, to identify named constants and to obtain type infor-
mation about nested structures. The Linux build process is
complex, and thus we search for include files based on a few
heuristics. Some include files, however, are missed, causing
information about the associated constants and structure
definitions to be overlooked. To address this problem, the
parser could use path information found in makefiles, or use
a wider default strategy for searching for header files.

Finally, we have manually analyzed the bug reports gener-
ated by our tool to identify those that seem like real bugs.
This analysis may be too conservative, causing some real
bugs to be considered as false positives. To address this
problem, we could consult with Linux experts earlier in the
report assessment process.

5.4 Other issues
In evaluating our results, we have identified two significant

issues that are not targeted by the design of our algorithm
and that may be beneficial to consider in future work. These
are subtyping, in which a generic constant is associated with
multiple clusters that also contain more specialized values,
and dependent typing, in which the value of one constant



Constant Name Category File Name P P&B B Lifetime Status Susp
TG3 FLG2 TSO CAPABLE context drivers/net/tg3.c no no yes 2.6.7-2.6.31 F 338,856
TG3 FLAG 10 100 ONLY context drivers/net/tg3.c no no yes 2.6.15-2.6.33 F 276,454
VB SISLVDS context drivers/video/sis/init301.c yes yes yes 2.6.13-* R 34,464
AHC SCB BTT context drivers/scsi/aic7xxx/aic7xxx osm.c yes yes yes 2.6.0-* R 31,068
EXT4 EXTENTS FL context fs/ext4/inode.c yes yes yes 2.6.27-2.6.32 F 12,723
USB TYPE MASK value drivers/net/wireless/zd1211rw/zd usb.c no no yes 2.6.19-2.6.31 F 2,957
NV TX VALID name drivers/net/forcedeth.c no no yes 2.6.21-* A 2,939
AHD BUSFREEREV BUG context drivers/scsi/aic7xxx/aic79xx pci.c yes yes yes 2.6.16-* A 2,844
ATH9K INT GLOBAL value drivers/net/wireless/ath/ath9k/mac.c no yes yes 2.6.29-* A 2,637
BIT 0 name drivers/scsi/qla2xxx/qla mbx.c yes yes yes 2.6.4-* R 2,157

Legend: Context (see Section 1): 1) name = wrong constant name but with the right value, 2) value = wrong constant name, wrong value, 3),

context = wrong context, right constant name. P = clustering by definition position only. P&B = clustering first by definition position, then

by behavior. B = clustering by behavior only. * = a bug that has not been fixed in any release. Status: F = Fixed, R = Reported, A =

Acknowledged. Susp = Suspiciousness score using B.

Table 2: List of bugs found

determines the cluster that should be used in some associated
code context. We observe that the C++ language provides
more strict type checking of enumeration constants than the
C language. Nevertheless, neither subtyping nor dependent
types are supported by enumeration types, and thus even in
C++ it may be necessary to use some form of unsafe cast or
unchecked named constants. The examples in this section are
not restricted to bit-and and bit-or, or to structure fields as
sources and sinks, and thus give a wider view of the problem
than the one that is treated by our current approach.

Subtyping. Some of the constants used by Linux kernel
code are masks that can be used to select a region of bits
that then should be accessed using constants within a given
cluster. Several clusters may share the same set of signif-
icant bit positions, and thus a single mask may be usable
for these clusters. In this case, we may view the cluster
containing the mask as a supertype of the clusters containing
the specific values. Figure 10 shows an example. The func-
tion tg3_get_5752_nvram_info, at the top, tests for Flash
5752 values while the function tg3_get_5761_nvram_info,
at the bottom, tests for Flash 5761 values. Other functions
in the same file test for a mix of Flash 5752 and other val-
ues, suggesting a complex subtyping hierarchy where devices
reuse some values and define some of their own. The mask
NVRAM_CFG1_5752VENDOR_MASK covers all of these values, and
thus can be used to extract the relevant bits in each case.

Another form of subtyping occurs when one file extends
an existing cluster with new constants or gives new names
to some values in an existing cluster. The constants ADVER-

TISED_PAUSE and ADVERTISED_ASYM_PAUSE, defined in the
chelsio-specific header file drivers/net/chelsio/common.h,
illustrate the latter case. These constants have the same
values as the constants ADVERTISED_Pause and ADVERTISED_-

Asym_Pause defined in the more widely used header file
include/linux/ethtool.h. A bug finding algorithm should
allow the former constants to appear wherever the latter do.

