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Amélioration d’un code spécialisé a ’exécution par
spécialisation de données

Résumé: La spécialisation de programmes & I’exécution est une technique d’optimisation
qui permet d’exploiter des informations connues uniquement au moment de l’exécution.
Dans ce contexte, le temps de spécialisation doit étre borné pour ne pas pénaliser I’exécution
du programme. Cette contrainte limite les possibilités d’optimisations additionnelles au mo-
ment de la génération du code. Cet article présente une méthode permettant d’optimiser
le code généré par spécialisation & l’exécution, sans pour autant introduire de surcoit sig-
nificatif en temp d’exécution. Ce résultat est obtenu en associant une autre technique de
spécialisation, appelée spécialisation de données, & la spécialisation & I'’exécution. Nous ap-
pliquons cette technique pour effectuer une compaction du code généré par le spécialiseur a
I’exécution de Tempo. Nos résultats montrent que sur nos exemples, la compaction du code
permet d’améliorer la performance des programmes générés d’un facteur allant jusqu’a 4,
avec une dégradation du temps de spécialisation limitée & 10%.

Mots-clé : spécialisation & l’exécution, spécialisation de données, programmation étagée
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1 Introduction

Partial evaluation is a form of program specialization that optimizes a program with respect
to supplementary information about its inputs. A partial evaluator evaluates constructs
that depend only on such information (static constructs), and rebuilds the remaining dy-
namic constructs to form a specialized program. Recently, attention has turned to partial
evaluation at run time [4, 8, 14]. A critical issue for run-time specialization is the need to
produce efficient executable code at a minimal run-time cost. In this paper, we present a
low-cost methodology for improving the performance of run-time specialized code.

One approach to limiting the cost of run-time specialization is to assemble the specialized
program from precompiled fragments of the source program, known as templates. Templates
contain holes representing static subterms whose values are determined during run-time
specialization. At run time, the specializer evaluates the static constructs, and copies the
compiled templates corresponding to the dynamic constructs into an output buffer. Holes are
filled at this time. Variants of this approach have been taken by several run-time specializers,
such as Tempo [4, 19], DyC [8, 9], and Cyclone [10].

For many applications, the cost of template-based run-time code generation has been
shown to be amortized in only a few invocations of the specialized program [9, 19]. Never-
theless, because templates are compiled before specialization, when there is only approximate
knowledge of how they will be assembled, the compiled templates are not highly optimized.
The cost of further optimizing the specialized program at run time has to be carefully con-
trolled. Thus, in many cases this approach to run-time specialization gives less speedup
than specialization at compile time, where the specialized program can be compiled using
an optimizing compiler [13, 19].

One problem with the template-based approach is that templates are written to the
output buffer as they are selected. This strategy implies that if we perform optimizations
that modify the size or location of previously-emitted templates, we must recopy code that
has already been written to the output buffer. Copying code involves substantial memory
access, and may require updating branch offsets. These operations would substantially
increase the cost of specialization. The goal of this paper is to allow templates for the entire
specialized program to be selected and analyzed before any templates are written into the
output buffer, thus allowing optimizations on the chosen templates without code copying.

Our approach

In this paper, we propose to divide the run-time specializer into two phases: a first phase
that evaluates the static constructs and selects templates, and a second phase that emits
the code for the selected templates. This organization allows us to perform global analysis
of the selected templates in the first phase without introducing the cost of copying code.
Nevertheless, this approach potentially introduces significant extra cost to pass information
about the selected templates from the first phase to the second phase. In this paper, we
show that data specialization [3, 15] of a dedicated run-time specializer generated by Tempo
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4 Julia L. Lawall and Gilles Muller

automatically produces an efficient two-phase run-time specializer. We then show how to
exploit the two-phase approach to implement inter-template optimizations.

As an example of the kinds of optimizations that can be implemented using our approach,
we consider compaction of the specialized code. Tempo’s run-time specializer begins the
specialization of each function by allocating a buffer to hold the specialized code. Because
the size of the specialized function is not known at this point, the size of this buffer is chosen
arbitrarily. When the sizes of the specialized functions vary widely, this approach leads to
considerable fragmentation. In our approach, we calculate the size of the specialized code
in the first phase, and allocate buffer space of the correct size in the second phase. This
leads to more compact code. In our experiments, compaction improves the performance of
the specialized program by up to a factor of 4.

