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Abstract are scarce. Third, new hardware and software appear at
a rapid rate to satisfy emerging needs. Finally, systems
have to be flexible to support unanticipated needs such

Building a flexible kernel from components is a promis- as monitoring and tuning.

ing solution for supporting various embedded systems.

The use of components encourages code re-use and reaplementing an operating system kernel for such sys-

duces development time. Flexibility permits the systemtems raises several constraints. Development time

to be configured at various stages of the design, up to rughould be as short as possible; this encourages system-
time. In this paper, we propose a software frameworkatic code re-usend implementation of the kernel by as-
called THINK, for implementing operating system ker- sembling existing components. Kernel size should be
nels from components of arbitrary sizes. A unique fea-minimal; only services and concepts required by the ap-
ture of THINK is that it provides a uniform and highly plications for which the kernel is targeted should be em-
flexible binding modelto help OS architects assemble bbeded within the kernel. Efficiency should be targeted;
operating system components in varied ways. An OS10 specific hardware feature or low-level kernel func-
architect can build an OS kernel from components ustionality should be masked to the application. Finally,
ing THINK without being forced into a predefined ker- to provide flexibility, it must be possible to instantiate
nel design (e.g. exo-kernel, micro-kernel or classical OS2 kernel configuration at boot time and to dynamically
kernel). To evaluate theHINK framework, we have im- download a new component into the kernel. To support
plemented KRTEX, a library of commonly used kernel these features, it should be possible to resolve the bind-
components. We have use®KTEX to implement sev-  ings between components at run time.

eral kernels, including an L4-like micro-kernel, and ker-

nels for an active network router, for the Kaffe Java vir- Building flexible systems from components has been

tual machine, and for a Doom game. Performance meaan active area of operating system research. Previous

surements show no degradation due to componentizatiowork includes micro-kernel architectures [2, 14, 25],

and the systematic use of the binding framework, andvhere each component corresponds to a domain bound-

that application-specific kernels can achieve speed-upary (i.e. server), extensible systems such as SPIN [3]

over standard general-purpose operating systems such 8t support dynamic loading of components written in

Linux. a type-safe language, and more recently the OSKit [7]

or eCos [5] which allow the re-use of existing system

components. One problem with the existing component-
based approaches lies in the predefined and fixed ways
components can interact and be bound together. While
it is possible to create specific components to implement

a particular form of binding between components, there

greno supporting framework or tools to assist this devel-

opment, and little help to understand how these different
orms of binding can be used and combined in a consis-
ent manner.

1 Introduction

Embedded systems, such as low-end appliances and n
work routers, represent a rapidly growing domain of sys-
tems. This domain exhibits specific characteristics tha$
impact OS design. First, such systems run one or onl

Sl of ahpcatons Wik Shecic e, SEC by biningue mean o end esulofhe general roces
of establishing communication or interaction channels
“Now at Ecole des Mines de Nantes 1 between two or more objects. Bindings may take sev-




eral forms and range from simple pointers or in-address{syscalls), up-calls, signals, IPC and RPC calls. We have
space references, to complex distributed channels estabsed KORTEXto implement L4-like kernel services. Our
lished between remote objects involving multiple lay- benchmarks show excellent performance for low-level
ers of communication protocols, marshalling and unmarsystem services, confirming that applying our compo-
shalling, caching and consistency management, etc. Asent model and our binding model does not result in de-
argued in [27], the range and forms of bindings are sagraded performance compared to non component-based
varied that it is unlikely that a single generic binding kernels.
process or binding type can be devised. This in turn calls
for framework and tool support to help system develop-We have used BRTEX to implement operating system
ers design and implement specific forms of binding.  kernels for an active network router, the Kaffe Java vir-
tual machine, and a Doom game. We have evaluated the
The attention to flexible binding is not new. Several performance of these kernels on a Macintosh/PowerPC
works, e.g. [4, 10, 27], have proposed flexible bind-machine. Our benchmarks show that our kernels are at
ing models for distributed middleware platforms. The least as efficient than the implementations of these ap-
Nemesis operating system [13] introduces bindings foiplications on standard monolithic kernels. Additionally,
the handling of multimedia communication paths. Theour kernels achieve small foot-prints. Finally, although
path abstraction in the Scout operating system [19fnecdotal, our experience in using thelk frame-
can be understood as an in-system binding abstractionvork and the KORTEX library suggests interesting bene-
And channels in the NodeOS operating system interfacéits in reducing the implementation time of an operating
for active routers [22] correspond to low-level packet- system kernel.
communication-oriented bindings. None of these works,
however, has considered the use of a general model dfhe rest of the paper is structured as follows. Section 2
component binding as a framework for building differ- discusses related work on component-based kernels and
ent operating system kernels. OSes. Section 3 details thedlNk software framework,
its basic concepts, and its implementation. Section 4
describes the KRTEX library of THINK components.
This paper Section 5 presents several kernels that we have assem-
bled to support specific applications and their evaluation.
Section 6 assesses our results and concludes with future
This paper presents theHTNk?® framework for build-  work.
ing operating system kernels from components of arbi-
trary sizes. Each entity in aHINK kernel is a compo-
nent. Components can be bound together in different
ways, including remotely, through the use of bindings.2 Related Work
Bindings are themselves assemblies of components that
implement communication paths between one or more
components. This structuring extends to the interactio
with the hardware, which is encapsulated in Hardwar
Abstraction Layer (HAL) components.

