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Abstract: This paper presents a user-driven language-level approach to the checkpointing
of Java programs. First, we describe how to systematically associate incremental checkpoints
with Java classes. While being safe, the genericity of this solution induces a substantial exe-
cution overhead. Second, to solve the dilemma between genericity and performance, we use
automatic program specialization to transform the generic checkpointing procedures into
highly optimized ones. Specialization exploits two kinds of information: (i) structural prop-
erties about the program classes, (ii) knowledge of unmodified data structures in a specific
program phase. The latter information allows us to generate phase-specific checkpointing
procedures. We evaluate our approach on two benchmarks, a realistic application which
consists of a program analysis engine, and a synthetic program which can serve as a metric.
Specialization gives a speedup proportional to the complexity of object structure and the
modification pattern. Measured speedups are up to 15.
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Création de points de reprises incrémentaux efficaces
pour les programmes Java

Résumé : Cet article présente une approche utilisateur a la création de points de reprise
pour les programmes Java. Tout d’abord nous décrivons comment associer de maniére
systématique des points de reprise incrémentaux & une classe Java. Bien que sire, cette
solution entraine un surcott d’exécution substantiel en raison de sa généricité. Afin de
résoudre le conflit entre généricité et performance, nous proposons d’utiliser la spécialisation
automatique de programmes pour transformer les méthodes génériques de création de points
de reprise en des méthodes spécifiques optimisées. La spécialisation tire profit de deux
sortes d’informations : (i) des propriétés structurelles sur les classes du programme, (ii) la
connaissance de la non-modification de structures de données lors d’une phase d’exécution
précise du programme. Nous avons évalué notre approche sur deux programmes de test, une
application réaliste consistant en un moteur d’analyse de programmes, et une application
synthétique servant de métrique. Nos résultats montrent que la spécialisation apporte un
gain en temps d’exécution proportionnel a la complexité de la structure objet du programme
et au canevas de modification des objets. Sur nos expérimentations, nous avons mesuré un
gain d’un facteur allant jusqu’a 15 sur le temps d’exécution de la sauvegarde d’un point de
reprise.

Mots-clé : points de reprise incrémentaux, Java, spécialisation de programmes
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1 Introduction

Checkpointing is known to introduce overhead proportional to the size of the checkpoint [12,
26]. Traditionally, optimizations of the checkpointing process are targeted toward scientific
programs written in Fortran or C. Such programs often have good locality and large regions
of read-only data. In this environment, an effective optimization technique is incremental
checkpointing, in which system-level facilities are used to keep track of the modified virtual-
memory pages [7, 18]. Each checkpoint contains only the pages that have been modified
since the previous checkpoint.

Programs written in an object-oriented language, such as Java, place new demands on
checkpointing;:

e Object-oriented programming style encourages the creation of many small objects.
Each object may have some fields that are read-only, and others that are frequently
modified. Thus, object encapsulation conflicts with programmer-based data placement
strategies.

e The Java programmer has no control over the location of objects. Thus, it is impossible
to ensure that frequently modified objects are all stored in the same page. Furthermore,
a single page can contain both live objects, and objects awaiting garbage collection.

e Java programs are run on a virtual machine. Some internal state of the virtual machine
is not needed to reconstruct the state of the program. A system-level approach cannot
easily make this distinction.

These arguments suggest that a user-driven language-level approach may be appropriate
for Java programs. Language-level checkpointing augments the source program with code to
record the program state [16, 17, 24]. In this respect, the most important issue is safety: this
checkpointing code should be introduced systematically, and interfere as little as possible
with the standard behavior of the program. One approach is to add methods to each class
to save and restore the local state. Checkpointing is then performed by a generic checkpoint
method that invokes the checkpointing methods of each checkpointable object. Incremental
checkpointing can be implemented by associating a flag with each object, indicating whether
the object has been modified since the previous checkpoint. This checkpointing code can
either be added manually or generated automatically using a preprocessor [16, 17]. In either
case, localizing the code for saving and restoring the state of an object in its class definition
respects encapsulation, thus enhancing program safety, and simplifies program maintenance.

