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Abstract: Design patterns o�er numerous advantages for software development, but can
introduce ine�ciency into the �nished program. Program specialization can eliminate such
overheads, but is most e�ective when targeted by the user to speci�c bottlenecks. Con-
sequently, we propose to consider program specialization and design patterns as comple-
mentary concepts. On the one hand, program specialization can optimize object-oriented
programs written using design patterns. On the other hand, design patterns provide infor-
mation about the program structure that can guide specialization. Concretely, we propose
specialization patterns, which describe how to apply program specialization to optimize uses
of design patterns.

In this paper, we analyze the specialization opportunities provided by speci�c uses of
design patterns. Based on the analysis of each design pattern, we de�ne the associated
specialization pattern. These specialization opportunities can be declared straightforwardly
using the specialization classes framework, developed in earlier work. Our experiments show
that such specialization leads to signi�cant performance improvements.
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Schémas de spécialisation

Résumé : Les schémas de conception sont reconnus pour faciliter le développement
de programmes à objets. Cependant, ils introduisent souvent une certaine ine�cacité au
sein du logiciel �nal. La spécialisation de programmes est une technique particulièrement
adaptée à l'optimisation des programmes à objets. Toutefois, l'utilisation e�cace de la
spécialisation sur des logiciels de grande taille requiert une connaissance détaillée des goulots
d'étranglement de la part du programmeur.

Dans cet article, nous proposons d'associer spécialisation de programmes et schémas de
conception. Notre propos est double. D'une part, la spécialisation permet de supprimer les
ine�cacités introduites par les schémas de conception. D'autre part, les schémas de concep-
tion fournissent des informations sur la structure du programme qui permettent de guider
le processus de spécialisation. Plus précisément, nous introduisons la notion de schémas de
spécialisation a�n de mémoriser comment la spécialisation de programmes peut optimiser
l'utilisation d'un schéma de conception. Nous démontrons l'applicabilité des schémas de
spécialisation, en caractérisant les opportunités de spécialisation présentes dans plusieurs
schémas de conception. Nous introduisons notre approche en présentant des exemples de
programmes spécialisés automatiquement au moyen des schémas de spécialisation.

Mots-clé : schémas de conception, spécialization de programmes, programmation orientée
object, Java, optimisation



Specialization Patterns 3

1 Introduction

Design patterns, as presented by Gamma et al. [16], describe well-tested program structures
that enhance modularity and code reuse. A program written using design patterns is struc-
tured into independent units that interact through generic interfaces, and that evolve over
time in response to changing conditions. Because design patterns are well-documented, their
use simpli�es the understanding of programs constructed from many independent units. The
�exibility inherent in this use of generic interfaces, however, intrinsically blocks optimiza-
tion across objects, and thus can carry a signi�cant performance penalty. This issue remains
largely unaddressed in the design pattern community.

Many applications do not fully exploit the �exibility o�ered by design patterns. For
a simple example, consider a typical use of the iterator design pattern [16], which sepa-
rates traversal of a data structure from its representation. Using the iterator pattern, an
implementation of a Set data structure might de�ne the member method as follows:

public class Set {

MinimalCollection coll; // underlying collection

public boolean member( Object o ) {

Iterator e = coll.iterator(); // obtain iterator

while( e.hasNext() ) { // while iterator has elements

Object x = e.next(); // obtain next iterator element

if( x.equals( o ) ) return true;

}

return false;

}

...

}

This de�nition of the member method can be used with any underlying MinimalCollection

implementation, letting the programmer freely choose the most appropriate concrete rep-
resentation for the task at hand. Nevertheless, our experiments show that the use of the
iterator pattern blocks compiler optimization of the element retrieval operations. When the
member method is used repeatedly to search MinimalCollection objects that have the same
representation, the �exibility provided by accessing the data through an abstract interface
is not needed. In this case, the member method can be optimized, by replacing the generic
uses of the iterator pattern (underlined in the method de�nition) by direct accesses to the
underlying data structure. This transformation gives a speedup ranging from 20% to 80%.1

These measurements suggest that the optimizations performed by state-of-the-art compilers
do not completely compensate for the genericity introduced by design patterns.

When the data representation is invariant over a period of time, specializing the program
to this representation before execution improves e�ciency. However, manual specialization is
error-prone, and introduces excessive program-maintenance overhead. Recently, automatic
program specialization has been shown to be e�ective in the context of object-oriented

1Experiments done with JDK 1.2.1 JIT and HotSpot compilers on SPARC architecture, with array and
linked list representations of the underlying MinimalCollection data structure.
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4 Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel

languages, speci�cally Java [22, 28]. Automatic program specialization systematically elimi-
nates both algorithmic and structural overheads, and consequently can signi�cantly improve
performance. For example, program specialization has been shown to be e�ective for elimi-
nating overheads introduced by software architectures [24].

Nevertheless, specialization is not always bene�cial; for example specializing with respect
to too many di�erent representations can cause code explosion. Therefore, the user must
explicitly target the specializer toward particular invariants and regions of code. The spe-
cialization classes framework proposed by Volanschi et al. [32] provides a simple and declar-
ative notation for expressing such specialization opportunities. Nevertheless, the problem
of identifying specialization opportunities remains. Pro�ling can help, however, it may not
reveal systematic structural overheads that block optimization throughout the program. A
systematic approach taking into account the program design is needed.

This paper

We observe that the use of design patterns in a program gives rise to patterns of structural
properties, which in turn give rise to patterns of overheads. These patterns of overheads form
patterns of opportunities for specialization. We propose the use of specialization patterns
as a complement to design patterns, to describe when, how, and why a program structured
using design patterns can bene�t from specialization. This approach retains the program
structuring advantages of design patterns, while relying on an automated transformation to
map generic code into an e�cient implementation. The contributions of this paper are as
follows:

� We address the much overlooked problem of performance of programs written using
design patterns, by analyzing the overheads systematically introduced by the use of
design patterns.

� We describe how to systematically apply program specialization to eliminate these
overheads, automatically mapping well-structured generic implementations into mono-
lithic e�cient ones.