Mrhere have been several works in the past decade on
eflexible, extensible, and/or component-based operating
system kernels. Most of these systems, however, be

The contributions of this paper are as follows. We pro—they research prototypes such as Choicesaaioices

pose a software architecture that enables operating sy 31], SPIN [3], Aegis/Xok [6], VINO [26], Pebble [8],
tem kernels to be assembled, at boot-time or at run-time emesis [13], 2K [12], or commercial systems such as
from a library of kernel com,ponents of arbitrary size QNX [23], VxWorks [34], or eCos [5], still define a

_" particular, fixed set of core functions on which all of

The distinguishing feature of the framework is its ﬂex"dthe extensions or components rely, and which implies

blr? dblnd|nng1br|nc()jdiil (;?f? tralr:?wi dcgmnpo?egt?irtlo(;)svboun in general a particular design for the associated family
and assemole erenta on-predetined ways. - ot kernels (e.g. with a fixed task or thread model, ad-

dress space model, interrupt handling model, or commu-

\t;\rlzr h?)\;ekedrisellgsgr?] i%i;gaf;?%rgsgi%}a? nl":o delsnication model). QNX and VxWorks provide optional
of thyreads memor pmana ement and brocess mana modules that can be statically or dynamically linked to

! y manag \a p Yie operating system, but these modules rely on a basic
ment services. BRTEX implements different forms of

bindinas. including basic forms such as svstem call kernel and are not designed according to a component-
gs, 9 y Yased approach. eCos supports the static configuration
1THINK stands for Think Is Not a Kernel of components and packages of components into embed-




ded operating systems but relies on a predefined basic the KORTEX library provides additional software
kernel and does not provide dynamic reconfiguration ca-  frameworks to help structure kernel functionality,

pabilities. namely a resource management framework and a
communication framework. The resource manage-
In contrast, the HINK framework does not impose a ment framework is original, whereas the communi-

particular kernel design on the OS architect, who is free cation framework is inspired by thekernel [11].
to choose e.g. between an exo-kernel, a micro-kernel

or a classical kernel design, a single or multiple ad-
dress space design. In this respect, theNk approach

is similar to that of OSKit [7], which provides a col-

Other operating system-level component-based frame-
works include Click [18], Ensemble [15] and Scout [19].
. . : . These frameworks, however, are more specialized than
lection of (relatively coarse-grained, COM-like) com- ., or OSK:it: Click targets the construction of mod-

(p)osns?ts |mplemetnt|rr1]g typl;cal 0S flcjintcnpnallnles. tThe ular routers, Ensemble and Scout target the construction
It components have been used 1o Implement SeVag o, nication protocol stacks.

eral highly specialized OSes, such as implementations o?
the programming languages SML and Java at the har
ware level [15]. OSKit components can be staticall
configured using the Knit tool [24]. The Knit compiler
modifies the source code to replace calls across comp

nent boundaries by direct calls, thus enabling standar inding models have been inspired by various works

compiler optimizations. Unlike Nk however, OS- on distributed middleware, including the standardized

Kit does not provide a framework for binding COMPO- 556 Reference Model [1], ANSA [10], and Jonathan
nents. As aresult, much of the common structures WhlCr[4]. In contrast to the latter works,HINK exploits flexi-

ar% p(rjo_wded téyr:he :In NhK. frarr?ework'have o be 'h.and- le binding to build operating system kernels rather than
coded in an ad-hoc fashion, hampering composition and .. o el middleware libraries.

reuse. Besides, we have found in practice that OSKit

components are much too coarse-grained for building

small-footprint, specific kernels that impose no partic-

ular task, scheduling or memory management model o

applications. Other differences betweeniik and OS- S THINK Software Framework
Kit include:

ck?Ve thus believe that AINK is unique in its introduction
Yand systematic application of a flexible binding model
for the design and implementation of component-based
yperating system kernels. TheiiNk component and

The THINK software framework is built around a small

 Component model: ANk has adopted a compo- set of concepts, that are systematically applied to build
nent model inspired by the standardized Open Dis- SyStém. These concepts acemponenisinterfaces
tributed Processing Reference Model (ODP) [1], Pindings namesanddomains
whereas OSKit has adopted Microsoft COM com- ] ) ]
ponent model. While the two component models”A THINK system, .e. a system built using theilNK .
yield similar run-time structures, and impose as fewSoftware framework, is composed of a set of domains.
constraints on component implementations, we pePomainscorrespond to resource, protection and isola-
lieve that the TNk model, as described in section tion boundaries. An operating system kernel executing

3.1 below, provides more flexibility in dealing with in privileged processor mode and a set of user processes
heterogeneous environments executing in unprivileged processor mode are examples

) ) .. of domains. A domain comprises a set of components.

e Legacy code: OSKit provides several libraries comnonents interact through bindings that connect their

that encapsulate legacy code (e.g. from FreeBSDyarfaces. Domains and bindings can themselves be
Linux, and Mach) and has devoted more attentionyeiiaq as components, and can be built by composing
to issues surrounding the encapsulation of legacyq,yer.level components. The syscall bindings and re-
code. In contrast, most components in theRCEX  ote communication bindings described in section 4 are

library are native components, with the exception g, »mnjes of composite bindings, i.e. bindings composed
of device drivers. However, techniques similar 10 ut |o\yer-level components. Bindings can cross domain

those used in OSKit (e.9. emulation of legacy envi-p o, nqaries and bind together interfaces that reside in
ronments in glue code) could be easily leveragedyitrerent domains. In particular, components that con-
to incorporate in KORTEX coarse-grained legacy gite a composite binding may belong to different do-

components. mains. For example, the aforementioned syscall and re-

e Specialized frameworks: in contrast to OSKit, mote communication bindings cross domain boundaries.



