
Enforcing the Use of API Functions in Linux Code

Julia L. Lawall
DIKU, University of Copenhagen

Denmark
julia@diku.dk

Gilles Muller
EMN/INRIA-Regal

France
Gilles.Muller@emn.fr

Nicolas Palix
DIKU, University of Copenhagen

Denmark
npalix@diku.dk

ABSTRACT
In the Linux kernel source tree, header files typically define
many small functions that have a simple behavior but are
critical to ensure readability, correctness, and maintainability.
We have observed, however, that some Linux code does not
use these functions systematically. In this paper, we propose
an approach combining rule-based program matching and
transformation with generative programming to generate
rules for finding and fixing code fragments that should use the
functions defined in header files. We illustrate our approach
using an in-depth study based on four typical functions
defined in the header file include/linux/usb.h.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Languages, Reliability

Keywords
APIs, Linux, bug-finding, bug-fixing

1. INTRODUCTION
A modular software design based on component encapsu-

lation, where components interact via abstract interfaces, is
well known to have many benefits. It improves readability, by
allowing code to be expressed in terms of high-level concepts
instead of implementation details. It improves correctness, by
restricting operations on data to those that are well-defined.
And it improves maintainability, by allowing implementa-
tions to be changed without requiring a global rewrite of
the software. Modern languages such as Java provide facil-
ities for enforcing encapsulation, by allowing methods and
variables to be declared to have various degrees of restricted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACP4IS’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-453-9/09/03 ...$5.00.

visibility. The C language, however, which remains widely
used in operating systems and other low-level code, only
provides very coarse-grained encapsulation via the static

construct. Typically, all fields of all data structures are visi-
ble to all clients, making it possible to break encapsulation
by performing data accesses directly.

Despite being implemented in C, the Linux kernel is struc-
tured in a very modular way, providing a collection of li-
braries for functionalities such as memory management, file
systems, and various driver types. These libraries export
interfaces via header files that typically define collections
of high-level functions, either directly or as prototypes, for
interacting with the library and manipulating relevant data.
Nevertheless, complete encapsulation is not provided; the
C language does not provide a means to enforce the use of
these functions. This lack of encapsulation is particularly
problematic because Linux is developed according to an open
source model, with a large developer base. Not all of the
developers who contribute to the Linux kernel have the same
level of expertise in the many Linux APIs.

It seems unrealistic that the Linux kernel, or many other
kinds of software with similar constraints, will be translated
from C into a language that provides more encapsulation
guarantees. Thus, it is necessary to check the code, and
convert it to use API functions when needed. We focus on
the many small functions defined in Linux header files that
access fields in data structures, access bits in packed binary
data, and wrap a generic function to produce a subsystem
specific one. Although often trivial, these functions play an
important role in ensuring the readability, correctness, and
maintainability of the system. While a number of approaches
has been developed for inferring API usage protocols [5, 7,
10, 14] and checking that they are followed [1, 2, 4, 7], none
of the approaches of which we are aware directly address the
problem of enforcing API usage in this context.

In this paper, we propose an approach to enforcing the
use of API functions based on finding code fragments that
match the body of an API function and replacing these code
fragments by the corresponding API function call. For this,
we build on the Coccinelle program matching and transforma-
tion engine [3, 12] that we have developed in previous work.
Rather than requiring the user to manually write a rule for
each API function, we take an approach based on generative
programming. Specifically, we are extending the Coccinelle
system to be able to generate new program matching and
transformation rules based on patterns matched in existing
code. We use this facility to scan Linux header files for
certain types of API functions, and then generate rules for

searching the Linux source tree for code fragments to replace
by calls to these functions. This generative approach makes
it possible to rapidly find API usage problems with no prior
expertise in the APIs. Even though the patterns considered
are not exhaustive, they are sufficient to find many non-uses
of API functions in practice and can focus attention on APIs
that do not seem to be well understood.