� We de�ne specialization patterns for three well-known design patterns: the builder
pattern, the bridge pattern, and the strategy pattern.

� We provide several examples of how specialization can optimize uses of design patterns,
and provide benchmarks showing the e�ect of specialization on realistic versions of
these examples.

Earlier work has addressed the declaration of what to specialize in the form of specialization
classes [32] and how to specialize in the form of a prototype Java specializer [28]. Here, we
address the key issue of selecting where to specialize.

First, Section 2 describes our perspective on design patterns, followed by Section 3,
which explains program specialization. Section 4 describes specialization of design patterns
by means of specialization patterns. Afterwards, Section 5 provides a substantial example,

INRIA



Specialization Patterns 5

combining several design patterns. Then, Section 6 assesses the application of program
specialization to uses of design patterns. Finally, Section 7 presents related work, Section 8
discusses future work, and Section 9 concludes.

Conventions: Throughout this paper, we consider only the design patterns described by
Gamma et al. [16]. Also, to make it easier to display example programs, we have omitted
the Java visibility modi�ers for �elds and methods.

2 Design Patterns

When a software system evolves frequently, reusable and recon�gurable program compo-
nents are needed. The notions of reusability and recon�gurability are central to object-
oriented programming: reuse is provided by inheritance, while recon�gurability is achieved
by organizing the program using objects, which serve as composable building blocks. Nev-
ertheless, these features tend to distribute functionality across the entire program. As a
result, programs that heavily exploit inheritance and object composition can be di�cult for
programmers to understand and for compilers to optimize.

2.1 The structure of adaptable programs

The degree of adaptability in a program is determined by the ease with which the implemen-
tation can be modi�ed as needs change, and the ability of the program to react to changing
conditions at run time. These issues are a�ected by how classes are de�ned.

A simple approach to adapting a program is to de�ne a new class by using inheritance
to extend the state and behavior of an existing class. The use of inheritance eliminates the
need to reimplement generic functionality. Nevertheless, because the inheritance relationship
is declared explicitly in the source program, the program must be rewritten to adapt to
changing conditions.

Rather than de�ning a class in terms of an existing class, a new class can be de�ned
using object composition, by referring to the methods and local state of other objects. Like
inheritance, object composition eliminates the need to reimplement existing functionality.
This approach, however, also allows adaptability at run time, as the local state of the
referenced objects changes, or as these objects are replaced by other objects respecting
the same interface. De�ning objects in terms of abstract interfaces allows an object to be
replaced by another object that has an unrelated implementation.

2.2 The role of design patterns

The use of inheritance and object composition to enhance adaptability is non-trivial and
can make it di�cult to understand how program components �t together. Design patterns
address these issues. Each design pattern focuses on a single problem often encountered in
developing an adaptable program, and proposes a widely applicable solution. By following

RR n�3853



6 Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel

a design pattern the programmer takes advantage of a well-tested program structure that
is open for future extensions. Adaptable programs can be described in terms of the design
patterns they implement, which provides a guide as to how the functionality of the program
is likely to be distributed among the class de�nitions.

Furthermore, to simplify program development and facilitate communication, programs
may be explicitly organized according to well-known design patterns, even when the full
�exibility provided by the chosen design patterns is not needed. Particularly in this case,
e�ective optimization techniques for the kinds of programs that result from the use of design
patterns are critically needed.

2.3 Overheads introduced by design patterns

In practice, the separation of classes using abstract interfaces implies that the method de�-
nition associated with a given method invocation is often not obvious to the compiler. When
this is the case, the method invocation must be implemented as a virtual call. The use of
virtual calls divides a program into separate blocks that must be individually optimized,
e�ectively erecting optimization barriers throughout the program. Virtual calls both de-
feat branch prediction (and thereby instruction pipelining), and inhibit inlining, blocking
subsequent traditional intra-procedural compiler optimizations [6, 14].

Many compilers go to great lengths to eliminate virtual calls [1, 12, 13, 27]; some even
make use of constrained specialization techniques [10, 20], such as customization [7]. Stan-
dard compiler optimizations rely on static analysis; when the method referenced by a method
call can be determined statically, the method call can be implemented using a direct call.
Calls to inherited methods can often be implemented as direct calls, because the inheritance
hierarchy is explicit at compile time. When a method of a referenced object is invoked,
however, the call can only be implemented as a direct call if it can be statically determined
that at run time the reference always refers to an object of the same type. This property
rarely holds in large programs with complex class hierarchies that are written using design
patterns, where the potential of the program to adapt to changing conditions is re�ected in
a multitude of possible implementations at each adaptable program point.

When the number of possible callees is limited, some compilers replace a virtual call
by a conditional that selects at call-time which callee to invoke with a direct call. This
transformation can be directed using automatically gathered pro�le information, and enables
further optimizations through inlining or customization [17, 20]. However, the cost of a
runtime decision remains, and the control �ow is only somewhat simpli�ed.

These observations are illustrated by the the benchmarks reported in Section 6. Using
state-of-the-art Java compiler technology, we found that programs written using design
patterns that operate through abstract interfaces run at about half the speed of programs
that explicitly use direct calls.

INRIA



Specialization Patterns 7

3 Program Specialization

Program specialization is the optimization of a program (or a program fragment) based on
information about the context in which it is used, thus generating a dedicated implementa-
tion. In our framework, specialized methods are added to existing classes; no changes are
made to the class hierarchy.

One approach to automatic program specialization is partial evaluation, which performs
aggressive inter-procedural constant propagation of all data types, and performs constant
folding and control-�ow simpli�cations based on this information. Partial evaluation has
been extensively investigated for functional [4, 8], logic [23], and imperative [2, 3, 9] lan-
guages. This technique has been recently extended to Java, by Schultz et al. [28], using
C as an intermediate language. The implementation combines the Harissa bytecode to C
compiler [26] with the Tempo program specializer for the C language [9]. For this paper, we
have extended this approach with an automatic translation of specialized programs back to
Java.