3.1 Core software framework tween two or more components. This notion covers both
language-level bindings (e.g. associations between lan-
guage symbols and memory addresses) as well as dis-
tributed system bindings (e.g. RPC or transactional bind-
ings between clients and possibly replicated servers). In
terface in ODP. A component is a run-time structurethe THINK framework, bi”dings are cr<_aated t?y s_pecial
that encapsulates data and behavior. An interface is factory components calleninding factories A binding
named interaction point of a component, that can be ofYPically embodies communication resources and imple-
a server kind (i.e. operations can be invoked on it) or ofnents a particular communication semantics. Since sev-

a client kind (i.e. operations can be invoked from it). A eral binding factories may coexistin a giveANK sys-

component can have multiple interfaces. A componen{em’ it is possible to interact with a component accord-
interacts with its environment, i.e. other components,N9 [0 various communication semantics (e.g. local or

only through its interfaces. All interfaces irHTNK are remote; standard point-to-point at-most once operation
strongly typed. In the current implementation of the IVocation; component invocation with monitoring, with

THINK framework, interface types are defined using the2¢CeSs control, with caching; event castinga SPIN;

Java language (see section 3.2). Assumptions about tfgic)- Importantly, bindings can be created either implic-
interface type system are minimum: an interface typeIt y, €.9. as in standard d|str;]butedhobject si_ysr:ems Squh
documents the signatures of a finite set of operations2S Java RMI and CORBA where the establishment of a

each operation signature containing an operation nam&nding is hidden from the component using that bind-
a set of arguments, a set of associated results (includingd: Or explicitly, i.e. by invocation of a binding fac-

possible exceptions); the set of interface types forms 421Y- EXplicit bindings are required for certain classes
lattice, ordered by a subtype relation, allowing multiple of applications such as multimedia or real-time applica-

inheritance between interface types. The strong typind©"S: that impose explicit, application-dependent qual-
ity of service constraints on bindings. Creating a binding

of interfaces provides a first level of safety in the assem-~ -’ > _ ) S
bly of component configurations: a binding can only be€Xplicitly results in the creation of a binding component,

created between components if their interfaces are typk€: @ component that reifies a binding. A binding com-
compatible (i.e. are subtypes of one another).

The concepts ofomponentandinterfacein the THINK
framework are close to the concepts of object and in

ponent can in turn be monitored and controlled by other
components.

An interface in the HiNk framework is designated by yierface Top{}

aname Names are context-dependent, i.e. they are relinierface Name{

ative to a givernaming context A naming context en- NamingContext getNC():

compasses a set of created nhames, a naming convention String toByte();

and a name allocation policy. Naming contexts can b

organized in naming graphs. Nodes in a naming graphierface NamingContex{

are naming contexts or other components. An edge in Name export(Top itfichar{] hint):

a naming graph is directed and links a haming context Name byte ToName(String name);

to a component interface (which can be another namin

context). An edge in a naming graph is labelled by ajnterface BindingFactory{

name : the name, in the naming context that is the edge Top bind(Name namehar] hint);

source, of the component interface that is the edge sink,

Given a naming graph, a naming context and a compo-

nent interface, the name of the component interface irFigure 1: Framework for interfaces, names and bindings

the given naming context can be understood as a path in

the naming graph leading from the naming context to theThese concepts of naming and binding are manifested

component interface. Naming graphs can have an arbin the THINK software framework by the set of Java in-

trary forms and need not be organized as trees, allowingerface declarations shown in Figure 1. The tyfp

new contexts to be added to a naming graph dynamieorresponds to the greatest element of the type lattice,

cally, and different naming conventions to coexist (a cru-i.e. all interface types are a subtype Tdp (all inter-

cial requirement when dealing with highly heterogenousface types in HINK “extend” Top). The typeName

environments as may be the case with mobile devices).is the supertype of all names irHINK. The operation
getNC yields the naming context to which the name be-

Interaction between components is only possible oncdongs (i.e. the naming context in which the name has

a binding has been established between some of theibeen created through tlexport operation). The op-

interfaces. A binding is a communication channel be-erationtoByte yields a simple serialized form of the



name instance. The exact location of private component data is the re-
sponsiblity of the component developer. Depending on
The typeNamingContext is the supertype of all nam- the nature of the target component, the implementation
ing contexts in HINK. The operatiorexport creates supports several optimizations of the structure of the in-
a new name, which is associated to the interface passddrface representation. These optimizations help reduce
as a parameter (the hint parameter can be used to paks instance, memory and allocation costs when han-
additional information, such as type or binding data, re-dling interface descriptors. They are depicted in figure
quired to create a valid name). As a side-effect, this3. If the component is a singleton, i.e. there is no other
operation may cause the creation of (part of) a bindingcomponent in the given domain implementing the same
with the newly named interface (e.g. creating a serveinterface, then the interface descriptor and the compo-
socket in a standard distributed client-server setting)nent private data can be statically allocated by the com-
The operatiorbyteToName returns a name, upon re- piler. If the component is not a singleton but has only
ceipt of a serialized form for that name. This opera-one interface, then the private data of the component can
tion is guaranteed to work only with serialized forms of be allocated directly with the interface descriptor. Fi-
names previously exported from the same naming connally, in the general case, the interface descriptor is a
text. The typeNamingContext sets minimal require- dynamic structure containing a pointer to the interface
ments for a naming context in the framework. More spe-operations and an additional pointer to the component’s
cific forms of naming contexts can be introduced if nec-private data. In the component library described in sec-
essary as subtypes BMamingContext (e.g. adding a tion 4, most components are either singletons or have a