Nevertheless, this generic programming model introduces overheads. First, because the
checkpoint method is independent of the objects being checkpointed, it must interact with
these objects using virtual calls. Virtual calls are less efficient than direct function calls,
and block traditional compiler optimizations, such as inlining. Second, although the use of
the modified flag reduces the size of checkpoints, it does not eliminate the need to visit each
checkpointable object defined by the program.
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4 Julia L. Lawall and Gilles Muller

This checkpointing strategy could be optimized by manually creating specialized check-
pointing functions for recurring object structures in the program. When some of the objects
are known not to be modified between specific checkpoints, all code relating to the check-
pointing of those objects can be removed. This optimization eliminates the need to traverse
objects that are completely unmodified between checkpoints. Nevertheless, many special-
ized checkpointing routines may be needed, to account for the range of compound object
structures used in different phases of the program. When the program is modified, these
manually optimized routines may need to be completely rewritten. Thus, while these kinds
of optimizations can yield significant performance improvements, performing them by hand
is laborious and error-prone.

Our approach

In this paper, we propose to use automatic program specialization to automatically optimize
a generic checkpointing algorithm based on information about the fixed aspects of the object
structure. Program specialization is a technique for automatically and aggressively optimiz-
ing a program with respect to user-supplied information about the program inputs [11, 15].
Automatic program specialization has been applied in a wide range of areas, including op-
erating systems [19, 20], networks [29], and scientific programs [13, 22]. Recently, automatic
program specialization has been implemented for Java [25]. While program specialization is
a general tool and has a wider application scope than checkpointing, the need for safety and
the genericity in object structure make specialization a very appropriate technique for opti-
mizing checkpointing. Additionally, using automatic program specialization, it is feasible to
safely generate a specialized checkpointing implementation for each phase of the program.
To our knowledge, the study presented in this paper is the first attempt to use program
specialization in fault tolerance.

By specializing the checkpointing implementation with respect to recurring structural
and modification patterns, we eliminate many tests, virtual calls, and traversals of unmod-
ified data. Because specialization is automatic, these transformations can be performed
reliably. Specialization of Java programs is driven by user-defined specialization classes [30],
auxiliary declarations that correspond to the class structure of the program, but specify par-
ticular values for object fields and identify methods to specialize accordingly. Specialization
classes also document the optimizations performed by the automatic tool, and are simple to
modify as the program evolves.

To assess the benefits of our approach in a realistic setting, we specialize the checkpointing
of an implementation of a program analysis engine, which performs the kinds of analyses
that are used in compilation or automatic program specialization. To analyze more precisely
the benefits of our approach, we also consider a synthetic program in which we can vary the
dimensions and modification pattern of the checkpointed structure. These results can be
used as a metric to predict the benefits of specialization the checkpointing process for other
applications. We obtain the following results:
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Efficient Incremental Checkpointing of Java Programs 5

e Specializing with respect to the structure of a compound object optimizes the traversal
of the sub-objects by replacing virtual calls by inlined code.

e Specializing with respect to the modification pattern of a compound object eliminates
tests and the traversal of completely unmodified objects.

e The program analysis engine example is divided into phases, each of which reads
but does not modify the results of previous phases. We automatically generate a
specialized checkpointing routine for each phase. Specializing with respect to both the
object structure and the modification pattern gives speedups of up to 1.5 times.

e For the synthetic example, we first specialize with respect to the structure, and then
with respect to both the structure and the modification pattern. Specialization with
respect to the structure gives speedups up to 3. Specialization with respect to the
structure and the modification pattern gives speedups proportional to the percentage
of unmodified objects. When three quarters of the objects are unmodified, we obtain
speedups up to 15.

The rest of this paper is organized as follows. We begin in Section 2 by defining an
implementation of checkpointing in Java. Section 3 then introduces program specialization
and identifies opportunities for the specialization of the checkpointing implementation. In
Section 4, we then present a realistic example program of the kind that can benefit from our
techniques, and assess the speedup of the checkpointing process obtained by specialization.
Next, in Section 5, we investigate the speedups obtained for a synthetic example, which
permits to assess the benefits obtainable using our approach on a wider range of programs.
Section 6 describes related work, particularly focusing on complementary approaches to
language-level checkpointing. Finally, Section 7 concludes and presents perspectives for
future work.

2 Incremental Checkpointing of Java Programs

We consider the checkpointing of an object-oriented program in which the state of the
program can be recovered from the contents of the fields of the objects. In this context,
checkpointing amounts to recursively traversing the objects and recording the local state of
each one. Similar strategies for checkpointing object-oriented programs have been proposed
by others, including Kasbekar et al. [16] and Killijian et al. [17].