At present, this work is very preliminary, and thus we
consider only the requirements posed by a single Linux header
file, and a few simple types of API functions. Nevertheless,
our previous work on Linux code, in the context of the
development and evaluation of Coccinelle [7, 12], suggests
that both the problem and the solution are much more
general. The specific contributions of this paper are as
follows:

• A study of the kinds of functions that are defined
in the Linux file include/linux/usb.h. This header
file describes the interface of the generic library for
interacting with USB devices.

• An overview of our preliminary design of a facility
allowing a Coccinelle program matching rule to generate
a set of transformation rules based on the fragments of
code that it matches.

• An assessment of the results obtained by applying our
preliminary implementation to include/linux/usb.h.

The rest of this paper is organized as follows. Section 2
analyzes the contents of include/linux/usb.h. Section 3
presents our preliminary design of our extension to Coccinelle
and our specifications for generating rules for detecting API
usage problems. Section 4 evaluates our results. Section 5
presents related work. Section 6 concludes.

2. CASE STUDY: USB.H
The file include/linux/usb.h describes the interface of

the generic library for interacting with USB devices. It is
one of the most widely-used device-specific header files in
Linux, being included in over 300 Linux kernel source files.1

Many of these files are in the directory drivers/usb, and are
thus watched over by USB experts. As shown in Figure 1,
however, over half of these files are in other directories, where
the developers and maintainers may have less expertise in
USB details. The file include/linux/usb.h came to our
attention because of seeing a patch that introduced a call
to an API function defined in this file.2 We subsequently
manually wrote a Coccinelle rule to find and fix the non-use
of a subset of the API functions defined in usb.h in over 40
Linux files.

The file include/linux/usb.h is 1751 lines of code, includ-
ing comments and blank lines. It contains 18 structure type
definitions, 75 macro definitions, 57 prototypes for external
functions, and 38 function definitions. Our approach focuses
on the function definitions. 8 of the function definitions
either return 0 or do nothing. These functions are provided
for features that are not supported, and are of no interest
in our case. Another 8 of the function definitions perform
some complex operations, often amounting to initializing a

1Linux-next version 20081219, git code 8dba8f585debbba97-
86aa6fccbe863998d865891. Subsequent references to Linux
refer to this version, unless otherwise noted.
2Git code 2fe3f7501af820f98c0f98aac140aa24776d175d.

drivers/usb 136 drivers/isdn 8 drivers/mtd 1
drivers/media 55 drivers/uwb 5 drivers/w1 1
drivers/net 36 drivers/bluetooth 4 drivers/watchdog 1
drivers/staging 27 drivers/input 3 fs 1
sound/usb 12 drivers/block 1 include/linux 1
drivers/hid 11 drivers/i2c 1 security 1

Figure 1: Distribution of the use of usb.h across the
directories of the Linux kernel source tree

static inline void 1
usb set intfdata(struct usb interface *intf, void *data) 2
{ 3
dev set drvdata(&intf−>dev, data); 4
} 5

6
static inline void 7
usb mark last busy(struct usb device *udev) 8
{ 9
udev−>last busy = jiffies; 10
} 11

12
static inline int 13
usb endpoint xfer isoc(const struct usb endpoint descriptor *epd) 14
{ 15
return ((epd−>bmAttributes & 16

USB ENDPOINT XFERTYPE MASK) == 17
USB ENDPOINT XFER ISOC); 18

} 19
20

static inline int 21
usb endpoint is isoc in(const struct usb endpoint descriptor *epd) 22
{ 23
return (usb endpoint xfer isoc(epd)&&usb endpoint dir in(epd)); 24
} 25

Figure 2: Extracts of usb.h

set of structure fields. Finally, 22 of the function definitions
either initialize a single structure field, return the value of
an expression, or call some other function. Representative
examples are shown in Figure 2. These functions are the
focus of this work.