resolve operation to traverse a naming graph). single interface, and are implemented accordingly.
The typeBindingFactory s the supertype of all singleton component with oneinterface
binding factories in HINK. The operatiorbind cre- —L meth | &7 7 ”Et: [ o~
ates a binding with the interface referenced by the name a2

passed as a parameter (the hint parameter can be used general component

to pass additional information required to establish the —| neth | &>

binding, e.qg. type or quality of service information). Ac- object | ® e,

tual binding factories can typically add more specialized

bind operations, e.g. adding parameters to characterize

the quality of service required from the binding or re- ~ Figure 3: Optimization on interface representation
turning specific interfaces for controlling the newly con-

structed binding. This implementation abides by C compiler ABI calling

conventions [35]. Thus, arguments in a PowerPC im-
) plementation are passed on the stack and in registers to
3.2 Implementing the THINK framework improve performance. It is important to notice that all
calls to a component interface are expressed in the same
way, regardless of the underlying binding type and the
In our current prototype, HINK components are written location of the component. For example, a server com-
in C for efficiency reasons. An interface is representecponent in the local kernel domain is called in the same
by an interface descriptor structure, whose actual sizgvay as a server component in a remote host; only the
and content are unknown to the client, and which con-binding changées
tains a pointer to the code implementing the interface
operations, as shown, in figure 2. This layout is similar

to a C++ virtual function table. 3.3 Code generation and tools
interface interface interface
reference _ descriptor methods Building a particular kernel or an application using the
meth [®F>=| bar [ ®F—>implemen THINK framework is aided by two main off-line tools.
foo .“| tation
Q_p'eme” e An open interface compiler, that can be specialized
10N

2This does not mean that the client code need not be prepared to
handle the particular semantics associated with a binding, e.g. han-
dling exceptions thrown by a remote binding component in case of
communication failures.

Figure 2: Run-time interface representation



to generate code from interface descriptions writtenrd  KORTEX, a component library

in Java. For instance, it is used to generate C dec-

larations and code that describe and produce inter-

face descriptors, and to generate components (e.g.o simplify the development of operating system ker-
stub components) used by binding factories to crenels and applications usingHTNK, we have designed
ate new bindings. This generated code can contaim library of services that are commonly used in operat-
assembly code and exploit the specific features ofng system construction. This library, calle@RTEX, is

the supporting hardware. currently targeted for Apple Power Macintosfie& o-
RTEX currently comprises the following major compo-

¢ An off-line configurator, that creates kernel images ‘
nents:

by assembling various component and binding li-
braries. This tool implicitly calls a linker (such

asld ) and operates on a component graph spec- o {a| components for the PowerPC that reify ex-
ification, written in UML by kernel developpers, ceptions and the memory management unit.
which documents dependencies between compo-

nents and component libraries. Dependencies han-
dled by the configurator correspond to classical
functional component dependencies resulting from
providesandrequiresdeclarationsgfrovidesmeans
that a component supports an interface of the given
type, requiresmean that a component requires an
interface of the given type to be present in its en- e Memory components implementing various mem-
vironment in order to correctly operate). An ini- ory models, such as paged and flat memory.
tialization scheduler, analogous to the OSKit's Knit
tool [24], can be used to statically schedule compo-
nent initialization (through calls to component con-
structors) at boot-time. The configurator also in-

cludes a visual tool to browse composition graphs. ® Network components, architected according to
the z-kernel communication framework, including

Ethernet, ARP, IP, UDP, TCP and SunRPC proto-
Using the open interface compiler, interface descriptions  cols.

written in Java are mapped onto C declarations, where | rije system components implementing the VFS
Jaya types are mapped on C types. The.set of C types AP, including ext2FS and NFS.

which are the target of this mapping constitutes a subset ] ) ]

of possible C signatures. However, we have not found ® S€rvicé components that implement a dynamic
this restriction to be an impedimérfor developing the linker/loader, an application loader and a small
KORTEX library. trader.

e HAL components that encapsulate the Power Mac-
intosh hardware devices and their drivers, including
the PCI bus, the programmable interrupt controller,
the IDE disk controller, the Ethernet network card
(mace, bmac, gmac and Tulip), and the graphic card
(frame-buffer).

e Thread and scheduler components implementing
various scheduler policies, such as cooperative,
round-robin and priority-based.

e Interaction components that provide different types

Code generation takes place in two steps. The first step  of bindings.
compile§ interface descrip';ions written in.Java into C Components implementing part of the Posix stan-
declarations and code for interface descriptors. These dard.
are then linked with component implementation code.
Binding components are also generated from interface
descriptions but use a specific interface compiler (typ-While many of these components are standard (for in-
ically, one per binding type), built using our open in- stance, the thread and memory components have been
terface compiler. The second step assembles a kernglirectly inspired by the L4 kernel [9]), several points
image in ELF binary format from the specification of a about KORTEX are worth noting. First, KRTEX sys-
component graph. tematically exploits the core HINK framework pre-

sented above. In particulardRTEX interaction compo-
During execution, a kernel can load a new componentnents presented in section 4.5 all conform to thenk
using the KORTEX dynamic linker/loader, or start a new binding model. The diversity of interaction semantics
application, by using the &RTEX application loader. already available is a testimony to the versatility of this