The rest of this paper is organized as follows. We first describe Tempo’s approach to
run-time specialization in more detail in Section 2. Section 3 defines data specialization,
describes our use of data specialization to optimize run-time specialized code, and illustrates
the technique using an implementation of code compaction. In Section 4, we consider an
alternate interpreter-based approach. Section 5 assesses the performance of the compaction
optimization. We find that the specialization time is almost identical to that of the original
specializer produced by Tempo, and that compaction significantly improves the performance
of the specialized code. Finally, we describe related work in Section 6, and conclude in
Section 7.

2 Run-Time Specialization in Tempo

Tempo’s approach to run-time specialization has been designed with the goals of minimal
run-time overhead for specialization, low development cost, and efficient specialized code. To
reduce the run-time overhead, much of the work of run-time specialization is performed at
compile time. In particular, the compile-time phase performs binding-time analysis, which
identifies static and dynamic expressions, and then constructs templates and a dedicated
run-time specializer based on this information. At compile time, templates are converted
to object code using a standard compiler (gcc). The use of gcc eliminates the need to
develop a new code generator and enhances portability. Because compiler optimizations can
be applied, the code within the templates is efficient. The run-time phase simply invokes
the run-time specializer on the static values. The run-time specializer evaluates the static
constructs and uses the templates to build the specialized program. To limit the run-time
overhead, Tempo performs no further optimization of the templates at run time.

2.1 Implementation

We now describe Tempo’s implementation of run-time specialization in more detail using
an example, the interpreter for arithmetic expressions shown in Figure 1. Suppose we
specialize the interpreter with respect to the expression argument e (static), leaving the
environment argument r unknown (dynamic). Figure 1 illustrates the result of binding-time
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Faster Run-time Specialized Code using Data Specialization 5

analysis according to this information. Specialization of the interpreter eliminates tests on
the program structure; indeed, interpreters are a classical application area for specialization
[11].

int interpret(struct Exp *e, struct Env *r) {
switch (e->type) {
case NUM : return e->num.value;

case ID : return lookup(r,e->id.name);
case SUM : return interpret(e->sum.el,r) + interpret(e->sum.e2,r);
}

Figure 1: An interpreter of arithmetic expressions. Static constructs are shown in courier
font, while dynamic constructs are shown in boldface.

Based on the results of binding-time analysis, a template is constructed for each dynamic
block. In the case of the interpreter example, there are five templates, one representing the
beginning of the function, one representing the end of the function, and one for each of the
switch branches. The C code corresponding to the templates for the NUM and ID cases are
shown in Figure 2. The addresses &HO and &H1 represent place-holders (holes) that will be
filled in during specialization with static values.

Template for NUM case (tmp2):
return (int) (&HO);

Template for ID case (tmp3):
return lookup(r, &H1);

Figure 2: Templates tmp2 and tmp3 for interpret

The run-time specializer contains a code-generation function for each function of the
source program. The code-generation function for interpret is shown in Figure 3. Each
code-generation function has the structure of the corresponding source function, modified
as follows. The parameters are the static parameters of the source function. A buffer
is allocated for the specialized code, using the function rts_alloc_code. Each dynamic
block is replaced by an invocation of the macro DUMP_TEMPLATE. DUMP_TEMPLATE copies the
template indicated by the second argument into the output buffer, at the position indicated
by code_ptr, and increments code_ptr according to the size of the template, as indicated by

INB: To simplify the presentation, we have eliminated some of the arguments of the code-generation
macros. The description provided here is sufficient to present the techniques of the paper, but is not
sufficient to implement a run-time specializer in practice. A more complete description is available elsewhere
[19].
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6 Julia L. Lawall and Gilles Muller

the third argument. Once a template is written into the output buffer, its holes can be filled.
Figure 3 illustrates the use of PATCH_HOLE to fill a hole with the value of a static expression,
and the use of PATCH_CALL_HOLE to patch a function call instruction with the address of the
specialized definition. In each case, the first argument is the value to patch, and the second
argument is a constant indicating the offset of the hole in the current template. There are
similar macros to treat calls to external functions and to correct branch offsets. Each code-
generation function returns a pointer to the beginning of the generated code, as stored in
the variable spec_ptr.