3.1 Optimization by specialization

In the context of design patterns, we are primarily interested in using specialization to
eliminate virtual calls. Concretely, we would like to specialize a program written using
design patterns to the types of the objects it manipulates, as well as to (some of) the
values these objects contain. By specializing the program with respect to a �xed object
structure, we safely bypass the abstract interfaces that isolate program components, possibly
triggering other optimizations, either during specialization or at compile time, and produce
a monolithic block of optimized code.

A partial evaluator can rarely deduce specialization invariants from a large program as
precisely as a human programmer can, and specialization of non-critical parts of a program
may cause unwanted overheads. Thus, specialization is most e�ective when directed by the
user towards a limited part of the program where specialization is believed to be bene�cial.
For this reason, the Tempo specializer has been designed to operate on a program slice,
which can be re-inserted into the program after specialization. Such a program slice and the
invariants for which it is to be specialized can be concisely described using specialization
classes. Specialization classes insert guards into the specialized program that ensure that
the specialized code is used only when the invariants are satis�ed [32]. In the context of
design patterns, specialization classes allow the programmer to specialize for local invariants
that only hold for the objects that play a role in the use of a design pattern.

3.2 Limitations of specialization

The bene�ts of specialization are limited by the degree to which the specializer can propagate
the user-supplied invariants through the program, and by the utility of the transformations
triggered by these invariants. Specialization by partial evaluation does not propagate infor-
mation that in some way depends on values not known to the specializer. Consequently,
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8 Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel

this form of specialization is most e�ective when there is a clean separation between the
terms that depend only on explicit constants or user-supplied invariants, and the unknown
terms of the program. Specialization classes can be used to provide the specializer with
extra information, but because of the need to react at run time when specialization invari-
ants are invalidated, the use of specialization classes does add some ine�ciency. Excessive
propagation of invariants can also be detrimental. In particular, specialization can cause
code explosion either by too much loop unrolling, or by generating a very large number of
specialized methods.

3.3 Specialization example

As an example of automatic program specialization, let us revisit the example of the Iterator,
described in Section 1.

public class Set {

MinimalCollection coll; // underlying collection

public boolean member( Object o ) {

Iterator e = coll.iterator(); // obtain iterator

while( e.hasNext() ) { // while iterator has elements

Object x = e.next(); // obtain next iterator element

if( x.equals( o ) ) return true;

}

return false;

}

...

}

We specialize the use of the iterator pattern in the member method to the speci�c type of
the iterator object, thus reducing the number of virtual calls. Suppose that the Minimal-

Collection object referenced through the coll �eld is known to be an object of a speci�c
implementation class named Array, presented in the appendix. The Array data structure
always uses the ArrayIterator iterator (also found in the appendix), so it is advantageous
to specialize the member method for the coll �eld being of Array type.

The specialization invariant can be declared using a specialization class2 as follows:
specclass Member_Array specializes Set {

Array coll; // coll field is of type Array

void member( Object o ); // specialize the member method

}

Specializing according to Member_Array unfolds the references to the methods of the enu-
merator, yielding the following method:

2To improve expressiveness, we have slightly generalized the syntax of specialization classes presented by
Volanschi et al.[32]. For example, we allow invariants over formal parameters, and invariants that declare an
object to have a speci�c type. These extensions are straightforward to implement, and do not signi�cantly
changes the specialization class framework.

INRIA
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public boolean member_Array( Object o ) {

ArrayIterator e = new ArrayIterator( (Array)coll );

while( e.current < e.max ) {

Object x = e.array.elements[e.current++];

if( x.equals( o ) ) return true;

}

return false;

}

The specialized code explicitly allocates a new ArrayIterator, which is local to this method.
It is also now explicit that the array elements are accessed sequentially within the loop. Both
of these features can be exploited by a compiler performing intra-procedural optimizations.
The automatically specialized de�nition is between 20% and 80% faster than the original
de�nition.

Specialization with respect to one invariant can often trigger other specialization oppor-
tunities. Here, if the length of the Array object is known, the specializer can unroll the
loop, so that only the code needed to compare the unspeci�ed data contained in the array
remains. Similarly, if the type of the elements contained in the Array object is known, the
specializer can select the corresponding de�nition of the equals method, allowing the call
to be inlined into the loop. Thus, specialization of design patterns can trigger further op-
timization: eliminating the indirection provided by the design pattern makes it possible to
exploit other invariants.

4 Specialization Patterns

Design patterns facilitate communication of design ideas by encapsulating a characterization
of a common problem, together with a programming strategy that solves the problem, as
well as examples and documentation, into a single logical unit. Specialization patterns
complement design patterns, by documenting a specialization process that results in an
e�cient implementation.

4.1 Specialization patterns: de�nition and use

A specialization pattern describes the overheads intrinsic in using a particular design pat-
tern, documents how to use specialization to eliminate these overheads, and provides an
example that clearly illustrates how to specialize a use of the design pattern. In addition,
a specialization pattern can refer to other specialization patterns, to describe how multiple
design patterns can be specialized together. Specialization patterns not only guide special-
ization after a program has been written, but can also help the programmer structure the
program so that subsequent specialization will be bene�cial.

In the spirit of design patterns, specialization patterns are based on the template of
Figure 1, ensuring a consistent format. The template includes sections that relate the
specialization pattern to the design pattern, criteria for judging when it is worthwhile to
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Name: The name of the associated design pattern.

Description: A short description of the design pattern.

Extent: The program slice that is relevant when optimizing a use of the design pattern.

Overhead: Possible overheads associated with use of the design pattern.

Compiler: Analysis of when these overheads are eliminated by standard compilers.

Approach: Specialization strategies that eliminate the identi�ed overheads.

Condition: The conditions under which the specialization strategies can be e�ectively exploited.

Specialization class: Guidelines for how to write the needed specialization classes, and how to
most e�ectively apply them.

Applicability: A rating of the overall applicability of specialization to a use of the design pattern,
using the other information categories as criteria.

Example: An example of the use of specialization to eliminate the identi�ed overhead; the
example may include specialization classes or textual descriptions.