SNote that, if necessary, it is always possible to specialize the open  4The choice of PowerPC-based machines may seem anecdotal, but
interface compiler to map designated Java interface types onto the rea RISC machine does offer a more uniform environment for operating
quired C types. system design.



model. Second, KRTEX remains faithful to the over- interface Trap{

all THINK philosophy which is to not impose specific void TrapRegistei(t id, Handler handler);
design choices to the OS architect. This is reflected in void TrapUnregistei(t id);

the fact that most KRTEX components are very fine- void TrapSetContextiit phyctx, Context virtctx);
grained, including interaction components. For instance, Context TrapGetContext();

syscall bindings (whose structure and semantics are typ- void TrapReturn();

ically completely fixed in other approaches) are built }
as binding components indRTEX. Another example
can be found with the HAL components inORTEX,
which strictly reflect the capabilities of the supporting
hardware. Third, ORTEX provides additional optional
frameworks to help OS architects assemble specific su There is an instance of this method in each exception

systems. KORTEX currently provides a resource man- ocor taple entry. These methods first save the gen-
agement framework and a communication framework.

The f . lied o impl t the thread q;eral registers, which form thminimal execution con-

€ former 1S applied €.g. to Impiement the thread anGg, . of e processor, at a location previously specified
scheduling components, while the latter is applied to |m—by the system using the methddapSetContext
plement remote bindings. Finally, we have strived in im-

| fina 1o to minimize d dencies bet This location is specified by both its virtual and phys-
plementing FORTEX 0 MINIMIz€ dependencies betWeen ;... 4qqresses, because the Power PC exceptions HAL
components. While this is more a practical than a de

or . X - component is not aware of the memory model used by
sign issue, we have found in our experiments that fine

: ] . - the system. TrapEnter ,; also installs a stack for
grained, highly independent components facilitate com- y b i

hensi d hile obviously vieldi fuse during the handling of the exception. A single
Prenension and reuse, whiie obviously ylelding more €l-g, o\ s syfficient for exception handling because the
ficient kernels, with smaller footprints. This is an advan-

¢ d1o th t OSKit lib for inst processor disables interrupts during the handling of an
age compared to the curren Itiibrary, forins ance'exception. Next,TrapEnter ;4 invokes the handler

previously registered by the system using the method
TrapRegister . When this handler finishes, the han-
dler callsTrapReturn to restore the saved execution
context. The cost for entering and returning from an ex-

ception on a PowerPC G4 running at 500 Mhz is shown
KORTEX provides HAL components for the PowerPC, gn table 1.

including a HAL component for PowerPC exceptions

Figure 4: Interface for PowerPC exception

one of the internal component methobmpEnter ;4.

4.1 HAL components for the PowerPC

and a HAL component for the PowerPC Memory Man-|  Operation instructions time (us) cycles
agement Unit (MMU). The operations supported by| TrapEnter ;4 57 0.160 80
these components are purely functional and do not mod- TrapReturn 48 0.110 55
ify the state of the processor, except on explicit demand|. total 105 0.270 135
The KoRTEX HAL components manifest strictly the ca- Table 1: Cost for handling a exception

pabilities of the supporting hardware, and do not try to
provide a first layer of portability as is the case, e.g. with
1Choices’ nano-kernel interface [31]. Although minimal, this interface provides enough func-
tionality, e.g. to directly build a scheduler, as shown in
section 4.4. The exceptions HAL component is com-
E , pletely independent of the thread model implemented by
xceptions ) .
the system that uses its service.
The PowerPC exceptions HAL component supports a
single interface, which is shown in Table 4. The goal
of this interface is to reify exceptions efficiently, with-
out modifying their semantics. In particular, note that,
on the PowerPC, processing of exceptions begins in suFhe PowerPC Memory Management Unit (MMU) HAL
pervisor mode with interrupts disabled, thus preventingcomponent implements the software part of the Pow-
recursive exceptions. erPC MMU algorithm. This component can be omitted
in appliances that need only flat memory. Table 5 shows
When an exceptiond occurs, the processor invokes the interface exported by this component.

Memory Management Unit



interface MMU { interface AbstractResourcé

void MMUsetpagetablext virt, void release();
int phys,int sz); }

void MMUaddmappingifit vsid, int virt, interface ResourceManag@&xtendsBindingFactory{
int phys,int wimg, int pp); AbstractResource create(...);

void MMUremovemapping(t vsid, int virt); }

PTE MMUgetmapping(t vsid, int virt);

void MMUsetsegmentfit vsid, int vbase); Figure 6: Resource management framework

void MMUsetbat{nt no, int virt, int phys,
int size,int wimg, int pp);
void MMUremovebatipt no); memory and memory managers, network sessions (re-
} sources) and protocols (resource managers).