void *rts_interpret(struct Exp *e) {
char *code_ptr = rts_alloc_code(MAX_FN_SIZE);
char *spec_ptr = code_ptr;

DUMP_TEMPLATE (code_ptr, tmpl, 8);

switch (e->type) {

case NUM :
DUMP_TEMPLATE (code_ptr, tmp2, 12);
PATCH_HOLE(e->exp.num.value, 0);
break;

case ID :
DUMP_TEMPLATE (code_ptr, tmp3, 28);
PATCH_CALL_HOLE(rts_lookup(e->id.name), 8);
break;

case SUM :

}

DUMP_TEMPLATE (code_ptr, tmp5, 12);

return (void *)spec_ptr;

Figure 3: Simplified code-generation function for interpret

2.2 Memory allocation issues

This approach to run-time specialization is quite simple and is effective in practice [19, 24].
Nevertheless, some issues remain. Let us consider in more detail the allocation of the buffer
in which to hold the specialized code for each function.

The code-generation function rts_interpret, defined in Figure 3, invokes another code-
generation function rts_lookup. Because both functions generate code and because
rts_interpret may generate more code after the call to rts_lookup, each function needs
its own output buffer. As shown in Figure 3, we solve the problem by reserving all of the
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Faster Run-time Specialized Code using Data Specialization 7

space needed for each specialized function at once, at the beginning of the corresponding
code-generation function, using a call to rts_alloc_code.

This allocation strategy raises both safety and efficiency concerns. Because run-time
specialization performs loop unrolling, it is not possible to determine in advance the size
of a specialized function. Thus, safety requires that each use of DUMP_TEMPLATE verify that
the size of the template does not exceed the remaining space allocated to the specialized
function. If the template is too large, the run-time specializer has to allocate a new buffer,
and either generate a goto statement, or copy the code already generated for the current
function into the new buffer. The latter option is implemented in Tempo. The use of a goto
statement can hurt the performance of the specialized program, while code copying can
substantially add to the run-time specialization cost. A partial solution, taken by Tempo, is
simply to reduce the likelihood of exceeding the buffer size by allocating a very large buffer
for each specialized function. In our experiments, however, a program composed of such
widely-scattered function definitions does not effectively use the instruction cache.

These issues can be resolved by determining the exact size of each specialized procedure
before beginning code generation. We use this analysis as an example in presenting our
data-specialization-based optimization technique.

3 Inter-Template Optimization, Using Data Specializa-
tion

Data specialization is a program-staging technique. In particular, data specialization sep-
arates a program into two phases: a loader phase and a reader phase [3, 15]. The loader
phase evaluates the static constructs, and creates a cache containing the values of the static
expressions that occur in a dynamic context. The reader phase evaluates the dynamic con-
structs, referring to the cache of specialized data for the values of the static subexpressions.
Automatic data specialization has been implemented in Tempo, and has been shown to
give significant performance improvements both by itself and in conjunction with Tempo’s
compile-time specialization [3].

Suppose we apply data specialization to the run-time specializer of interpret, where we
indicate that the function that allocates space in the specialized code buffer, rts_alloc_code,
gives a dynamic result. The loader and reader corresponding to the code-generation function
for interpret (Figure 3) are shown in Figure 4. The locations of the selected templates
are static and thus stored in the cache by the loader. On the other hand, the code pointer
is dynamic, so the occurrences of DUMP_TEMPLATE are all in the reader. Thus, data spe-
cialization produces a run-time specializer in which all of the templates are selected before
any are written into the code buffer. We have achieved automatically the division of the
run-time specializer into phases that will allow us to efficiently implement inter-template
optimizations.