2.1 The implementation

The implementation consists of the Checkpointable interface, which specifies the methods
that must be provided by each object to be checkpointed, and a Checkpoint object, which
drives the checkpointing process. These are defined in Figure 1. For simplicity, we assume
that the checkpointed objects do not contain cycles. We also assume that checkpoints are
written from the output stream to stable storage asynchronously.
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6 Julia L. Lawall and Gilles Muller

public interface Checkpointable { public class CheckpointInfo {
public void record(OutputStream d); private int id;
public void fold(Checkpoint c); private boolean modified;
public CheckpointInfo getCheckpointInfo();
¥ public CheckpointInfo() {
id = newId();
public class Checkpoint { modified = true;
OutputStream d; }
public Checkpoint() { // unique identifier
d = new OutputStream(); public int getId() { return id; }
} private static int newId() { ... }
public void checkpoint(Checkpointable o) { // modification flag
CheckpointInfo info = o.getCheckpointInfo(); public boolean modified() { return modified; }
if (info.modified()) { public void setModified() { modified=true; }
d.writeInt(info.getId()); public void resetModified() { modified=false; }
o.record(d); b
info.resetModified();
¥
o.fold(this);
¥
¥

Figure 1: An implementation of checkpointing in Java

Associated with each checkpointable object are a unique identifier and methods that
describe how to record the state of the object and its children. Additionally, to implement
incremental checkpointing, each object contains a flag indicating whether the object has been
modified since the previous checkpoint. This functionality is captured by the Checkpointable
interface. The unique identifier and the modification flag, which are defined in the same way
for all checkpointable objects, are factored into a separate CheckpointInfo object, which is
also specified in Figure 1.

The Checkpointable interface specifies that each checkpointable object should define the
methods record(), fold(), and getCheckpointInfo(). The method record(OutputStream d)
records the state of the checkpointable object in the output stream d. A value of base type
can be written directly, while a sub-object can be referred to using its unique identifier.
The method fold(Checkpoint c¢) recursively applies the checkpointing object ¢ to each of
the checkpointable sub-objects.

Checkpointing is initiated by creating a Checkpoint object, which initializes the output
stream. The checkpoint method is then applied to the root of each object structure to
record in the checkpoint. To implement incremental checkpointing, checkpointing is carried
out in two steps. First, if the object has been modified, its unique identifier is recorded
in the output stream, and its record() method is invoked to record its local state. The
modified field is also reset. Then, regardless of whether the object has been modified since
the previous checkpoint, the fold method of the object is invoked to recursively apply the
checkpointing process to the children.

As in other approaches to checkpointing of object-oriented programs, the state of each
object is restored from a checkpoint using a restore method local to the object. The definition
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Efficient Incremental Checkpointing of Java Programs 7

of such a method is the inverse of the definition of record. The unique identifiers associated
with each object are used to reconstruct the state from a sequence of incremental checkpoints.
Because restoration is performed rarely, specialization seems unlikely to be interesting here.

2.2 Using checkpointable objects in an object-oriented application

The programmer can systematically define the methods required by the Checkpointable
interface, using the following strategy. A class explicitly implementing the Checkpointable
interface creates a CheckpointInfo structure and defines the associated getCheckpointInfo ()
accessor function. Such a class also defines record and fold methods to record its local state
and traverse its children, respectively. A class that extends a checkpointable class defines
record and fold methods corresponding to its own local state. These methods invoke the
respective methods of the parent class to checkpoint the inherited fields.

As an example, we use part of the implementation of the program analysis engine, p-
resented in Section 4. The program analysis proceeds in phases, each of which stores its
result in a corresponding object. To capture the commonality between these objects, the
class of each such object extends an abstract class Entry. The class Entry and an extension
BTEntry are shown in Figure 2. The Entry class explicitly implements the Checkpointable
interface. Thus, it creates the CheckpointInfo structure and defines the getCheckpointInfo ()
method. The Entry class also defines record() and fold() methods. These methods are triv-
ial, because the Entry class has no local state. The BTEntry class inherits the CheckpointInfo
structure of the Entry class. It defines its own record() and fold() methods, to carry out the
checkpointing of its child bt. The record() method first invokes the record() method of the
superclass, and then accesses the CheckpointInfo structure of the child to record the child’s
unique identifier. The fold() method first invokes the fold() method of the superclass, and
then recursively applies the checkpoint method to the child.