3. OUR APPROACH
Our goal is to find fragments of code in the Linux kernel

source tree that match the bodies of the functions defined
in usb.h and to replace these fragments by calls to these
functions. To do this, we propose a three step approach. The
first step collects information about the definitions of various
types of API functions. The second step uses this information
to generate rewrite rules that search for code matching the
bodies of the identified API functions and replace this code
by an API call. The third step applies the generated rules
to the code base, to check for and enforce the use of the API
functions. Each of these steps is carried using Coccinelle.

We first give a brief overview of Coccinelle, using as an
example a rule that carries out the first step. We next
consider the second step, how to use Coccinelle to generate
rules for introducing the use of API functions. Section 4
presents the results of the third step, applying the generated
rules to the Linux kernel source tree.

3.1 Overview of Coccinelle
Coccinelle is a tool for performing program matching and

transformation on (unpreprocessed) C source code according
to user-provided specifications. Specifications are defined
using a patch-like notation, and are thus very close in struc-

@r1@ identifier f ; parameter list ARGS ; expression E1, E2 ; 1
identifier fld ; @@ 2

3
f (ARGS) { E1−>fld = E2 ; } 4

Figure 3: A semantic patch rule identifying a partic-
ular type of API function

ture to the code to be matched and transformed. Coccinelle
specifications are, however, more generic than the traditional
line-based syntax-driven patches, and thus we refer to them
as semantic patches. In this paper, the primary aspect of
genericity that we are concerned with is the ability to abstract
over the subterms of a code fragment using metavariables,
which represent arbitrary terms of a particular syntactic
category, e.g., an expression, statement, or parameter list,
or expression type, e.g., an integer, pointer, or structure.3

Metavariables allow one code-like pattern to match at many
places in a software code base.

A semantic patch consists of a collection of rules, each of
which performs a single matching and transformation task.
A rule may inherit metavariables bound by previous rules,
allowing information to flow between them. An example of a
semantic patch rule r1 is shown in Figure 3. A rule consists of
two regions. The first, delimited by a pair of @@s, of which the
first can optionally contain the name of the rule, declares the
metavariables (lines 1-2). The rest is an arbitrary term, which
may contain one or more occurrences of the metavariables,
describing the code to be matched. Although not shown in
Figure 3, lines of code can be annotated with - to indicate
that they should be dropped and with + to indicate that they
should be added, in both cases exactly as done in a patch
file.

The goal of the rule r1 in Figure 3 is to find functions
that only serve to initialize a single structure field, such as
the function usb_mark_last_busy, shown in Figure 2 (lines
7-11). The rule declares an identifier metavariable f to rep-
resent the function’s name, a parameter list metavariable
ARGS to represent the function’s parameter list, expression
metavariables E1 and E2 to represent the structure and the
initial value, respectively, and an identifier metavariable
fld to represent the name of the field to be initialized. The
rest of the rule has the form of a definition of a function
having the desired structure, using the metavariables appro-
priately. When applied to the Linux kernel, this rule simply
matches the pattern against the code and binds the metavari-
ables accordingly; no transformation is specified. This rule
is thus suitable for using in a larger semantic patch that
inherits the set of metavariable bindings derived from each
matching instance to perform some other action.

3.2 Rule generation
The rule r1 matches the function usb_mark_last_busy,

defined in Figure 2, with f bound to usb_mark_last_busy,
ARGS bound to struct usb_device *udev, E1 bound to
udev, fld bound to last_busy, and E2 bound to jiffies.
From this information, we would like to generate a rule that

3Unlike in AspectJ, it not possible to constrain the textual
representation of the code matching a metavariable, e.g., by
specifying part of an identifier name. Our study of Linux
code suggests that such constraints are not reliable in this
setting.

@@ struct usb device *udev ; @@ 1
2

− udev−>last busy = jiffies; 3
+ usb mark last busy(udev); 4

Figure 4: A specification of the transformation in-
troducing calls to usb_mark_last_busy

matches udev->last_busy = jiffies; and replaces it by
a call to usb_mark_last_busy, essentially the rule shown
in Figure 4. Thus, in general, the generated rule should
match the pattern E1->fld = E2;, where E1, fld, and E2 are
instantiated according to the bindings obtained by rule r1.