We now describe how to exploit the staging provided by data specialization to imple-
ment inter-template optimization, using code compaction as an example. Our optimization
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8 Julia L. Lawall and Gilles Muller

votid **rts_interpret_loader(struct Exp *e, woid **Cache) {

*Cache = tmpl;

switch (#((int *)(Cache + 1)) = e->type) {

case NUM :
*((int *)(Cache + 2))
*((int *)(Cache + 3))
Cache = Cache + 4;
break;

case ID :

case SUM :

}

*Cache = tmpb;

return Cache + 1;

tmp2;
e->exp.num.value;

votid **rts_interpret_reader(votid **Cache) {
char *code_ptr = rts_alloc_code(MAX_FN_SIZE);
char *spec_ptr = code_ptr;

DUMP_TEMPLATE (code_ptr, *Cache, 8);
switch (#((int *)(Cache + 1))) {
case NUM :
DUMP_TEMPLATE (code_ptr, #((int #*)(Cache + 2)), 12);
PATCH_HOLE(*((int *)(Cache + 3)), 0);
Cache = Cache + 4;
break;
case ID :
case SUM :
}
DUMP_TEMPLATE (code_ptr, *Cache, 12);
cache_return = Cache + 1;
return (void *)spec_ptr;

Figure 4: Data specialization of the code-generation function for interpret. Use of the
cache is shown in italics.

strategy is to perform some analyses in the loader phase, and then use the results to emit
optimized code in the reader phase. In particular, information about each template deter-
mined at compile time and made explicit in the run-time specializer can be collected at
specialization time, where it is known which templates will be generated and in what order.
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Faster Run-time Specialized Code using Data Specialization 9

Because these decisions are made based on the static inputs to the source program, such
analyses are placed by the data specializer in the loader. We then transmit the results of the
analysis to the reader, which contains the code generation operations, thus allowing these
operations to optimize the generated code based on this information.

To implement code compaction, we need to accumulate the size of the selected templates
in the loader. Conveniently, the template size is already an argument of DUMP_TEMPLATE.
Thus, we simply introduce a local variable fnsize in each code generation function, and
modify DUMP_TEMPLATE to additionally increment fnsize according to the size of the chosen
template. The calculation of fnsize is completely static, and is thus placed in the loader.

Now, we would like to use the calculated function size as the argument to rts_alloc_code.
If we simply replace rts_alloc_code(MAX_FN_SIZE) by rts_alloc_code(fnsize), how-
ever, the data specializer will cache the current value of fnsize, which is 0, in the loader
and use this value when rts_alloc_code is called in the reader. Instead, at the beginning
of the reader, we want to use the value of fnsize that is calculated at the end of the loader.

To solve this dilemma, we modify the run-time specializer to use an array fns, containing
an entry for each specialized function. This array is used to communicate information from
the end of the loader to the beginning of the reader. In the case of code compaction, fns
contains the size of each specialized function. We declare to Tempo that the elements of fns
are to be considered dynamic, so that the data specializer places references to these values
in the reader.? Nevertheless, we can initialize an element of fns to a static value, by hiding
the operation in a call to an external function (update_fns).® If we do not declare the
side-effect to Tempo, this external function call is considered static, and placed in the loader
by the data specializer. Not declaring the side effect violates the assumptions on which the
correctness of the binding-time analysis of Tempo are based, but achieves the desired effect.

The compacting code-generation function for interpret, including the modified defini-
tion DUMP_TEMPLATE is shown in Figure 5. To avoid showing the definition of DUMP_TEMPLATE,
we have renamed the original definition ORIGINAL_DUMP_TEMPLATE. New code is shown in
italics. The result of applying data specialization to this run-time specializer is shown in
Figure 6. This definition is similar to the result of data specialization of the original run-time
specializer, as shown in Figure 4, except for the computation of the function size and the
use of the fns array. Overall, the modifications are localized and easily automatable.

To carry out run-time specialization using the staged run-time specializer, we first apply
the loader to the original (static) arguments and the cache, and then apply the reader to the
cache. Figure 7 shows the entry point of the run-time specializer for interpret, assuming
that rts_interpret is indeed the “main” function of the original run-time specializer.

2The binding-time analysis of Tempo treats arrays monovariantly, meaning that once the array contains
any dynamic element, all elements are considered dynamic.