Figure 5: Interface for PowerPC MMU
4.3 Memory management components

TheMMUsetpagetable method is used to specify the
location of the page table in memory. Since the Pow-
erPC is a segmented machine, #M&lUsetsegment KORTEX provides memory management components
method is used to set the sixteen 256 MB seg-that implement various memory models, such as paged
ments, thus providing a 4 GB virtual address spacememory and flat memory. A paged memory model can
The MMUaddmapping, MMUremovemapping and  be used by systems that need multiple address spaces,
MMUgetmapping methods add, remove and obtain in- for example to provide a process abstraction. The flat
formation about page translation. memory component can by used by systems that need
only a kernel address space, as can be the case e.g. in
The methoddiMUsetbat andMMUremovebat reify  low-end appliances. ®&RTEX also provides a compo-
the PowerPC Block Address Translation (BAT) regis- nent that implements the standard C allocator. Compo-
ters. These registers provide a convenient way to build aents implementing the two memory models and the al-
single flat address space, such as can be used in low-ethstator are described below.
appliances. The two main benefits are speed of address
translation and economy of page table memory use.  The flat memory components implement a single ker-
nel address space component that includes all of phys-
ical memory. This address space is provided by using
4.2 Resource management framework MMUsetbat exported by MMU HAL (see Section 4.1).
This component supports an address space interface pro-
viding methods to map and unmap memory in this ad-
KORTEX provides a resource management frameworkdress space. The implementation of this component is
which can be applied to all resources in the systemessentially void but the address space interface it sup-
at various levels of abstraction. The framework com-ports is useful to provide a transparent access to mem-
prises the resource and manager concepts as given ory for components, such as drivers, that need to map
Figure 6. A resource manager controls lower-level re-memory and that can operate similarly with either flat
sources and uses them to construct higher-level onesnemory or paged memory.
New resources (e.g. threads) can be created through op-
erationcreate , whereas resource allocation is effected Components providing the paged memory create, dur-
through thebind operation which creates a binding to ing initialization, a page table in memory and an address
a given resource. In other words, a resource is allocatedpace for the kernel. An address space manager compo-
to a component when a binding has been created by theent provides an interface for creating new address space
resource manager between the component and the reemponents. Address space components support inter-
source. In this case, the hint parameter of Hied faces of the same type as that of the flat memory address
operation can contain managing information associatedpace component. Physical memory page allocation is
with the resource (e.g. scheduling parameters to be agprovided by a standard buddy system component.
sociated with a thread).
Finally, a dynamic memory allocator component pro-
Several KORTEX components are architected accord-vides the implementation of the standard GNU memory
ing to the resource framework: threads and schedulersllocator.



4.4 Thread and scheduler components Syscall binding

KORTEX provides three preemptive schedulers that pro-This binding type can be used by systems that support

vide an same interface of the same type: a cooperativenultiple address spaces to provide application isolation.

scheduler, a simple round-robin scheduler and a priorityThe syscall binding allows an application to use ser-

based scheduler. They allow the usual operations owices provided by the kernel. A syscall binding is im-

threads: creating and destroying threads, as well as aplemented using a client stub that performs a hardware

lowing a thread to wait on a condition and to be notified. syscall instructiorsc , thus triggering an exception. The

If threads are not running in the same address spaceyscall trap handler then calls the target interface com-

then the scheduler performs the necessary address spgoenent. The application can pass up to seven arguments

switch in addition to the thread context switch. in registersi4 throughrl0 ) to the target. The remain-
ing arguments, if any, must be passed in shared memory

These schedulers are implemented using the Power on the user stack.

erPC exceptions HAL component described in section

4.1. They can be implemented by simply installing An optimization of the syscall binding can exploit the

a timer interrupt handler, in fact the PowerPC decre-System V ABI specification calling conventions [35].

menter. On a decrementer exception, the handler usdgegisters il , r14 to r31 ) are non volatile between

TrapSetContext  to replace the pointer to the execu- method calls and it is not necessary to save them in the

tion context of the current thread with a pointer to the calling stub. Other registersQ, r3 to rl3) are lost

execution context of the newly scheduled thread. Dueduring method calls, and it is not necessary to save them

to the simplicity of the HAL, these schedulers can beeither. Obviously this optimisation assumes that the ABI

very efficient. Table 2 presents context switching costscall conventions are obeyed. This optimization can save

on a PowerPC G4 at 500 Mhz. For example, a contexaibout 70 cycles per syscall.

switch between two threads in the same address space

costs 0.284.s, and between two threads in different ad-

dress spaces costs 0.39¢. This permits the use of ex-

tremely small time slices, which can be useful e.g. for a

real-time kernel.

Upcall and Signal binding

instructions  time (us) cycles
thread switch 111 0.284 142
process switch 147 0.394 197

The upcall and signal bindings allow the kernel to in-
teract with an application. A signal binding is used to
propagate an exception to the currently running appli-
cation, while an upcall binding is used to propagate an
exception to an application running in a different address
space than the current one. Upcall and signal bindings
are very efficient because they merely invoke a dedicated
handler in the application. The binding first updates the
instruction and stack pointers, and then invokes the han-
KORTEX provides many different types of bindings be- dler in the application using the special instructiin .
tween components, which may be localized in differ- The exception context is also propagated. This handler
ent domains (e.g. the kernel, an application, or a remotghen calls the target component interface, which is des-
host). ignated by its memory address stored intBeregister.

Table 2: Context switching costs

4.5 Interaction components

Because the exception context is propagated, the upcall
Local binding binding is not completely secure: an _upcalled compo-

nent may never return, thus monopolizing the proces-

sor. Several standard solutions can be used to build a
This binding type is the simplest form of binding and is secure upcall binding, for instance activating a timeout
used for interactions between components in the sam@nmasked prior to switching control to the upcalled ad-
domain. It is implemented by a simple pointer to an in-dress space) or using shared memory and a yield mech-
terface descriptor. anism to implement a software interrupt.



Synchronous LRPC binding local bindings used for combining the different compo-
nents into a working kernel.