The generative rule begins as follows, to indicate that it is
a rule that generates other rules:

@generated@ 1

As before, we next specify the metavariables. It is possible
both to inherit metavariables from previous rules, which will
be used in generating the current rule, and to declare local
metavariables, which will be copied into the generated rule.
In this simple case, we do not need any local metavariables,
and so we just add declarations to inherit metavariables from
r1. Inherited metavariables are referenced in the declaration
as r.n, where r is the rule name and n is the name of the
inherited variable. In the body of the rule, the name of the
inherited variable n is used directly. In our case, we obtain:

@generated@ expression r1.E1, r1.E2 ; identifier r1.fld, r1.f ; @@ 1

Finally, we specify the pattern to generate, which is essen-
tially as follows, with the metavariables instantiated by their
values:

− E1−>fld = E2 ; 1
+ f (???); 2

To complete the rule, we must determine what the argu-
ments“???” to the API function f, e.g., usb_mark_last_busy,
should be. First, however, we consider a related issue: how to
treat the names udev, last_busy, and jiffies found in the
definition of usb_mark_last_busy. last_busy is the name
of a structure field and jiffies is a global variable, so they
should appear as-is in any matched code.4 udev, however, is
a variable local to usb_mark_last_busy, and indeed it might
not be the case that every initialization of the field last_busy

of a usb_device structure gives the structure the name udev.
Our solution is to consider the parameters of the matched
function to be metavariables, of either the parameter type,
or if the parameter type is void *, then of type expression

*. We furthermore use these metavariables as the arguments
to the added function call. For this purpose, in the context
of rule generation, ARGS is a special variable, that should
be bound in step 1 as the list of parameters of the matched
function, but is inherited in the generated rule as a list of
argument expressions, amounting to the parameter decla-
rations with the type information removed. This approach
assumes that all of the parameters of the matched function
appear in the function body, and thus in the pattern of the

4It is possible that a global variable is shadowed by a local
variable declaration at the point of a match. Currently, we
simply assume that this is not possible, and indeed it seems
rare in Linux that both a global variable and a local variable
have the same name. Nevertheless, in future work, we should
extend the approach to protect against such confusion.

@r1@ identifier f,fld ; parameter list ARGS ; expression E1,E2 ; @@ 1
2

f (ARGS) { E1−>fld = E2 ; } 3
4

@generated@ 5
expression r1.E1, r1.E2 ; identifier r1.fld, r1.f ; 6
expression list r1.ARGS ; @@ 7

8
− E1−>fld = E2 ; 9
+ f (ARGS); 10

Figure 5: A semantic patch for generating a rule
from a particular type of API function

generated rule. When this is not the case, something else has
to be done to create the arguments of the generated function
call. We leave this issue to future work.

The complete semantic patch for generating a rule match-
ing a field initialization is shown in Figure 5. When this
semantic patch is applied to the definition of the function
usb_mark_last_busy it essentially generates the rule shown
in Figure 4. This rule, however, is not constrained enough
to always apply safely; we consider this issue below.

Besides usb_mark_last_busy, Figure 2 illustrates func-
tions that simply call another function (usb_set_intfdata)
and functions that simply return the value of an expression
(usb_endpoint_xfer_isoc and usb_endpoint_is_isoc_in).
The rule-generating semantic patches for these cases are sim-
ilar to the one for a function that just initializes a structure
field, but slightly more complex, because there are some cases
in which it is either not desirable to create the rule, e.g. there
is no point to create a rule for a function that always returns
a constant such as 0, because there is no way to know which
0’s should be replaced by calls to this function and which
should not, and there are some cases in which the generated
rule should not apply, e.g., a rule generated from a function
that just accesses a location can be used when the location is
used as an R-value, but not when the location is used as an
L-value. The complete semantic patch for generating rules
for all three kinds of functions is available at our website.5

3.3 Refinement of the generated rules
The simple replacement expressed in the generated rule

shown in Figure 4 is not adequate to ensure that the trans-
formation is performed correctly. First, it may perform the
transformation in a file where usb.h is not included and
thus usb_mark_last_busy is not defined. Second, because
Coccinelle by default processes the header files that a C
file includes, when a C file does include usb.h, this simple
replacement will match the body of the definition of the API
function itself, creating a function that loops endlessly. To
avoid both of these issues, Coccinelle embeds the generated
rule into a larger semantic patch that performs appropriate
checks before performing the transformation.