3 After the generation of the loader and reader using data specialization, the call to update_fns can be
replaced by a macro.
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10 Julia L. Lawall and Gilles Muller

#define DUMP_TEMPLATE(code_ptr, template, size) {\
ORIGINAL_DUMP_TEMPLATE(code_ptr, template, size) \
fnsize += size; }

/* stores the size of each specialized function */
int fns[MAX_FNS_SIZE];

/* used to generate the unique integer identifier for
each specialized function */
int cur;

void *rts_interpret(struct Exp *e) {
int 1d = curt+;
char *code_ptr = rts_alloc_code(fns[td]);
char *spec_ptr = code_ptr;
wnt fnsize = 0;
DUMP_TEMPLATE (code_ptr, tmpl, 8);
DUMP_TEMPLATE (code_ptr, tmp5, 12);

update_fns(id, fnsize); /* implements fns[id] = fnsize; */

return (void *)spec_ptr;

Figure 5: Code-generation function for interpret modified to implement compaction. New

code is shown in italics.
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/* stores the size of each specialized function */
int fns[MAX_FNS_SIZE];

/* used to generate the unique integer identifier for each
specialized function */

int cur;

void *rts_interpret_loader(struct Exp *e, void **Cache) {
int id;
int fnsize = 0;
*((int *)Cache) = id = cur++;
/* as before, with the calculation of fnsize added */
*(Cache + 1) = tmpil;

fnsize += 8;

*Cache = tmpb;
fnsize += 12;

update_fns(id,fnsize);

return Cache + 1;

void *rts_interpret_reader (void **Cache) {
char *code_ptr = rts_alloc_code(fns[*((int *)Cache)]);
char *spec_ptr = code_ptr;
ORIGINAL_DUMP_TEMPLATE(code_ptr, *(Cache + 1), 8); /* as before */
ORIGINAL_DUMP_TEMPLATE(code_ptr, *Cache, 12);

return (void *)spec_ptr;

Figure 6: Data specialization of the modified run-time specializer for interpret
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12 Julia L. Lawall and Gilles Muller

void *rts_interpret(struct Exp *e) {
void *Cache[MAX_CACHE_SIZE];
cur = 0;
rts_interpret_loader(e,Cache);
return rts_interpret_reader(Cache);

Figure 7: Entry point of the data specialized run-time specializer

4 Inter-Template Optimization, Using Interpretation

We have seen how to use data specialization to stage a run-time specializer into a phase
that selects templates, followed by a phase that emits the corresponding code. While this
approach is largely automatic and uses existing technology, it does require running the spe-
cializer twice at compile time — once to generate the run-time specializer, and a second
time to stage it. Another approach is to modify the run-time specializer to created a record
of the selected templates and the hole values, and then manually write an interpreter that
generates the specialized code based on this record, which can be viewed as a sequence of
code-generation instructions. While the interpreter need only be written once, the imple-
mentation of optimizations in this framework can be complex, and the entire implementation
may need to be reorganized to accommodate new optimizations.

The interpreter approach allows any number of optimization phases to be inserted be-
tween the generation of the code generation instructions by the run-time specializer and the
outputting of specialized code by the interpreter. To implement code compaction, we could
add a phase that for each specialized function sums the size arguments of the DUMP_TEMPLATE
instructions, allocates a buffer of the correct size, and then updates the code_ptr argument
of each DUMP_TEMPLATE instruction accordingly. Because the interpreter is independent of
the source program, we can implement more drastic modifications, such as rearranging or
replacing templates. These operations can be difficult to express in the data specialization
framework, because the dynamic code of each code-generation macro is explicitly encoded
in the reader.

The extra flexibility of the interpretive approach comes at a performance penalty. There
are three sources of inefficiency:

e Fragmentation in the code-generation buffer. The buffer of code-generation instruc-
tions used by the interpreter is allocated in the same way that the buffer for the
specialized code of each function is allocated by the original run-time specializer. In
contrast, new cached values are simply added to the end of the data specialization
cache, as indicated by the Cache pointer, leaving no empty space. Note though that,
the buffer of code-generation instructions is only used during specialization, and thus
its structure has no impact on the performance of the specialized program.
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Faster Run-time Specialized Code using Data Specialization 13

e The replacement of constants and local variables by memory references. The code-
generation macros each have some arguments that are constants, e.g. the template
size argument to DUMP_TEMPLATE. The data specializer considers that these values are
not worth storing in the cache, and simply places them explicitly in the reader. In
the interpreter approach, all of the arguments of the code-generation macros must be
stored in the code-generation instructions, including the constant arguments. Each
code generation function uses some local variables that we have omitted from our
presentation of run-time specialization for simplicity. These variables are similarly
converted to memory references in the interpreter approach.

e The replacement of straight-line code by branches. Typically, a block of the original
run-time specializer consists of a use of the macro DUMP_TEMPLATE followed by code
to patch holes. The interpreter, on the other hand, consists of a loop containing a
switch statement with a case for each instruction. Thus, every instruction involves a
jump.