An LRPC binding implements a simple synchronous """ Table 3 summarizes the performance of synchronous

teraction. It uses the syscall and upcall bindings. Thebindings provided by the 8RTEX library. Each call has
syscall binding stub directly calls the upcall stub which a single argument, thiais  pointer, and returns an in-

calls the target application component interface. teger. An interaction via a local binding takes 6 cycles.
This shows that a basic interaction betweenNk com-
ponents does not incur a significant penalty. TherK

Remote RPC binding TEX syscall binding takes 150 cycles, which can be re-
duced to only 81 cycles when applying the optimisation

A remote binding implements a simple remote Opera_described i.n section 45 By co.mparison, the Linux 2.4

tion invocation protocol, which provides transparent ac-SyScall forimplementing thgetpid  syscall takes 217

cess to components on a remote host. The binding dicYcl€s:

rectly builds and sends Ethernet packets, using the ne,

work protocol components. Although the binding is de- Interaction instructions _time(us) _cycles
signed to work between kernels, it can support interac local 6 0.016 8
tion between remote applications when combined with . s_yscall 115 0.300 150
the syscall and upcall bindings. Opt'm'?ed syscall 50 0.162 81
signal 35 0.128 64
upcall 107 0.346 173
LRPC 217 0.630 315
5 Evaluation optimized LRPC 152 0.490 245

Table 3: Performance of ®RTEX bindings

In this section, we describe several experiments in
assembling different operating system kernels usingddding a dynamic loader component to this small
THINK. We have implemented a minimal extensible dis-micro-kernel yields a dynamically extensible kernel, al-
tributed micro-kernel, a dedicated kernel for an activethough one without protection against faulty compo-
router, one for a Java virtual machine, and another fonents and possible disruptions caused by the introduc-
running a DOOM game on a bare machine. tion of new components. The size of this extensible
kernel is about 160KB with all components, including
All measurements given in this paper are performed ordrivers and managers needed for loading code from a
Apple Power Macintoshes containing a PowerPC GA4disk.
running at 500Mhz (except for the PlanP experiment,
which has been done on a PowerPC G4 at 350Mhz)By adding remote RPC components to the extensible
with 1MB external cache and 128MB memory. Net- kernel, we obtain a minimal distributed system kernel,
work cards used in our benchmarks are Agdrast PCI  which can call previously exported resources located on
100Mbps cards based on a Digital 21143 Tulip chip.  remote hosts.

Table 4 shows the costs of interaction through our re-
5.1 An extensible, distributed micro-kernel mote RPC binding. The table gives the time of com-
pletion of an operation invocation on a remote compo-
nent, with null argument and an integer result. The mea-
We have built a minimal micro-kernel which uses L4 surements were taken with an Ethernet network at 10
address space, and thread models. Instead of L4 IPGAbps and at 100 Mbps. A standard reference for low-
we used KORTEX LRPC binding. The resulting ker- |atency RPC communication on a high speed network is
nel size is about 16KB, which can be compared withthe work done by Thekkath et al. [32]. Compared to
a 10KB to 15KB kernel size for L4 (note that L4 has the 25Mhz processor used in their test, a back of the en-
been directly hand-coded in assembly language). Figur@elope computatichwould indicate that our results are
7 depicts the component graph associated with this minen a par with this earlier wobk Furthermore, the K-
imal micro-kernel. The figure shows the re[atlonshlps 5(500/25) (11,34 4) — 306 microsecond at 10Mbps to compare
between resources and resource managers, interfaces ¥m 296 microsecond found in [32].
ported by components, as well as language bindings and ®Especially since the breakdown of the costs is consistent with
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Figure 7: An example kernel configuration graph

RTEX remote RPC binding can be compared with vari-5.2 PlanP

ous ORBs such as Java RMI. Here, the 40 microsecond

synchronous interaction performance (even adding the

costs of syscalls at both sites) should be compared witfPlanP [33] is a language for programming active net-
the typical 1 millisecond cost of a similar synchronouswork routers and bridges, which has been initially pro-

interaction. totyped as an in-kernel Solaris module, and later ported
to the Linux operating system (also as an in-kernel mod-

Network Time (us) ule). PlanP permits protocols to be expressed concisely
type total network marshall. in a high-level language, yet be implemented efficiently
link driver +null call using a JIT compiler. While PlanP programs are some-

10baseT | 180 | 164.7 11.3 4 what slower than comparable hand-coded C implemen-

(91.5%) (6.3%) | (2.2%) tations, a network intensive program such as an Ethernet

100baseT| 40 24.7 113 4 learning bridge has the same bandwidth in PlanP as in

(61.7%) (28.3%)| (10%) the equivalent C program. This suggests that the Solaris

and Linux kernels must be performance bottlen€cks.
Table 4: Performance of synchronous remote binding
To show that we can get rid of this bottleneck inaflik
system, we took as an example a learning bridge proto-
These figures tend to validate the fact that theNk ~ col Plearn , programmed in PlanP, and we measured
framework does not preclude efficiency and can be useéroughput on Solaris, Linux and a dedicated kernel built
to build flexible, yet efficient kernels. with KORTEX. The configurations used in our four ex-

“PlanP runs in the kernel in supervisor mode; there is no copy of
those reported in [32]. packets due to crossing kernel/user domain boundaries.



periments were as follows. In all experiments, the hostxost of signals, whereas native threads perform as well
were connected via a 100Mbps Ethernet network, ands Java threads.

the two client hosts were Apple Power Macintoshes con-

taining a 500Mhz PowerPC G4 with 256Mb of main When porting a JVM, most of the time is spent in adapt-
memory and running the Linux 2.2.18 operating sys-ing native methods. Thanks to the reuse GhRTEX
tem. In the first experiment we measured the throughputomponents, implementing the Kaffe dedicated kernel
obtained with a null bridge, i.e. a direct connection be-took one week.