Figure 1: Specialization pattern template

write
generic
program

specialization
select

patterns

design
patterns

specialization
patterns

revise
generic
program

deploy
specialized

program
specialize compile

specialization result

Figure 2: Overview of specialization process.

specialize a use of the design pattern, detailed instructions for specializing, and �nally a
specialization example. Sample specialization patterns are illustrated in Figures 3, 5, and 7.

Just as a design pattern takes into account di�erent programming languages, a specializa-
tion pattern should take into account di�erent program specializers. At the time of writing,
the only existing specializer for a realistic object-oriented language that the authors are
aware of is the specializer described by Schultz et al. [28]. In the context of this paper, that
specializer will thus serve to de�ne the minimal expected functionality. As other specializers
are developed, the specialization patterns can be re�ned accordingly.

INRIA



Specialization Patterns 11

Figure 2 shows how specialization patterns �t into the software development process.
Once the program is written, specialization opportunities are identi�ed as indicated by the
specialization patterns corresponding to the design patterns used in the program. Special-
ization classes are then written as suggested by the selected specialization patterns. The
program and the specialization classes are then provided to the specializer, which generates
a specialized program.

We now identify the specialization opportunities provided by creational, structural, and
behavioral design patterns, and present examples of specialization patterns.

4.2 Creational Patterns

A creational design pattern abstracts the construction of objects, known as the products,
delegating parts of the instantiation process to auxiliary classes. The use of a creational
pattern separates the operations on an object from the underlying representation, allowing
the representation to be changed transparently, without a�ecting the rest of the program.
Nevertheless, this abstraction barrier implies that the product objects must be accessed
using virtual calls, which block optimization.

Memory allocation and object initialization are dominating factors during object cre-
ation, so simply eliminating the virtual calls associated with the creation process is unlikely
to signi�cantly optimize a program. Thus, specialization should also be applied to the parts
of the program where the products are used, by specializing the uses to the concrete type
of each product. Such specialization permits direct access to the product objects, enabling
ordinary intra-procedural optimizations. However, such a specialization strategy is only
worthwhile when the specializer can determine how the products are manipulated after they
have been created. Thus, a specialization pattern for a creational pattern can only give very
limited information on when it is worthwhile to specialize. On the positive side, the product
is known to the specializer when its creation can be traced to a speci�c use of a creational
pattern, so creational patterns do not obfuscate the specialization process.

Example: builder pattern

Figure 3 de�nes the specialization pattern for the builder pattern. As an example of applying
the builder specialization pattern, Figure 4a shows the ListBuilder interface for creating
AbstractList lists using the builder pattern. An implementation must provide the methods
start, which initializes the list, add, which extends the list, and getProduct, which �nishes
the production sequence by returning the head of the list. Also de�ned is the class Main

with a method f, which uses the ListBuilder interface to construct a list, and then accesses
the head of the list just produced. Figure 4b shows the concrete builder implementation
LinkedListBuilder, which produces linked lists of type LList (the de�nitions of AbstractList
and LList are trivial, and not shown here).

The specialization class of Figure 4c speci�es that the method f of the class Main should be
specialized with respect to a speci�c builder, namely the LinkedListBuilder implementation.
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12 Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel

Name: Builder pattern

Description: The builder pattern allows a complex structure to be created by invoking a se-
quence of methods de�ned in a generic builder interface. The use of this pattern separates
the construction process from the underlying representation.

Extent: Specialization is applied to a collection of classes implementing the concrete represen-
tation of a structure, a class implementing the builder interface, and a client, which builds
a structure using the generic operations provided by the builder interface. Also any subse-
quent use of the product structure.

Overhead: Separation of the type of the product from the client means that product objects
must be accessed using virtual calls. For the same reason, little is known about the initial
state of the product objects.

Compiler: When there is either just a single kind of builder or a single kind of product, a
compiler can usually generate direct calls for accessing the methods of the product object.
Nevertheless, a compiler typically does not make use of initialization information.

Approach: Specializing the client with respect to a particular implementation of the builder
makes the objects comprising the structure directly accessible to the client. Accesses to the
components of the structure can then be implemented using direct calls to the methods of
these objects. Information about the current state of these objects can be used for further
optimizations.

Condition: The type of the builder must be known to the specializer (possibly as a specialization
class invariant). To guarantee specialization of the builder, the sequence of building actions
must be �xed within the program. Furthermore, to guarantee direct use of the products
and that information about their state is exploited by the specializer, they must be used in
a �xed way.

Specialization class: The specialization class should �x the type of the builder, and specify
specialization of a method that both uses the builder and the resulting product objects.

Applicability: High when the specialization class can be placed properly and the product objects
are used often. Low to none otherwise.

Example: See Figure 4 and explanation in text.

Figure 3: Builder specialization pattern

In the specialized program (Figure 4d), virtual calls have been replaced by direct data-
structure manipulations.3 Specialization �rst replaces the virtual calls through the List-

Builder interface by direct calls, and then inlines the method de�nitions into the caller,
eliminating temporary variables when appropriate.

Specialization to a single concrete implementation permits the product objects to be
accessed directly as long as they are not manipulated in a dynamic way. In the example,

3As is the case for all of the examples shown in this paper, the specialized code has been resugared for
readability.
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interface ListBuilder {

void start();

void add( Object o );

AbstractList getProduct();

}

class Main {

ListBuilder b;

void f() {

b.start();

b.add("x");

b.add(new Vector());

AbstractList p = b.getProduct();

something( p.getElm() );

}

}

class LinkedListBuilder

implements ListBuilder {

LList head, c;

void start() {

head = new LList(null);

c = head;

}

void add( Object x ) {

c.next = new LList(x);

c = c.next;

}

AbstractList getProduct() {

return head.next;

}

}
(a) Use of builder through interface (b) Concrete builder for linked lists

specclass Main_LL

specializes Main {

LinkedListBuilder b;

f();

}

void f_LinkedListBuilder() {

LinkedListBuilder b;

b.head = new LList(null);

b.c = b.head;

b.c.next = new LList("x");

b.c = b.c.next;

b.c.next =

new LList(new Vector());

b.c = b.c.next;

AbstractList p = b.head.next;

something( p.elm );

}
(c) Declaration of specialization to the

LinkedListBuilder builder
(d) Result of specialization

Figure 4: Specializing a use of the builder pattern.

the product is used in a �xed way, and the virtual call to getElm has been replaced by
its concrete de�nition in the LList class. If desired, the method something can also be
specialized, adapting it to the concrete value stored in the �rst element of the LList object.
Had the product been manipulated in a dynamic way, the bene�ts of specialization would
have been negligible.