The benchmarks in Section 5 show that these problems cause stalls due to machine cache
behavior and branch mispredictions. In our experiments, specialization using the interpreter
approach is up to 70% slower than specialization of the original run-time specializer produced
by Tempo.

5 Benchmarks

We now assess the performance of the compaction optimization using two benchmarks: an
interpreter for the PLAN-P language [25, 26], and an image-manipulation program [22].
PLAN-P is a domain-specific language for implementing active network protocols. The
image-manipulation program applies a convolution filter to blur an image. This program was
originally written in Java, and translated to C using the Java bytecode-to-C compiler Harissa
[17]. The PLAN-P interpreter is over 7000 lines of C code, while the image-manipulation
program is approximately 4000 lines. The PLAN-P interpreter was shown to benefit signif-
icantly from run-time specialization. Nevertheless, some fine-tuning of the size of the buffer
allocated for each specialized function was needed to obtain the best performance. The
image-manipulation program was found to benefit significantly from compile-time special-
ization, but no improvement was obtained by run-time specialization in some cases. Neither
program was developed specifically to test the approach presented in this paper.

5.1 Methodology

Experiments were carried out using a 167 MHz Sun Ultral running Solaris 2.7, having 128
MB of main memory.

The run-time specializers were compiled using gcc version 2.8.1 with the options -03
-mcpu=ultrasparc. The templates for the image-filtering application were compiled using
gcc version 2.8.1 with the options -02 -mcpu=ultrasparc -fno-delayed-branch
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14 Julia L. Lawall and Gilles Muller

PLAN-P blur

input size 39 lines | 161 lines | 3 x 3 filter | 7 x 7 filter
# functions 604 3009 39 199
spec. code size (bytes) 19872 98040 3552 17152
max fn. size (bytes) 260 884 1232 6512
ave. fn. size (bytes) 32 32 91 86

DS cache size (bytes) 18108 87012 1688 8616
max # interp entries/fn. 31 55 124 644

# templates 1466 1466 72 72

Table 1: Size of the experiments.

-fno-thread-jumps.? Because of a bug in more recent versions of gcc, the templates

for the PLAN-P interpreter were compiled using gcc version 2.6.3 with the options -0
-fno-thread-jumps -fno-delayed-branch.

Specialization times were measured using the ultrasparc system counters, using the Perf-
mon tool.> Execution of the specialized image-manipulation program was measured using
gethrtime, because of its long duration. Execution of the specialized PLAN-P interpreter
was measured using the ultrasparc system counters.

5.2 Performance evaluation

Table 1 presents various aspects of the size of the experiments. We specialize the PLAN-P
interpreter with respect to two programs, one 39 lines (plearn.pp), and one 161 lines
(spym.pp). We specialize the image-manipulation program with respect to two blurring
convolution filters, a 3 x 3 filter and a 7 x 7 filter. On these programs, compaction im-
proves the performance of the specialized program by a factor of more than 2 for the PLAN-P
interpreter, and more than 4 for the image-manipulation program. Note that the perfor-
mance improvement comes from the improved layout of the specialized code in memory,
rather than from an improvement in the process of allocating this memory itself. Mem-
ory allocation is performed at specialization time, and thus its cost has no impact on the
performance of the specialized code.

Compaction is most useful when the specialized program consists of many functions of
widely varying size. In this situation, the memory allocation strategy described in Section 2.2
suggests that a non-compacting specializer should conservatively allocate a large buffer for
every specialized function, producing code that is widely scattered in memory. Specializing
the PLAN-P interpreter generates a large number of specialized functions. The largest

4Inlining, as provided by -03, is not interesting for the templates. The options -fno-delayed-branch
-fno-thread- jumps suppress optimizations that make it difficult to extract the compiled templates from the
object file.

SURL: http://www.cps.msu.edu/"enbody/perfmon.html
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Faster Run-time Specialized Code using Data Specialization 15

function is up to over 27 times the average function size. The image-manipulation program
is overall a smaller example than the PLAN-P interpreter, but exhibits an even more extreme
range of function sizes; for a 7 x 7 filter the size of the largest function is over 75 times the
average function size.