tween the two client hosts. In the second experiment, the

bridge host was a 167Mhz Sun Ultra 1 Model 170s withWhen executing standard Java applications with small
128Mb of main memory running Solaris 5.5. In the third memory needs, the memory footprint is 125KB fobK
experiment, the bridge host was an Apple Power MacinRTEX components, plus 475KB for Kaffe virtual ma-
tosh G4 350Mhz with 128Mb of main memory running chine, plus 1MB for bytecode and dynamic memory, for
Linux 2.2.18. In the fourth experiment, the bridge hosta total of 1.6MB.

was the same machine as in the third experiment but run-

ning KORTEX. Throughput was measured usitigp

running on client hosts. Table 5 shows the through-5.4 Doom

put of thePlearn PlanP program running on Solaris,

Linux and KORTEX. As we can see, using thedK

RTEX dedicated kernel increased the throughput morean interesting experiment is to build a dedicated ker-
than 30% compared to Linux (from 65.5MBps for Linux pe| that runs a video game (simulating e.g. the situation
to 87.6Mbps for FORTEX). in a low-end appliance). To this end, we have ported
the Linux Doom, version LxDoom [16], to HINK, us-

’ bridge | throughput | ing the KORTEX flat memory component. The port took
none 91.6Mbps two days, which mainly consisted in understanding the

PlanP/Solaris, Sparc 166Mhz | 42.0Mbps graphic driver. The memory footprint for this kernel

PlanP/Linux, PowerPC 350Mhz| 65.5Mbps is only 95KB for KORTEX components, 900KB for the
PlanP/KORTEX, PowerPC 350Mhz 87.6Mbps Doom engine and 5MB for the game scenario (the WAD

file).
Table 5: Performance of thedTNk implementation ver- )
sus Solaris and Linux implementation The THINK implementation is between 3% and 6%
faster than the same engine directly drawing on the
frame-buffer and running on Linux starting in single user
mode, as shown in table 7. Since there are no system
5.3 Kaffe calls during the test, and the game performs only compu-
tation and memory copy, the difference is due to residual
daemon activity in Linux and to the use of the flat mem-
Kaffe is a complete, fully compliant open source Javaory which avoids the use of the MMU. To pinpoint the
environment. The Kaffe virtual machine was designedcost of the latter, we have built the same application by
with portability and scalability in mind. It requires simply switching to the use of thedRTEX paged mem-
threading, memory management, native method interory management component. As we can see, the use of
facing and native system calls. Kaffe was ported tothe MMU adds about 2% on the global execution time.
a dedicated WINK kernel by mapping all system de- While the performance benefits are barely significant in
pendencies to KRTEX components. For example, ex- this particular case, this scenario illustrates the potential
ception management makes direct use of the excegdenefits of the HINK approach in rapidly building opti-
tions HAL component, whereas preemptive threads havéized, dedicated operating system kernels.
been implemented on both the priority-based scheduler,
which provides a native thread like semantics, and the external resolution
cooperative scheduler which provides a Java thread lik 320x200 640x480 1024x768

11

semantics. Thanks to our binding and component frame- KoRTEX(flat) 1955 491 177
work, making this change requires no madification in| KoRTEX(MMU) 1914 485 171
the threading code. Table 6 compares the performanqe Linux 1894 483 167
of Kaffe when running on Linux and when running on

our dedicated kernel. As we can see, exception manage- Table 7: Doom frames per second

ment is better on the dedicated kernel due to the reduced



Benchmark Kaffe/Linux Kaffe/KORTEX Kaffe/KORTEX
(java-thread) (java-thread) (native-thread)
synchronized(oy } 0,527us 0,363us 0,363us
try {} catch(...){} 1,790us 1,585us 1,594us
try {null.x()} catch(...){} 12,031us 5,094.us 5,059us
try {throw} catch(...{} 3,441us 2,448us 2,434us
Thread.yield() 6,960us 6,042us 6,258.s

Table 6: Evaluation of the Kaffe dedicatediiNK kernel

6 Assessment and Future Work e Developing a real-time OS component library and
exploiting it for the construction of an operating
system kernel dedicated to the execution of syn-

We have presented a software framework for building ~ chronous programming languages such as Esterel
flexible operating system kernels from fine-grained com- or Lustre.
ponents and it associated tools, including a library of
commonly used kernel components. We have evaluated ¢
our approach on a PowerPC architecture by implement-
ing components providing services functionally similar
to those implemented in the L4 kernel, and by assem-
bling specific kernels for several applications: an ac-
tive network router, a Java virtual machine, and a Doom, . | ..
) .. Availability
game. The micro-benchmarks (e.g. context swnchmgA
costs and binding costs) of our component-based micro-
kernel show a level of performance that indicates that
thanks to our flexible binding model, building an op-
erating system kernel out of components need not su
fer from performance penalties. The application bench-
marks for our example dedicated kernels show improved
performances compared to monolithic kernels, togethefa‘
with smaller footprints. We have also found that de-
veloping specific operating system kernels can be done

reasonably fast, thanks to our framework, component i12nY thanks to our shepherd, F. Bellosa, and to anony-

brary, and tools, although our evidence in this area reNOUS reviewers for their comments. S. Krakowiak

mains purely anecdotal. helpgd us tremendously improve on an earlier version
of this paper.

Exploiting existing OS libraries, such as OSKit,
and their tools, to enhance theoKTEX library
and provide a more complete development environ-
ment.

The KORTEX source code is available free of charge for
f[esearch purposes from the first two authors.
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