Other creational patterns

In addition to the builder pattern, the abstract factory and prototype patterns also hide
the types of the objects that they produce; thus, uses of these patterns are good targets
for specialization. But as is the case for all creational patterns, whether the program will
bene�t from specialization depends on how the products are manipulated. The factory and
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singleton patterns are much simpler, and the types of the objects that they produce is usually
evident. Uses of these patterns are thus easily handled by an optimizing compiler, but can
of course be specialized as well.

4.3 Structural Patterns

Structural design patterns organize relations between objects, enhancing reuse and repla-
cability. They allow the programmer to combine individual objects respecting a common
interface into compound objects that behave in new ways. By separating the objects using
interfaces, structural patterns allow the object structure to be transparently extended, and
new classes implementing the interface to be added. This �exibility implies, however, that
the components must interact using virtual calls, obscuring the �ow of control through the
object structure.

A program that builds and traverses an object structure can be specialized to a speci�c
layout of this structure. Specialization permits the objects of the structure to interact
directly, and all of the basic operations on the structure to be collected in a single place. If the
structure is not modi�ed after its creation, the methods that manipulate it can be directly
specialized to its layout. More generally, specialization classes can be used to describe
layouts that are of interest. As always, specialization classes introduce overheads, so the
latter approach might not be bene�cial if the structure changes too often, or if the amount
of computation within the structure is too limited. Specialization of a structural pattern
can generate code having size proportional to the size of the object structure. Thus, when a
structure may be prohibitively large, specialization should be applied with caution to avoid
code explosion.

Example: bridge pattern

Figure 5 de�nes the specialization pattern for the bridge pattern. As an example of ap-
plying the bridge specialization pattern, Figure 6a shows a use of the bridge pattern. The
class Complex represents complex numbers, with the speci�c implementation deferred to a
ComplexImpl object. The multiply operation is delegated to the concrete implementation,
whereas the square operation is de�ned in the interface object. The function f of the class
SquareFn simply computes the square of a complex number. Two concrete implementations
of ComplexImpl are given in Figure 6b: the RectComp implementation uses rectangular co-
ordinates to represent complex numbers, whereas the PolarComp implementation uses polar
coordinates.

The specialization class SquareFn_RectComplex (Figure 6c) speci�es that f should be spe-
cialized to complex numbers that ful�ll the invariants given in the Rectangular specialization
class. This specialization class speci�es that the implementation object has type RectComp.
The result of specialization is an implementation of f where the complex numbers are ac-
cessed directly, allowing the mathematical operations to be applied directly to the object
�elds. Specialization �rst replaces virtual calls from f to the bridge interface object by di-
rect calls, and similarly replaces virtual calls from the interface object to the implementation
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Name: Bridge pattern

Description: The bridge pattern separates an object into a generic interface object and an
implementation object. The client accesses the object via the generic interface object, which
provides access to a speci�c implementation object using delegation. The bridge pattern
decouples an abstraction from its implementation, so that the two can vary independently.

Extent: Specialization is applied to an interface object which has operations that are de�ned in
terms of generic operations on an implementation object.

Overhead: To allow the implementation to vary independently from the generic interface object,
method invocations from the generic interface object to the implementation object are
implemented using virtual calls. Furthermore, the client typically requires access to the
methods of the implementation object, which implies two levels of method invocation (�rst
a call to the interface object, then the subsequent call to the implementation object).

Compiler: Since there normally is a hierarchy of implementation classes, a compiler can rarely
eliminate the virtual call from the interface object to the implementation object.

Approach: When the components connected by the bridge are known, the bridge can often be
eliminated. This allows direct access from the interface object to the implementation object.

Condition: If the coupling between the interface object and the implementation object never
changes or only changes in a �xed way, then it can be specialized to remove one level of
indirection. If the interface object is used by the program in a �xed way, then the interface
indirection can be specialized away as well.

Specialization class: The specialization class should at least �x the type of the implementation
object, and should ideally specify specialization of a method the uses the interface object
several times. Alternatively, when a single method in the interface object calls is imple-
mented using several methods in the implementation object, the specialization class can
specify specialization of the interface object.

Applicability: Medium when the specialization class can be placed properly or when there are
many calls from the interface to the implementation object. Low otherwise.

Example: See Figure 6 and explanation in text.

Figure 5: Bridge specialization pattern

object by direct calls. These direct calls are inlined, eliminating temporary variables when
appropriate, to produce the specialized implementation of f shown in Figure 6d.

Other structural patterns

As is the case for the bridge pattern, the adapter, composite, decorator, facade, and proxy
structural patterns allow the building of structures from objects hidden behind generic
interfaces, so uses of these patterns are good targets for specialization, and specialization is
guaranteed to simplify the program when the structure does not change or when it can be
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interface ComplexImpl {

void mult( Complex c );

double r();

double i();

}

class Complex {

ComplexImpl imp;

void multiply( Complex c ) {

imp.mult( c );

}

void square() {

imp.mult( this );

}

double r() { return imp.r(); }

double i() { return imp.i(); }

}

class SquareFn {

void f( Complex x ) {

x.square();

}

}

class RectComp

implements ComplexImpl {

double r, i;

void mult( Complex c ) {

double cr = c.r();

double ci = c.i();

double nr = r*cr - i*ci;

double ni = r*ci + i*cr;

r = nr; i = ci;

}

double r() { return r; }

double i() { return i; }

}

class PolarComp

implements ComplexImpl {

...polar coordinates...