The main overhead of the data specialization approach is the size of the cache. In our
experiments, the cache is quite large, approaching the size of the specialized code. Because
the elements of the cache are mostly accessed sequentially, however, this structure has good
locality. Furthermore, preliminary experiments show that it should be possible to almost
halve the size of the data specialization cache by improving the caching strategy of Tempo.

The last two lines of Table 1 describe the memory requirements of the interpretive ap-
proach: the maximum number of code generation instructions per function and the size of
the table indicating the most recent address at which a copy of each template was emit-
ted. Each code generation instruction uses 24 bytes. The size of the table of templates is
determined by the number of templates in the program, which is fixed at compile time.

15
1.0 - o Orig.
] m DS
. o Interp.
0.5
0.0
3x3 7 plearn.pp spym.pp

image filter PLAN-P interpreter

Figure 8: Specialization time using the data-specialization and interpreter approach, as
compared to the original run-time specializer

Figure 8 compares the specialization time using the data-specialization-based approach
(DS) and the interpretive approach (Interp.) to that of using the original run-time specializer
(Orig.). We include both user and system time. The size of the function buffers used by
the original run-time specializer (i.e., the value of MAX_FN_SIZE) has little effect on the
specialization time. Thus, for each program, we use the smallest size that is sufficient for
both test cases.

The data-specialization approach has little overhead with respect to the original special-
izer. For specialization of the PLAN-P interpreter with respect to the program plearn.pp,
the data specialization approach is 22% slower than the original specializer. In other cases,
the data specialization approach is less than 10% slower. The object code of the data-
specialized run-time specializer for the PLAN-P interpreter is approximately twice as large
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Figure 9: CPU stalls of the interpreter approach, as compared to the data-specialization
approach. The height of the bar for data specialization is always 1. The numbers on top of
the bars for the interpreter indicate the absolute number of stalls.

as the object code of the original run-time specializer. Consequently, there are significantly
more page faults during execution to load this code. These page faults seem to have a signif-
icant impact on the performance of the specialization of plearn.pp. Reducing the number
of values that are cached by the loader, as described above, should also reduce the code size,
and thus the page fault overhead.

Specialization using the interpreter approach is up to 70% slower than specialization using
the original specializer. In Section 4, we observed that the interpreter approach performs
more memory references than the data-specialization approach, with poorer locality, and
that the interpreter approach performs more branches. To assess the impact of these features,
Figure 9 compares the number of CPU stalls in user mode due to caches misses, load-
store dependences, and branch misprediction. These figures clearly show that the data
specialization approach has significantly better cache behavior than the interpreter approach.
For the image-filtering example, the interpreter approach suffers from significantly more
branch mispredictions as well.

Finally, we consider the performance of the specialized programs. Figure 10 shows the
speedup produced by specializing the image-manipulation program to a 3 x 3 blurring filter
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Figure 10: Speedup obtained by specializing the image-manipulation program (buffer sizes
in bytes)

and a 7 X 7 blurring filter. In each case, we apply the filter to a 320 x 200 pixel im-
age. The data-specialization-based and interpreter-based approaches both produce compact
programs, and specialization to either filter size produces a speedup of about 2 over the
unspecialized program. The remaining speedups are for Tempo’s original implementation of
run-time specialization with the indicated buffer size for each specialized function. We test
the minimum possible buffer sizes, and various larger sizes that are powers of two. Using
Tempo with a relatively small buffer size, the speedup varies between 1.5 and 2 for a 3 x
3 filter. For a 7 x 7 filter, however, the smallest buffer sizes are not large enough for the
largest specialized function. For this filter size, the result of specializing using Tempo is
always slower than the original program. The compacted code is over four times faster than
the code produced by Tempo using an estimated function size of 8K or 16K bytes.

Figure 11 shows the speedup produced by specializing the PLAN-P interpreter with
respect to the program plearn.pp.® Again, the data points to the right of the interpreter
approach are for Tempo, with various function buffer sizes. Here specialization always
produces a speedup. Nevertheless, the compacted specialized program is over twice as fast
as the specialized program generated by Tempo using a function buffer size of 2K bytes.
Analysis of the number of stalls due to instruction cache misses show that these steadily
increase as more space is allocated for each function.