2.3 Assessment

The strategy for checkpointing that we have presented is systematic, and thus enhances
safety. Nevertheless, the implementation is hard to optimize even with state-of-the-art
compilers such as Sun’s HotSpot!.

e Checkpointable is declared as an interface, so that arbitrary objects can be declared as
checkpointable, independent of the inheritance hierarchy. Nevertheless, the use of an
interface implies that a checkpointable object’s checkpointInfo field must be accessed
using a method call, rather than a direct field reference.

e When a program defines many checkpointable classes, the class of the checkpointed
object cannot be determined when compiling the checkpoint method. Thus, the uses
of the record(), fold(), and getCheckpointInfo() methods must be implemented as
virtual calls, which are difficult to optimize.

I Available from URL: http://java.sun.com/products/hotspot/
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public abstract class Entry implements Checkpoint.Checkpointable {
CheckpointInfo checkpointInfo = new Checkpoint.CheckpointInfo();

public void record(OutputStream d) { }
public void fold(Checkpoint c¢) { }
public CheckpointInfo getCheckpointInfo() {
return checkpointInfo;
¥
¥

public class BTEntry extends Entry {
BT bt;

public void record(OutputStream d) {
super.record(d) ;
d.writeInt(bt.getCheckpointInfo().getId());
¥

public void fold(Checkpoint c) {
super.fold(c);
c.checkpoint(bt);

¥

// Other methods for manipulating the BTEntry object

Figure 2: The Entry and BTEntry classes

e Within a single invocation of the checkpoint method, there are several virtual calls to
methods of the same object. The number of virtual calls could be reduced by shifting
more of the checkpointing code into the user classes, but at the cost of code duplication
and reduced maintainability.

e Incremental checkpointing is implemented by testing the modified field of each object.
While this approach is precise, it introduces many branches, which are slower than
straight-line code.

These inefficiencies can be eliminated by creating specific checkpointing routines for each
kind of object in the program. In the next section, we show that we can safely generate such
optimized implementations using automatic program specialization.

3 Program Specialization
Program specialization is the optimization of a program based on supplementary information

about its input. We first describe this technique, and then consider how to use it to optimize
the checkpointing process.
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3.1 Overview of program specialization

Program specialization optimizes a program to a specific usage context. This technique
restricts the applicability of a program, in exchange for a more efficient implementation.
Specialization of programs written in imperative languages, such as C and Fortran, achieves
optimizations such as constant folding and loop unrolling [2, 3, 11]. Specialization of Java
programs has been shown to reduce the overhead of data encapsulation, virtual calls, and
run-time type and array-bounds checks [25]. Our implementation of checkpointing benefits
from these optimizations.

In the context of an object-oriented language, such as Java, the usage context can be
described by specialization classes [30]. A specialization class describes how a class should
be specialized, by declaring properties of a subset of the fields and methods of the specialized
class. A field or method parameter can be declared to have a more restricted type than the
original declaration, or can be declared to have a specific value. The declared methods are
then specialized with respect to this information. Specialization classes are compiled by the
Java Specialization Class Compiler (JSCC) into directives for the program specializer, and
are thus not part of the program execution.

We specialize the checkpointing process using the program specializer Tempo for C pro-
grams, developed by the Compose group at IRISA [11]. Tempo has been adapted to perform
specialization of Java programs, by first translating Java bytecode into C using the Harissa
bytecode-to-C compiler [21], and then specializing the resulting C code [25]. The specialized
C code can be compiled using any C compiler, and then executed in the Harissa run-time
environment. At the C level, the specialized code can express optimizations of the virtual
machine, such as the elimination of array-bounds checks, that cannot be expressed in Java.
Alternatively, for portability, the specialized C code can be converted back to an ordinary
Java program using the Harissa tool Assirah. This approach to the specialization of Java
programs is illustrated in Figure 3.

3.2 Specialization opportunities in incremental checkpointing

The implementation of checkpointing offers two significant opportunities for specialization:
specialization with respect to the structure of the checkpointed data and specialization with
respect to the data modification pattern of the program. We now describe the benefits of
these two kinds of specialization for the checkpointing process.