}

(a) Generic number interface and use (b) Speci�c number implementations

speclass SquareFn_RectComplex

specializes SquareFn {

void f( Complex x ),

Rectangular x;

}

specclass Rectangular

specializes Complex {

RectComp imp;

}

void f_RectComplex( Complex x ) {

RectComp tmp = x.imp;

double cr = x.imp.r;

double ci = x.imp.i;

double nr = tmp.r*cr - tmp.i*ci;

double ni = tmp.r*ci + tmp.i*cr;

tmp.r = nr; tmp.i = ni;

}

(c) Declaration of specialization to the
NormalNum implementation

(d) Result of specialization

Figure 6: Specializing a use of the bridge pattern.

encapsulated using specialization classes. The �yweight pattern optimizes memory usage by
sharing objects, and cannot be specialized in any obvious way.

4.4 Behavioral Patterns

Behavioral patterns abstract over the control �ow, providing generic ways of parameterizing
behavior. They o�er a clean separation between di�erent aspects of an overall behavior,
making it possible to construct new behaviors by composing individual objects or classes.
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The overall behavior is distributed among cooperating objects, and can be modi�ed by
changing the way objects are composed together. Every time the collaborating objects that
implement a behavior are used for a speci�c function, they must interact with each other
using virtual calls.

A program using a behavioral pattern can be specialized to a speci�c behavior, by spec-
ifying the values and objects that control the behavioral pattern. Specialization transforms
the complete description of the behavior into a single unit. Nevertheless, the behavioral
design patterns are so diverse that it is only for speci�c patterns that we can guarantee
bene�ts from specialization. Depending on the speci�c pattern in question, specialization
can be done by specializing the pattern use to the object structure that it processes, and
possibly to any values that control how it processes the object structure. In any case, if the
objects that make up the use of the pattern are cannot be determined by the specializer,
the behavioral pattern cannot in general be specialized.

Example: strategy pattern

Figure 7 de�nes the specialization pattern for the strategy pattern. As an example of its
application, Figure 8a shows a use of the strategy pattern. The Image class represents
an image using pixels de�ned by the RGB class. The process method of an Image object
applies the pixelwise processing strategy stored in the �eld op to each the pixel of the image.
Figure 8b de�nes two such single-pixel operations: Scale, which scales a pixel (thereby
changing its brightness), and RedOnly, which discards all but the red component.

The specialization class ScaleByTwoProcess (Figure 8c) declares that the operation is a
Scale operation, and that the scaling value is 2:0. We thus specialize the Image class to
a strategy that is speci�ed not only in terms of its type, but also in terms of its internal
state. Specialization merges the e�ect of the strategy object into the original process method
(Figure 8d), by eliminating the virtual call to the strategy method, inlining the call, and
propagating the known scaling value.

Other behavioral patterns

As is the case for the strategy pattern, precise specialization patterns can be given to the
chain of responsibility, interpreter, mediator, observer, state, and visitor patterns. For the
interpreter and visitor patterns, specialization is bene�cial when the use of the pattern can
be specialized with respect to the structure processed by the pattern, in which case the use
of the pattern can be completely eliminated. The command and iterator design patterns
represent opportunities for specialization, but it is di�cult to precisely specify when this is
the case, except for the most basic case where the behavior is obtains genericity through
inheritance, and can easily be handled by an optimizing compiler. The memento pattern
externalizes the state of an object, and cannot be specialized in any obvious way.
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Name: Strategy pattern

Description: The strategy pattern allows clients to transparently replace one algorithm by an-
other. This design pattern allows clients to choose among whole families of algorithms
rather than just a single algorithm.

Extent: Specialization is applied to a family of algorithms all implementing the same abstract
interface, and a client that uses such algorithms through this abstract interface.

Overhead: All operations provided by the algorithm must be accessed through the abstract
interface. The less computation is done by the algorithm, the more this overhead is becomes
noticeable.

Compiler: Unless the strategy is chosen explicitly before it is used, a compiler is unlikely to
bypass the abstract interface.

Approach: By specializing the client to the concrete algorithm, the abstract interface can be
bypassed, and the algorithm can be inlined into the client. This opens opportunities for
further specialization and optimization of the algorithm to the context in which it is being
used.

Condition: If the coupling between the client and the concrete strategy being used never changes,
then the client can be specialized to this strategy. If the coupling does not change during
the invocation of a method in the client, the specialization classes can introduce a local
invariant, allowing this method to be specialized to the strategy. If changes in the coupling
are completely �xed then the client is guaranteed to be specializable to the strategy.

Specialization class: The specialization class should �x the type of the strategy, and specify
specialization of a method that applies the strategy.

Applicability: High when the strategy is used inside a loop, medium when used a few times,
low when used only once.

Example: See Figure 8 and explanation in text.

Figure 7: Strategy specialization pattern

5 A Complete Example

To illustrate the combined e�ects of specialization of several design patterns, we provide a
complete example: a graphical application. We �rst describe the example, focusing on the
toolkit used to write the application, and then characterize the overheads present in the
application and explain how they can be eliminated.

5.1 Description

Our example is a graphical text editor application written using an abstract windowing
toolkit, styled after the Java JDK 1:1 AWT (abstract windowing toolkit). Graphical win-
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interface RGBOP {

void handle( RGB pixel );

}

class RGB { double r, g, b; }

class Image {

RGB [][]img; int w, h;

RGBOP op;

void process() {

for(int i=0; i<w; i++)

for(int j=0; j<h; j++)

op.handle(img[i][j]);

}

...