6 Related work

We briefly review the history of data specialization, compare our approach to another
optimization of run-time specialization in Tempo, and compare our approach to another
template-based run-time specializer performing run-time optimizations.

Data specialization

Manual data specialization is a fairly common program optimization. For example, the im-
plementation of the Fast Fourier Transform available from net1ib consists of an initialization

SFor technical reasons, it was not possible to meaningfully test the spym.pp program.
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Figure 11: Speedup obtained by specializing the PLAN-P interpreter to plearn.pp (buffer
sizes in bytes)

procedure that stores the needed sine and cosine values in an array followed by a procedure
that computes the Fast Fourier Transform using these stored values [18]. Similarly, the im-
plementation of jpeg compression available in the Spec benchmark suite precomputes values
used in converting between color formats [6].

Automatic data specialization was first developed by Barzdins and Bulyonkov [2], and
described and extended by Malmkjaer [15]. These approaches are more complex than the
implementation of data specialization used here. In particular, they perform memoization of
the data specialization cache. Memoization reduces the size of the cache, but it is not obvious
how to implement it efficiently enough for use in the context of run-time specialization.

Knoblock and Ruf implement data specialization for a subset of C and investigate its use
in an interactive graphics application [12]. They consider several techniques to limit the size
of the data specialization cache, including the use of static-single-assignment (SSA) form to
confine the positions at which static values are cached to join points. This technique could
be useful in our approach. They also observe that data specialization has very low overhead.

Chirokoff et al. compare the benefits of program and data specialization, and show that
it can be useful to combine these techniques [3]. Our implementation of data specialization
in Tempo builds on that of Chirokoff.

In our approach, the loader computes all of the static values in order to select the
templates. Shinjo has suggested, in private communication, that computing all of the static
values before generating any specialized code could also allow more optimization of the
templates at compile time, including optimizations that move holes between templates [23].

Incremental specialization

Incremental specialization is the process of specializing a program gradually, as information
about the static inputs becomes available [5, 7]. Each phase generates an increasingly
specialized specializer, with the goal of reducing the overall specialization time. Marlet,
Consel, and Boinot have proposed to implement incremental run-time specialization by
applying standard run-time specialization to the original run-time specializer to produce an
incremental run-time specializer [16]. This process can be iterated to provide any number
of levels of incremental specialization.
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Our approach is also a form of incremental specialization. In particular, we specialize
the run-time specializer with respect to the static inputs of the source program, leaving
the parameters of the code-generation operations unknown. To specialize the run-time
specializer, we use data specialization rather than run-time specialization. The low overhead
of data specialization makes it more appropriate to a situation where the second stage (i.e.
the reader for data specialization and the specialized specializer for run-time specialization)
is used only once. Our approach is targeted towards improving the performance of the
specialized code, rather than reducing specialization time. Thus, our approach critically
relies on the ability to pass global information from one stage to the next. This functionality
could also be useful in incremental specialization.

Optimizing run-time specialized code

DyC, developed by Grant et al., also performs run-time program specialization [8, 9]. Like
Tempo, DyC constructs the specialized code based on templates that are compiled before
specialization, at compile time. Unlike Tempo, which emits an entire template at once,
DyC generates specialized code one instruction at a time. This strategy facilitates run-time
instruction-level optimizations such as strength reduction. Nevertheless, specialization with
these optimizations is substantially more expensive than specialization using Tempo, or our
approach.

A predecessor of DyC [1] separated the run-time specialization actions into set-up code,
which generates a sequence of directives, and a stitcher, which follows these directives to
generate the specialized code. This approach is quite similar to the interpreter approach,
described in Section 4.

7 Conclusion and Future Work

Optimizing specialized code at run time must respect a delicate balance between performance
improvement and specialization cost. We have shown that by separating the run-time spe-
cializer into two phases using data specialization, we can optimize run-time specialized code
based on global analysis of the selected templates with little overhead.

Using our approach, we have shown how to implement compaction of run-time special-
ized code. The implementation requires only minor, local modifications of the run-time
specializer. Despite the simplicity of the optimization, in our experiments we find that it
can improve performance of the specialized program by up to a factor of 4. In future work,
we plan to consider what other optimizations can be expressed naturally in the data spe-
cialization framework. In particular, we have begun to consider the problem of function
inlining, taking into account the size of each function and register availability.
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