When there are recurring compound objects having the same structure, we can spe-
cialize the checkpoint method to this structure. Specialization replaces the virtual calls
to the methods of the Checkpointable interface by direct calls. These direct calls can be
inlined, or otherwise optimized by the compiler. Concretely, inlining replaces the call to
getCheckpointInfo() by a direct field reference, and eliminates the overhead of calling sep-
arate record() and fold() methods.

The use of the modified field can also be optimized by specialization. Suppose a program
initializes a set of objects in one phase, and subsequently only reads their values. When this
behavior can be determined before execution, the checkpointing process can be specialized
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javac+Harissa

X Specialization
C files

directives

X-specialized.c

Java files
Binary
application

Java bytecode
application

Figure 3: Structure of the prototype, specialization of class X

to the fact that in the later phases the modified field of such objects is always false. This
optimization eliminates the test in the checkpoint method, which in turn eliminates all
reference to the CheckpointInfo structure, which no longer needs to be accessed. When
combined with specialization to the structure of complex objects, this optimization produces
straight-line code. Together, these optimizations can eliminate all traversal of complex
objects that are completely unmodified between checkpoints.

4 A Realistic Application

Our approach to the optimization of checkpointing is targeted towards complex, long-running
programs that manipulate many instances of similar compound structures. We achieve ad-
ditional benefits when the program is organized in phases, each of which is known to modify
only specific kinds of structures. We now describe such a program, a Java implementation
of the analyses performed by the program specializer Tempo, and assess the opportunities
for specialization of the checkpointing process.

4.1 Overview of the program analysis engine

Effective program specialization demands precise, and often time-consuming, analyses. Fol-
lowing an organization common to many compilers [1], these analyses are organized in
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Efficient Incremental Checkpointing of Java Programs 11

phases, each of which uses, but does not modify, the results of the previous analyses. Fur-
thermore, each phase simply adds information to a fixed attribute structure. This kind of
program can benefit from specialization of incremental checkpointing.

Concretely, we consider three of the analyses performed by Tempo: side-effect analysis,
binding-time analysis, and evaluation-time analysis. Side-effect analysis determines the set
of global variables read and written by each program statement. Binding-time analysis
identifies expressions that can be evaluated using only the information available to the
specializer [15]. Evaluation-time analysis ensures that variables that are referred to in the
specialized program are properly initialized [14]. Our prototype Java implementation of
these analyses treats a simplified version of C.

Each statement of the program is associated with an Attributes structure, which con-
tains a field for the results of each phase of the analysis. Side-effect analysis collects sets of
variables, while binding-time analysis and evaluation-time analysis each record only a single
annotation. Thus, most of the information recorded in the Attributes structure comes from
the side-effect analysis, and is fixed during subsequent phases. Consequently specialization
of the checkpointing process to eliminate the traversal of unmodified objects is most useful
for the binding-time and evaluation-time analyses. These analyses are also typically longer
than side-effect analysis, making checkpointing more desirable for these phases.

To treat recursive programs, each analysis phase performs repeated iterations over the
abstract syntax tree. In a program specializer that treats full C, such as Tempo, these
analyses can take up to several hours, depending on the complexity of the analyzed program.
At the end of each iteration over the abstract syntax tree, the local state is captured by the
annotations stored at each node. Thus, the end of an iteration is a natural time at which
to take a checkpoint.

4.2 Specialization opportunities in checkpointing the program anal-
ysis engine

We now illustrate the specialization opportunities identified in Section 3.2 in the context of
the checkpointing of the implementation of the program analysis engine. We specialize with
respect to information about the Attributes structure, illustrated in Figure 4. Note that
the BTEntry class was defined in Figure 2.

We first specialize the checkpointing implementation to the structure of an Attributes
object. The specialization class Checkpoint_Attributes shown below declares that a special-
ized variant of the checkpoint method should be created for the Attributes class.

specclass Checkpoint_Attributes specializes Checkpoint {
public void checkpoint(Checkpointable o), Attributes o;
}

Declaring such a specialization of the Checkpoint class for each class used in the program
makes the types of the checkpointed objects explicit. Specialization replaces virtual calls by
direct calls and field references. Virtual calls only remain for the methods of the bt (binding
time) and et (evaluation time) objects, whose values are not known during specialization.
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Attributes

‘ BTEntry ‘ ‘ ETEntry ‘
i
[1d][1d]

Figure 4: Organization of the Attributes structure

Subsequent inlining and translation of the specialized C code back to Java produces the
optimized implementation shown in Figure 5.