Dependent typing. Dependent typing involving constants
is most commonly found in function calls, where the value
of one argument determines the cluster of another. It can,
however, also occur for structure fields or variables. We
also consider cases where the cluster of a structure field
depends on the role that that instance of the structure plays,
a situation that contradicts the hypotheses of the treatment
of structure fields in our algorithm (Section 3).

switch (nvcfg1 & NVRAM CFG1 5752VENDOR MASK) { 1
case FLASH 5752VENDOR ATMEL EEPROM 64KHZ: 2
case FLASH 5752VENDOR ATMEL EEPROM 376KHZ: 3

tp−>nvram jedecnum = JEDEC ATMEL; 4
tp−>tg3 flags |= TG3 FLAG NVRAM BUFFERED; 5
break; 6

case FLASH 5752VENDOR ATMEL FLASH BUFFERED: 7
. . . 8

} 9

drivers/net/tg3.c::tg3 get 5752 nvram info::10278-10296

nvcfg1 &= NVRAM CFG1 5752VENDOR MASK; 1
switch (nvcfg1) { 2
case FLASH 5761VENDOR ATMEL ADB021D: 3
case FLASH 5761VENDOR ATMEL ADB041D: 4
. . . 5
break; 6

case FLASH 5761VENDOR ST A M45PE20: 7
. . . 8

} 9

drivers/net/tg3.c::tg3 get 5761 nvram info::10435-10464

Figure 10: Illustration of mask-related subtyping

Figure 11, illustrates dependent typing at the function
parameter level. In this code, the function xm_write16 is
called twice (lines 3 and 8), first with the third and fourth
arguments as XM_HW_CFG and XM_HW_GMII_MD, respectively,
and then with these arguments as XM_RX_CMD and a combi-
nation of constants of the form XM_RX_*, respectively. The
constants XM_HW_CFG and XM_RX_CMD in the third argument
are defined in the same enumerator type declaration, and
thus can be considered to be likely to belong to the same
cluster. On the other hand, XM_HW_GMII_MD is defined in a
different enumerator type declaration than the XM_RX_* con-
stants. Indeed, the value of the third argument determines
the cluster of the fourth argument. This is a pattern that
occurs often in low-level code that interacts with devices, but
is out of the scope of the current approach.

Dependent typing also occurs, although less frequently,
in the case of structure fields and variables. An example
is shown in Figure 12, where the value in the field RAP

determines the cluster of the value in the field RDP. Addressing
this issue again goes beyond the current scope of our work.

The basic assumption of our treatment of structures, as
presented in Section 3, is that for a given structure type, all
instances of a given field are used in the same way. Some



if (hw−>phy type != SK PHY XMAC) { 1
. . . 2
xm write16(hw, port, XM HW CFG, XM HW GMII MD); 3
} 4
. . . 5
r = XM RX LENERR OK | XM RX STRIP FCS; 6
. . . 7
xm write16(hw, port, XM RX CMD, r); 8

drivers/net/skge.c::genesis mac init::1581-1635

Figure 11: Function parameter dependent typing

lance−>RAP = CSR0; 1
lance−>RDP = STOP; 2
ariadne init ring(dev); 3

4
if (dev−>flags & IFF PROMISC) { 5

lance−>RAP = CSR15; 6
lance−>RDP = PROM; 7
} else . . . 8

drivers/net/ariadne.c::set multicast list::813-820

Figure 12: A dependently typed structure field

structures, however, violate this assumption. For exam-
ple, the file drivers/net/fealnx.c uses a structure of type
fealnx_desc to represent ring buffers used both in the trans-
mission and reception of network packets. Transmission and
reception buffers, however, are used in different ways, and
thus a different set of constants is used in each case. Thus,
some fields of a fealnx_desc structure can hold constants
from different clusters, depending on the kind of buffer being
represented. Most structures in Linux are, however, used
only for a single purpose, and thus we have found that these
kinds of false positives are uncommon.

6. RELATED WORK
A number of works use data mining to infer programming

rules from common patterns in source code [5, 11, 17, 21,
23, 24, 25, 26, 28]. These approaches find rules such as
“Whenever a set of program elements occurs in a method,
another set of program elements must also occur in the
method” [11] and “Whenever a method call is made, another
method call must be made in the future” [26]. The work
of Ramanathan et al. [21] includes some data flow analysis
for identifying constraints on values. These studies have
primarily focused on method calls, and in some cases can
be generalized to other program elements such as structure
fields [11]. However, none have considered the issue of bad
constant-variable pairings, as done in this paper.

CP-Miner locates copy-pasted segments, and anomalies
when one or a few copied segments are not modified like
the rest [10]. It found 190,000 and 150,000 copy-and-pasted
segments in Linux and FreeBSD, respectively. From the copy-
and-pasted segments, 28 and 25 bugs were found in Linux
and FreeBSD, respectively. While some bugs in constant
usage may derive from copy-paste errors, our approach is not
limited to that case.