The complete semantic patch generated from the definition
of usb_mark_last_busy is shown in Figure 6. The first rule
detects that the header file on which the rule generation
is based is included in the C file being processed. The
second rule records the position of the definition of usb_-

mark_last_busy if it is present in the file. The final rule
embeds the transformation derived from the definition of
usb_mark_last_busy. As indicated by its first line (line 7),

5http://www.emn.fr/x-info/coccinelle/acp4is.cocci

@header@ @@ 1
#include <linux/usb.h> 2

3
@same depends on header@ position p; @@ 4
usb mark last busy@p(. . .) { . . . } 5

6
@depends on header@ 7
position p!=same.p; identifier f ; struct usb device *udev ; @@ 8

9
f @ p(. . .) { <+. . . 10
// match the pattern below 1+ times in the function body 11

− udev−>last busy = jiffies; 12
+ usb mark last busy(udev); 13

. . .+> } 14
15

Figure 6: The semantic patch generated for detect-
ing the non-use of usb_mark_last_busy

current needed calls % calls
calls calls updated updated

usb set intfdata 303 4 4 100%
usb mark last busy 15 6 6 100%
usb endpoint xfer isoc 8 11 3 27%
usb endpoint is isoc in 14 1 0 0%

Figure 7: Results of applying the generated seman-
tic patches to the Linux kernel source tree

this rule only applies if the rule header previously applied
successfully in this file, ensuring that the required header
file has been included. As indicated by the constraint on the
position variable p (line 8) and the match of the transformed
function f (line 10), a function is only transformed if its
position is different than that of a definition of usb_mark_-
last_busy. With these constraints, the generated rule can
be applied safely throughout the Linux kernel.

4. EVALUATION
Applying the semantic patches for generating rules from

header file functions that either initialize a single structure
field, return the value of an expression, or call some other
function produces over 5400 rules when considering all of
the header files in the Linux kernel source tree. On a HP
ProLiant server with two 3GHz quad-core Xeon processors
and 16GB memory, where we use only one core, generating
these rules requires around 24 minutes. Due to time and
space constraints, we focus on the rules generated from the
functions shown in Figure 2. Figure 7 shows the number
of calls to each of these functions currently in the Linux
kernel, an estimate of the number of other code fragments
that should use these functions based on manually searching
for relevant code fragments, and the number and percentage
of these code fragments that are updated by the generated
rules. Applying these rules to the entire Linux kernel, again
using only one core, takes around 8 seconds. The generated
rules produce no false positives; all of code fragments that
are updated are updated correctly.

For usb_set_intfdata and usb_mark_last_busy, the gen-
erated rules update all code fragments in the Linux kernel
source tree that should use the API functions. When looking
at the results for the rule for usb_set_intfdata we further-
more noticed a bug in the existing Linux code, as a function
in the file drivers/media/video/zr364xx.c calls both usb_-

set_intfdata and dev_set_drvdata on the same data, thus

unnecessarily duplicating work. The rules generated from
the remaining functions, however are less successful; there
are a number of false negatives. The reasons for these failures
highlight some inadequacies of the current approach that
must be addressed in the future development of this work.

As shown in Figure 2, the function usb_endpoint_xfer_-

isoc is defined in terms of the macros USB_ENDPOINT_XFER-

TYPE_MASK and USB_ENDPOINT_XFER_ISOC. In the Linux source
code, however, sometimes these macros are not used, being
replaced by the constants to which they expand. Thus, the
generated rule does not match. One approach would be to
create a second set of rules based on the result of applying
the C preprocessor to the header file. This, however, would
not be sufficient in the general case where macros and their
expansions can be mixed. A better solution would be to
generate rules that first replace these constants by the asso-
ciated macros. Generating rules from macro definitions is,
however, challenging, because of the lack of available type
information, making it unclear which of a set of macros that
expand to given value should be chosen.