}

class Scale implements RGBOP {

double s;

void handle( RGB p ) {

p.r*=s;p.g*=s;p.b*=s;

}

}

class RedOnly implements RGBOP {

void handle( RGB p ) {

p.g=0;p.b=0;

}

}

(a) RGB Image which uses operator (b) RGB pixel operations

specclass ScaleByTwoProcess

specializes Image {

ScaleByTwo op;

void process();

}

specclass ScaleByTwo

specializes Scale {

s == 2.0;

}

void process_ScaleByTwo() {

for(int i=0; i<w; i++ )

for(int j=0; j<h; j++ ) {

RGB p = img[i][j];

p.r*=2.0;p.g*=2.0;p.b*=2.0;

}

}

(c) Declaration of specialization to the
Scale operation

(d) Result of specialization

Figure 8: Specializing a use of the strategy pattern.

dowing toolkits often contain many opportunities for specialization, and the JDK 1:1 AWT
is no exception.4

We focus on the following uses of design patterns in the toolkit:

� The structural pattern composite is central to most graphical toolkits, allowing graphi-
cal widgets and widget containers to be freely combined. To use the composite pattern,
each graphical widget and container extends an abstract class, Component (the name
used in JDK 1:1).

� To allow our toolkit to function with any concrete windowing environment, we separate
each component into its general representation and its system-speci�c peer, using the
bridge pattern (Section 4.3). The peer objects are created using the abstract factory
creational pattern, which de�nes a general interface for creating peers. To use the

4The JFC Swing library contains even more opportunities for specialization, but the standard JDK 1:1

AWT is su�cient for this example.

RR n�3853



20 Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel
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Figure 9: Overview of graphical application.

abstract factory, we let a central class (named Toolkit in JDK 1:1) function as an
interface for instantiating peers.

� To simplify event handling, we use the observer behavioral pattern (for which there
are standard interfaces in JDK 1:1). Clients subscribe to events generated by spe-
ci�c widget objects, such as buttons, and are noti�ed when these events occur (using
standard Java method calls).

The class hierarchy of the basic graphical objects of the toolkit is shown in Figure 9a.
When launched, the text editor initializes itself, arranging its graphical appearance (il-

lustrated in Figure 9b), and then waits for input events to be generated by the user, each
event triggering a speci�c action.

5.2 Overheads

Each use of a design pattern in the graphical toolkit gives rise to a speci�c overhead. The
use of the composite pattern makes it possible to change the graphical appearance of the
program at run time. A virtual method such as repaint, that is implemented by all the
Component objects, must use virtual calls to traverse the composite structure. Furthermore,
the use of the abstract factory (together with the bridge) hides the types of the peer objects,
in principle allowing new peers to be introduced at any point; all calls from a Component

object to its native implementation are virtual. Finally, every time an event is generated,
a corresponding event object is created and passed to the observers currently subscribed to
this event. Each observer inspects the event and acts accordingly.

Figure 10a shows the call graph of invoking the repaint method on the top-level win-
dow object. The object structure is traversed, using virtual calls to propagate the repaint

operation to all the peer objects.

INRIA



Specialization Patterns 21

Button

Button

Button

Button

Button

Window

Panel

Text Label Text

PanelPeer

TextPeer TextPeer

Panel

ButtonPeer LabelPeer PanelPeer

WindowPeer

ButtonPeer

ButtonPeer

ButtonPeer

ButtonPeer

interface

class

virtual call

(a) Before specialization

Windowclass

direct call

XButtonPeer

XPanelPeer

XButtonPeer

XButtonPeer XButtonPeer

XButtonPeer

XTextPeer

XLabelPeer

XTextPeer

XPanelPeer

XWindowPeer

(b) After specialization

Figure 10: Call graph of repaint(), before and after specialization.

5.3 Specialization

First, the application is specialized to the way the composite objects are composed. The
repaint method of the root Window object can thus refresh the entire application at once,
without traversing the widget structure. Next, the application is specialized to the concrete
peer objects being used. This transformation allows composite objects to directly manipulate
their peer objects. Finally, the application is specialized to the concrete observer/observee
relations of the application. An event now results in the actions that it implies being directly
performed throughout the application.

Figure 10b shows the call graph of invoking the repaint method after specializing for
the widget structure and a speci�c set of peers. Calls are made directly to the peer objects,
without traversing the object structure.

A more complex application might manipulate its graphical appearance while running.
However, such an application would often be divided into several independent units, that
are con�gured individually. Specialization can be applied separately to each such unit.

6 Assessment

Program specialization is applicable when design patterns are not used in their full gen-
erality. Design patterns allow the same program parts to be used to implement di�erent
functionalities. Specialization can optimize such program parts when the exact function-
ality is �xed, either because it is explicit in the program or because it is made so using
specialization classes.

On the contrary, those uses of design patterns whose features are completely exploited are
not suitable for specialization. Highly dynamic programs that often recon�gure themselves
are easy to write using design patterns, but are di�cult to specialize. Specialization classes
are only useful here when a �xed implementation can be selected outside of the critical
regions of the program, since there is an overhead associated with switching between spe-
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JDK 1.2 JIT HotSpot
Benchmark Normal Spec. Speedup Normal Spec. Speedup

Bridge (mandelbrot) 2.582 2.583 1.00 6.458 5.682 1.14
Builder (matrix) 4.654 3.778 1.23 4.988 2.613 1.91
Strategy (image) 3.298 1.626 2.03 2.283 0.768 2.97
Iterator (member) 6.132 5.114 1.20 6.227 3.409 1.83

Table 1: Benchmark results (real time, in seconds)

cialized implementations. Knowledge of the degree of adaptability associated with each use
of a design pattern is thus essential for using specialization patterns to optimize a program.

To illustrate the performance bene�ts of eliminating uses of design patterns by special-
ization, we consider a few benchmarks, based on the examples of Section 4. In practice,
however, the improvement due to specialization can vary widely, depending on the number
of specialization opportunities introduced by eliminating the abstraction barriers created by
the use of design patterns.

For benchmarks, we use the builder design pattern to build matrices with sparse and
dense underlying representations, the bridge design pattern to compute the Mandelbrot set
using complex number arithmetic, and �nally the strategy pattern to perform a number of
di�erent image processing tasks. In addition, the iterator example from Sections 1 and 3.3
is used to implement various set operations. The benchmarks have been done using Sun's
JDK 1.2.1 JIT and HotSpot compilers on a 300MHz UltraSparc, ignoring the �rst iteration
of each benchmark to minimize cache e�ects and ensure that all dynamic optimization is
complete. The results are shown in Table 1.