MUVI correlates variable and structure field accesses, to
find inconsistent update bugs, possibly related to concurrency
[13]. Such accesses are explicit in the program, and thus
they do not require a program analysis to collect information
transmitted across local variables, as we have needed. They

also mine for association rules, describing a case where the
presence of an object A implies the presence of another
object B. Our clusters could be expressed as association
rules involving disjunction, but obtaining such rules is out of
the scope of the techniques used by MUVI.

Many clustering algorithms, such as k-means, k-medoids,
etc. [6], takes as input the final number of clusters, which is
not available in our setting. One could set this final number
of clusters to be equal to the number of files or the number of
variables paired with a constant, but either of these options
is likely to produce poor clusters. Indeed, we have observed
that a file can contain many clusters of constants, and we
have observed that a constant in a cluster can be paired
with multiple variables. Lo and Khoo extend k-medoids to
be parameterless by incrementally increasing the number
of clusters one-by-one and measuring the degree of cluster
goodness [12]. The technique stops when a local optimum
is reached. This technique is not suitable in our setting as
the number of constant clusters is very large – i.e., there
are many constant groups in the Linux kernel code and they
are used for a wide variety of purposes. QT Clustering
replaces the number of clusters with the maximum diameter
of a cluster [7]. However, it requires m iterations, where
m is the eventual number of clusters and this number is
very large in our setting. X-means takes as input a lower
bound (say, l) and an upper bound (say, u) of the number
of clusters [20]. It extends k-means by initially creating l
clusters and incrementally increasing it to u by splitting the
intermediate clusters. The number of clusters resulting in
the best degree of cluster goodness is reported. Muhr and
Granitzer extend X-means by a merge operation to undo
bad initial splitting of clusters [16]. As we do not know
the precise range of the number of clusters, a wide range
is potentially needed. Also, there are cases where both the
original X-means algorithm and that of Muhr and Granitzer
need more than u − l iterations. The original X-means
algorithm includes some optimizations based on a kd-tree
data structure which could potentially be applicable to our
algorithm as well. We could also investigate the effect of
plugging our distance metric into the algorithms mentioned
above and evaluate the quality of the clusters produced.

Sun et al. propose a data mining technique to find anoma-
lies in a bi-partite graph [22]. Their approach uses random
walk with restart. Unlike their approach, we detect anoma-
lies using clustering. While the approach of Sun et al. does
not take into account the weights in the links, we consider
weights assigned to features used during clustering process.
Also, we merge data mining with program analysis and show
the utility of our hybrid technique in detecting real bugs in
Linux kernel code.

The problem of inferring types for constants is an instance
of the more general problem of inferring types from untyped
data. Soft typing attempts to detect correctly typed terms in
dynamic languages, and to insert the fewest possible number
of run-time type checks at places where types cannot be
inferred [2]. Soft typing, however, can rely on information
about constants and operators that have only one possible
type or only a few possible types, such as constants and arith-
metic operations. No such information is available to our
approach. In a problem closer to our own, Eidorff et al. use
a type-based approach to identifying various representations
of dates within COBOL code, to address the year-2000 prob-
lem [4]. They rely on annotations, that may be provided



by the user or inferred automatically based on rules defined
in terms of common substrings. We briefly considered an
approach based in part on common substrings for clustering
constants, but found that it gave very poor results. Unlike
the case of dates, we have no a priori knowledge of what
kinds of strings might be relevant. Finally, work has been
done on inferring types related to units of measure, but this
work requires explicit type declarations [9].

Most of the bugs we have found are in device driver code.
It is well known that such code is highly error prone [3],
and one of the contributors to this is uncontrolled the use
of constants. The Devil language addresses this in part by
allowing the developer to declare the bit patterns occurring
within constants in a high-level way [15]. Clay extends
this approach with dependent types [27]. Devil and Clay
are concerned with the values of constants, while our work
is concerned with their names. Thus, the approaches are
orthogonal.

7. CONCLUSION
Named constants are commonly used in systems code to

denote various magic numbers and control options. Because
compilers provide little or no type-checking support for these
entities, developers can easily use inappropriate constants,
with no warning from the compiler. This can lead to incorrect
behavior and makes the code more difficult to understand.

We have proposed a new approach to capture bad variable-
constant pairings via a hybrid program analysis and data
mining technique. Our results show that our technique is
scalable, as it can treat the entire Linux kernel within around
4 hours. For Linux 2.6.30, we have found 10 real or probable
bugs. We have reported these bugs to the developers and
a number of them have been subsequently fixed. In the
future, we will consider operators other than bit-and, and
bit-or, more types of sources and sinks, and the subtyping
and dependent typing effects presented in Section 5.
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