A similar issue causes the total failure of the rule for
usb_endpoint_is_isoc_in. Here, the dependence is on API
functions rather than macros. As shown in Figure 2, the
definition of usb_endpoint_is_isoc_in refers to the func-
tions usb_endpoint_xfer_isoc and usb_endpoint_dir_out.
Currently, there is no occurrence of these two functions that
matches the required pattern in the Linux kernel source tree;
the generated rules for these functions have to be applied first
to create them. To address this issue, we envisage an auxil-
iary tool that identifies dependencies between the generated
rules and orders them accordingly. Such a tool could also
apply to rules generated from macro definitions, if available,
thus addressing the issues arising in both cases.

Finally, a further issue occurs in the case of usb_endpoint_-
xfer_isoc due to the possibility of negation. As shown in
Figure 2, usb_endpoint_xfer_isoc returns the value of an
equality test, implying that the same function can be used
in place of an inequality by simply negating the result of
the call. Our generated rule is not able to express this pos-
sibility, because the rule-generating semantic patch treats
the argument of the return as a single expression, without
analysing its internal structure. A solution would be to
create a rule-generating semantic patch that is specific to
functions that return the result of an equality test, which
would then generate two rules, one introducing a call to the
matched function on finding an equality test and another
introducing a negated call to the matched function on finding
an inequality test. Such a rule-generating semantic patch
would likely match other API functions as well.

We have manually written a semantic patch based on the
definitions of usb_endpoint_xfer_isoc and usb_endpoint_-

is_isoc_in, where the rule for usb_endpoint_xfer_isoc

matches either the given macro or its expansion, and the se-
mantic patch is ordered such that the rule for usb_endpoint_-
xfer_isoc precedes the rule for usb_endpoint_is_isoc_in.
This semantic patch was sufficient to update all but two of the
remaining cases. The last two cases involve a macro that pre-
vents Coccinelle from obtaining adequate type information
about the structure expression. In studying the results of the
semantic patch, we furthermore identified some related code
in which the wrong macro appears to be used. We have sub-
mitted our results as patches to the appropriate Linux main-
tainers, and some of these patches have been accepted (none

of them have been rejected). As a side effect of our work,
the Linux maintainers have reconsidered the placement of
usb_endpoint_xfer_isoc, usb_endpoint_is_isoc_in, and
other related functions in usb.h, and have moved these func-
tions into the file include/linux/usb/ch9.h, which is the
header file that defines the various macros and structure
types that are used by these functions. Sometimes finding
erroneous code can have unexpected consequences.

5. RELATED WORK
As mentioned previously, a number of approaches have

considered the problem of automatically detecting API us-
age protocols, typically involving sequences of two or more
function calls [5, 7, 10, 14]. Here we consider functions that
are typically not controlled by such protocols, but instead
may be used independently any number of times. Our own
previous work on detecting API protocols using Coccinelle
[7] involved the use of an initial semantic patch to collect
some information about an API protocol followed by the use
of semantic patch templates that could be instantiated with
respect to function names or other information collected in
the first phase. The instantiation, however, was done in an ad
hoc manner, using tools external to Coccinelle. Furthermore,
that work did not consider the specific case of API functions
contained in header files.

By allowing a semantic patch to generate other semantic
patch rules, we have take a step towards developing a multi-
level semantic patch language. Multi-level languages have
been extensively investigated at a theoretical level [11], and
in the context of languages such as C [13] and ML [15]. A
significant issue in the context of multi-level languages is the
availability of values at various levels. In particular, variables
bound in earlier levels can only be used in later levels if their
values can be represented as code, and variables bound in
later levels should not be used in earlier levels. In our case,
metavariables bound to positions cannot be represented as
code, and Coccinelle prohibits such variables from being used
in generated rules. The language also prohibits generated
rules from having names, preventing rules at any level from
inheriting their variables. This, however, is an overly conser-
vative solution, and we will consider how to allow inheritance
within rules at the same level in future work. Finally, our
current approach provides only two levels, but it would be
natural to consider extending the approach to more.