The program analysis engine also has the property that each phase only modifies its
corresponding field of the Attributes structure. Figure 6 shows some of the specialization
classes used to indicate that during the binding-time analysis phase only the bt field of
the Attributes structure can be modified. CheckpointInfo_unmodified declares that a spe-
cialized instance of the CheckpointInfo class should be created for objects that are never
modified. This specialization class is used in the specialization classes SEEntry_unmodified
and BTEntry_unmodified to declare that the corresponding objects are not modified. These
two classes are then used by Attributes_only_bt_modified to declare that its se and et
fields are unmodified. Finally, Checkpoint_BT indicates that the checkpoint method should
be specialized to such objects. The result of specializing according to these declarations is
shown in Figure 7. The specialized method is a refinement of the result of specializing with
respect to the structure, shown in Figure 5. Only the code pertaining to the checkpointing
of bt remains.

Specialization for the other phases proceeds similarly. For the evaluation-time analysis,
we also specialize with respect to the fact that for some nodes of the abstract syntax tree,
the entire attribute structure is never modified.

4.3 Performance assessment

We now assess the performance of the specialized checkpointing code. Tests were performed
on a 300 MHz Sun Ultra2. We translate the specialized C code back to Java and measure
its performance using the HotSpot dynamic compiler. The final paper will also contain
benchmarks for Harissa, and for the standard JIT of JDK 1.2.2.

Table 1 summarizes the performance of the checkpointing of the binding-time analysis
and evaluation-time analysis phases. The analyzed program is a 750-line image manipula-
tion program. We compare full checkpointing, incremental checkpointing, and specialized
incremental checkpointing. A checkpoint is taken for each iteration of the analyses. The
binding-time analysis requires nine iterations, while the evaluation-time analysis requires
only three. For full checkpointing, we show the performance for the iterations with the
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checkpoint_attr(Checkpointable o) {
Attributes attr;
SEEntry seEntry;
BTEntry btEntry; BT bt;
ETEntry etEntry; ET et;
CheckpointInfo attrInfo, seEntryInfo, btEntryInfo, btInfo, etEntryInfo, etinfo;

attr = (Attributes)o;
attrInfo = attr.getCheckpointInfo();
if (attrInfo.modified())
{
d.writeInt(attrInfo.getId());
attr.record(d);
attrInfo.resetModified();
¥
seEntry = attr.se;
seEntryInfo = SEEntry.getCheckpointInfo();
if (SEEntryInfo.modified())
{
d.writeInt(seEntryInfo.getId());
seEntry.record(d); /* records both lists x/
seEntryInfo.resetModified();
¥
btEntry = attr.bt;
btEntryInfo = btEntry.getCheckpointInfo();
if (btEntryInfo.modified())
{
d.writeInt(btEntryInfo.getId());
btEntry.record(d);
btEntryInfo.resetModified();
¥
bt = btEntry.bt;
btInfo = bt.getCheckpointInfo();
if (btInfo.modified())
{
d.writeInt(btInfo.getId());
bt.record(d); /* virtual call */
btInfo.resetModified();
¥
etEntry = attr.et;
etEntryInfo = etEntry.getCheckpointInfo();
if (etEntryInfo.modified())
{
d.writeInt(etEntryInfo.getId());
etEntry.record(d);
etEntryInfo.resetModified();
¥
et = etEntry.et;
etInfo = et.getCheckpointInfo();
if (etInfo.modified())
{
d.writeInt(etInfo.getId());
et.record(d); /* virtual call x/
etInfo.resetModified();
¥

Figure 5: Specialization of checkpoint w.r.t. the structure of an Attributes object
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specclass CheckpointInfo_unmodified specializes CheckpointInfo {
modified = false;
public boolean modified();

}

specclass SEEntry_unmodified specializes SEEntry {
CheckpointInfo_unmodified checkpointInfo;
IdList_unmodified read, written;
public void fold(Checkpoint c);
public CheckpointInfo getCheckpointInfo();

¥

specclass ETEntry_unmodified specializes ETEntry {
CheckpointInfo_unmodified checkpointInfo;
ET_unmodified et;
public void fold(Checkpoint c);
public CheckpointInfo getCheckpointInfo();