The speedup due to specialization varies with the complexity of the adaptation taking
place in the benchmark. The bridge benchmark only has a few, simple points of adaptation
and is dominated by numerical computation, so the bene�t due to simply specializing away
the bridge ranges from non-existent to minor. The iterator and builder benchmarks have
more points of adaptation, and so they bene�t more from specialization. Last, the strategy
benchmark has a single but critical point of adaptation, that can be completely eliminated
using specialization, which greatly simpli�es the program control �ow.

7 Related Work

Program rewriting techniques can be used in place of program specialization to map uses
of design patterns into e�cient implementations, as shown by Turwé and De Meuter [30].
Here, a program transformation engine based on Prolog rewriting rules is used to perform
architectural transformations before compilation. While their optimization technique is very
di�erent from partial evaluation, their overall approach can be uni�ed with specialization
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patterns: for each design pattern, a specialization pattern can describe what rewriting rules
give the best optimizations.

Templates in C++ allow the programmer to express static information about types and
simple values, thus providing more information to the compiler. The information can be
used to �x types in the program, and even to perform simple partial evaluation of integral
values [31]. For example, rather than implementing the strategy pattern with a virtual
call, the choice of strategy can by statically �xed using templates [16]. However, templates
specialize on a class-by-class bases, and cannot specialize for the way objects are composed
together, except when this is done statically in the program. In addition, explicit syntax is
needed to express properties using templates, and source code must be manually duplicated
to retain the generic behavior.

Many compilation systems implement generally applicable optimizations similar to those
performed performed by program specialization, but without requiring user guidance. To
reduce the complexity of performing analysis, simpli�ed type inference algorithms such as
Class Hierarchy Analysis are used [12], combined with pro�le information that guides spec-
ulative optimizations such as receiver-prediction [18, 20]. Since techniques such as inlining
and specialization for types (customization [7] and method argument specialization[10]) can
cause code explosion, the same pro�ling information is used to focus these optimizations on
the critical parts of the program [11, 20]. The optimizations o�ered by such systems depend
on the accuracy of the analyses and pro�ling system. As a result, the level of optimization
is di�cult to predict, and structural overheads are not easily detected. By contrast, spe-
cialization is parameterized by information provided by the programmer, and can produce
source code that can be manually inspected for remaining ine�ciencies before being shipped
as a complete product.

Software architectures o�er a global approach to organizing programs, by working within
a framework [29]. A program written using a software architecture uses a generic infras-
tructure, which supports mechanisms to o�er extensibility and modularity. However, there
is a fundamental di�erence between design patterns and software architectures. A design
pattern describes a design idea without being limited to a single, concrete implementation,
whereas a software architecture gives a concrete implementation of an infrastructure without
specifying the components that can be integrated to form a complete application. Marlet
et al. have shown program specialization to be an e�ective tool for eliminating the archi-
tectural overheads of software architectures, automatically transforming a program written
using a software architecture into an e�cient implementation [24]. Since there is a concrete
implementation for a given software architecture, specialization can be applied to a program
written using this software architecture, without requiring guidance from the user.

8 Future Work

In this paper we have shown that a given design pattern provides enough structure to a
program to systematically enable its optimization using program specialization. However,
intertwining many design patterns may a�ect the specialization opportunities of the resulting
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program. To address this issue we are studying how the composition of design patterns
impacts specialization opportunities, and are characterizing specialization patterns resulting
from design pattern compositions.

The Java Beans framework is de�ned using standard Java constructs under certain con-
straints. Just like a given framework systematically introduces speci�c overheads, the Java
Beans component architecture also introduces overheads into programs. Specialization can
be automatically applied to optimize away these overheads. For example, the standard Java
Beans event model can be specialized with an overall e�ect similar to the specialization
of the strategy design pattern (Section 4.4). Concretely, we aim to completely automate
the specialization process for the speci�c case of Java Beans, by automatically generating
specialization classes.

With a more formal de�nition of design patterns, it is possible that user guidance of the
specialization process could be greatly simpli�ed. For example, if the source language had
support for design patterns [5, 19, 21] or if the program were developed using a CASE tool
that supports design patterns [25], specialization classes could be automatically generated
for each use of a design pattern. These specialization classes would then precisely de�ne the
specialization capabilities of the resulting program.

9 Conclusion

Design patterns focus on how programs should be structured to o�er features such as modu-
larity and extensibility. However, this structuring is directly mapped into an implementation;
features are directly implemented in terms of mechanisms that cause overheads at run time.
Still, these overheads are predictable since they are inherent to each design pattern.

This paper introduces specialization patterns: an approach aimed at optimizing patterns
of overheads identi�ed in design patterns. This optimization process, based on program spe-
cialization, removes abstraction layers by exploiting information about object composition.

We have demonstrated the applicability of our approach to several kinds of design pat-
terns (creational, structural, and behavioral). For each kind of design pattern, we have
characterized specialization opportunities. Examples have been used to concretely show the
e�ectiveness of program specialization in removing the overheads inherent to design patterns.

In e�ect, we have shown that program specialization can be used systematically to map
programs developed using design patterns into e�cient implementations. This mapping
is guided by information provided by design patterns. As a result, we have extended the
scope of design patterns: not only do they guide program development, but they also enable
systematic optimization of the resulting programs.
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class Array implements MinimalCollection {

Object []elements;

int size;

Array(int size) {

this.size = size;

this.elements = new Object[size];

}

public Object get(int n) { return elements[n]; }

public int getSize() { return size; }

Iterator iterator() {

return new ArrayIterator( this );

}

...other methods for implementing the MinimalCollection interface...

}

class ArrayIterator implements Iterator {

Array array;

int current, max;

ArrayIterator( Array a ) {

this.array = a;

this.current = 0;

this.max = a.getSize();

}

boolean hasNext() { return current<max; }

Object next() { return array.get(current++); }

}

Figure 11: Relevant parts of Array and its iterator ArrayIterator.

A Iterator Example Implementation

Figure 11 shows those parts of the Array and ArrayIterator classes that are relevant to the
iterator example shown in the introduction.
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