Refactoring is a type of program transformation that has
the goal of restructuring the code but preserving its semantics
[6]. In the context of refactoring, tools have been developed
to detect code clones, to abstract common code fragments
into a function, and to merge identical function definitions
into a single function [8, 9]. Of these, clone detection is the
most time-consuming and the most liable to suffer from false
negatives and false positives. Our approach can be viewed
as a means of focusing the clone detection on particular code
fragments that have been designated as having a conceptual
interest by the software designer. Furthermore, in our ap-
proach the structure of the API function definition and the
structure of the code that is to be replaced by a call to the
API function are specified separately and under control of
the programmer, thus giving more flexibility than with a
fixed strategy that is built into the refactoring engine.

6. CONCLUSION
Linux header files contain many API functions that are

simple in their behavior, but nevertheless are critical to the
readability, correctness, and maintainability of the Linux
kernel code. Currently, these API functions are not used
as systematically as they should be. In this paper, we have
presented an approach based on generative programming
for finding and correcting code in which these API func-
tions are not used. In our evaluation based on the file
include/linux/usb.h, we have found that in some cases
the approach outlined here is sufficient to update all of the
relevant code correctly. We have furthermore outlined how
to address the remaining cases in future work.

7. REFERENCES
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett,

and P. Hawkins. An overview of the Saturn project. In
Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, PASTE’07, pages 43–48, San Diego, CA,
June 2007.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin,
J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis of
device drivers. In The first ACM SIGOPS EuroSys
conference (EuroSys 2006), pages 73–85, Leuven,
Belgium, Apr. 2006.

[3] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and
G. Muller. A foundation for flow-based program
matching using temporal logic and model checking. In
The 36th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages
114–126, Savannah, GA, USA, Jan. 2009.

[4] D. R. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In Fourth
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, San Diego, CA,
Oct. 2000.

[5] D. R. Engler, D. Y. Chen, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring
errors in systems code. In Proceedings of the 18th ACM
Symposium on Operating System Principles, pages
57–72, Banff, Canada, Oct. 2001.

[6] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[7] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, and
G. Muller. WYSIWIB: A declarative approach to
finding protocols and bugs in Linux code. Technical
Report 08/1/INFO, Ecole des Mines de Nantes, Nantes,
France, 2008.

[8] H. Li and S. Thompson. Clone detection and removal
for Erlang/OTP within a refactoring environment. In
Draft Proceedings of the Ninth Symposium on Trends in
Functional Programming (TFP), Nijmegen, The
Netherlands, May 2008.

[9] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In Proceedings of the Sixth
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 289–302, San Francisco,
CA, Dec. 2004.

[10] Z. Li and Y. Zhou. PR-Miner: automatically extracting
implicit programming rules and detecting violations in
large software code. In Proceedings of the 10th
European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 306–315,
Lisbon, Portugal, 2005.

[11] F. Nielson and H. R. Nielson. Two-Level Functional
Languages. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1992.

[12] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
Linux device drivers. In EuroSys 2008, pages 247–260,
Glasgow, Scotland, Mar. 2008.

[13] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F.
Kaashoek. ‘C and tcc: A language and compiler for
dynamic code generation. ACM Transactions on
Programming Languages and Systems, 21(2):324–369,
March 1999.

[14] M. K. Ramanathan, A. Grama, and S. Jagannathan.
Path-sensitive inference of function precedence
protocols. In 29th International Conference on Software
Engineering, pages 240–250, Minneapolis, MN, USA,
2007.

[15] W. Taha and T. Sheard. Multi-stage programming with
explicit annotations. Theoretical Computer Science,
248(1-2):211–242, 2000.