}

specclass Attributes_only_bt_modified specializes Attributes {
SEEntry_unmodified se;
ETEntry_unmodified et;
public void fold(Checkpoint c);
public CheckpointInfo getCheckpointInfo();
¥

specclass Checkpoint_BT specializes Checkpoint {
public void checkpoint(Checkpointable o), Attributes_only_bt_modified o;
}

Figure 6: Specialization classes for the binding-time analysis phase
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checkpoint_attr_btmodif (Checkpointable o) {
Attributes attr; BTEntry btEntry; BT bt;
CheckpointInfo attrInfo, btEntryInfo, btInfo;

attr = (Attributes)o;

attrInfo = attr.getCheckpointInfo();

if (attrInfo.modified()) {
d.writeInt(attrInfo.getId());
attr.record(d);
attrInfo.resetModified();

¥

btEntry = attr.bt;

btEntryInfo = btEntry.getCheckpointInfo();

if (btEntryInfo.modified()) {
d.writeInt(btEntryInfo.getId());
btEntry.record(d);
btEntryInfo.resetModified();

¥

bt = btEntry.bt;

btInfo = bt.getCheckpointInfo();

if (btInfo.modified()) {
d.writeInt(btInfo.getId());
bt.record(d); /* virtual call */
btInfo.resetModified();

¥

¥

Figure 7: Specialization of checkpoint w.r.t. the modification properties of an Attributes

object
BTA ETA

full Ckp. full Ckp. inc. specd. inc. full Ckp. full Ckp. inc. specd. inc.

min. size | max. size (speedup inc.) min. size | max. size (speedup inc.)
Ckp. 12524 21881 1408 1408 11039 11177 551 551
size (Kb)
Ckp. 5300 9082 1346 1006 (1.34) 4565 4652 713 480 (1.49)
time (ms)
Traversal - - 739 400 (1.85) - - 462 228 (2.03)
time (ms)

Table 1: Checkpoint size (in Kb) and execution time (in ms). (Sun JVM)

minimum and maximum checkpoint sizes. For unspecialized and specialized incremental
checkpointing, all of the checkpoints have roughly the same size, so we give average figures.
For the binding-time analysis phase, specialization gives speedups of over 1.3, and for the
evaluation-time analysis phase specialization gives speedups of almost 1.5 over incremental
checkpointing. As noted in Section 4.2, evaluation-time analysis provides additional special-
ization opportunities, because the Attributes fields of some kinds of expressions are never
modified.

We have noted that specialization eliminates the traversal of unmodified objects. Thus,
the traversal time represents the limit of the cost that can be eliminated by specializa-
tion. The last line of the table compares the traversal time for incremental and specialized

RR n~° 3810




16 Julia L. Lawall and Gilles Muller

incremental checkpointing. For the binding-time analysis phase, specialization reduces the
traversal time by 1.8 times, and for the evaluation-time analysis phase specialization reduces
the traversal time by over 2 times.

The speedups obtained here are smaller than those presented in the next section for the
synthetic application. There, specialization is applied to the entire checkpointed structure.
For the program analysis engine, however, other objects are included in the checkpoint. The
traversal of these objects is not optimized by specialization with respect to the Attributes
structure.

5 A synthetic application

To assess the benefits of our approach independent of a particular application, we consider a
synthetic example, in which we can vary the structure of the checkpointed objects. The goal
of these tests is to provide a metric for determining the degree to which other applications
can be expected to benefit from our approach. We consider a compound object containing
five sub-objects, each of which is a linked list. We vary properties of this structure such as
the length of the lists, the percentage of modified objects, and the number of integers that
are recorded for each modified object.

The test program constructs 20,000 compound objects, and performs a single checkpoint.
Our experiments were carried out on a 300MHz dual-processor Sun Ultra2. We use the check-
pointing implementation of Figure 1. OutputStream is instantiated as a DataOutputStream
composed with a ByteArrayOutputStream, as defined in the java.io package. The Java pro-
grams were translated to C using Harissa before specialization. In our first set of experi-
ments, the specialized C code was compiled using gcc version 2.8.1 at optimization level 03,
and then executed in the Harissa environment. In our last experiment, we translate the spe-
cialized code back to Java, and measure its performance using JDK 1.2.2, with the standard
Just-In-Time (JIT) compiler and with the HotSpot dynamic compiler. In each case, we con-
sider only the time to construct the checkpoint. Our experiments show that specialization
can improve the performance of incremental checkpointing by up to 15 times, depending on
the complexity of the object structure and the percentage of unmodified objects.

We first compare incremental checkpointing to full checkpointing. When some objects
are not modified, incremental checkpointing reduces the cost of recording the current state.
Nevertheless, incremental checkpointing also introduces tests into the traversal of the objects.
Figure 8 shows that despite the additional tests, when all of the objects are modified,
incremental checkpointing and full checkpointing have essentially the same performance.
Incremental checkpointing gives the most speedup when there are few modified objects, and
when the cost of recording the state of each modified object is relatively high. Incremental
checkpointing is over 3 times faster than full checkpointing when only a quarter of the objects
are modified, and when 10 integers are recorded for each modified object.

Incremental checkpointing reduces the number of objects recorded in the checkpoint,
but still requires a complete traversal of the object structure to identify modified objects.
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Specialization with respect to properties of the object structure optimizes the traversal. In
particular, we specialize with respect to the following structural information.

e The structure of the compound objects.
e The set of lists that may contain modified objects.

e The positions in these lists where a modified object can occur.

The speedups with respect to incremental checkpointing achieved by these specialization
opportunities are summarized in Figures 9 through 12. The percentages in each figure
indicate the percentage of objects that are modified.

Specialization with respect to the structure of each compound object eliminates virtual
calls and permits inlining. These optimizations give the most speedup when there are few
modified objects, and thus the cost of the object traversal dominates. As shown in Figure 9,
the speedup as compared to unspecialized incremental checkpointing ranges from 1.5 when
all objects are modified and 10 integers are written for each modified object, to over 3 when
each list has length 5, only a quarter of the objects are modified, and only one integer is
written for each modified object.

When some lists are known to be completely unmodified, specialization with respect to
this information eliminates the traversal of such lists. Here the greatest speedup is obtained
when there are long lists, of which few may contain modified objects, and when little data
is recorded for each modified object. The speedup obtained over incremental checkpointing
is summarized in Figure 10. For lists of length 5, when only one value is recorded for each
modified object, the speedup ranges from 2 to 9, as the number of lists that may contain
modified objects decreases. When 10 integers are recorded for each modified object, the
speedup is reduced by up to half.

Specializing with respect to the specific positions within each list at which modified
objects can occur eliminates the need to test the other objects. We consider the case
where a modified object can only occur as the last element of each list. This is the worst
case, because only tests, but not object traversals, are eliminated. Because the number of
eliminated tests depends on the length of the lists, we achieve the most speedup for long
lists. Figure 11 shows that for lists of length 5, when only one value is recorded for each
modified object, the speedup over unspecialized incremental checkpointing ranges from 5 to
15, depending on the number of lists that may contain modified objects. When 10 integers
are recorded for each object, these speedups range from 2 to 11.

So far, we have assessed the performance of specialized C code. For portability, we can
also translate the specialized C code back to Java using the Assirah tool. In our third spe-
cialization experiment above (c.f. Figure 11), we specialize with respect to both the number
of lists that may contain a modified object and the position at which a modified object can
occur in each list. Figure 12 compares the performance of the Java specialized code with
performance of the unspecialized Java implementation of incremental checkpointing, for lists
of length 5. As shown in Figure 12a, using the JDK 1.2.2 JIT compiler, we obtain speedups
of up to 12. As shown in Figure 12b, combining JDK 1.2.2 with the state-of-the art dynamic
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Figure 8: Incremental checkpointing (Harissa JVM)
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Figure 9: Specialization with respect to the object structure (Harissa JVM)
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modifiedlists 1 2 3 4 51 2 3 45123475

1 integer recorded per modified object

modifiedlisss 1 2 3 4 51 2 3 45123465

10 integers recorded per modified object

Figure 10: Specialization with respect to the object structure and the number of lists that
may contain modified elements (Harissa JVM)

Possibly Harissa JDK 1.2.2 JDK 1.2.2 4+ HotSpot

mod. lists | 100% | 50% | 25% 100% | 50% | 25% 100% | 50% 25%

Unspecialized code 1 1048 977 948 3993 1980 | 1759 1809 | 1560 | 1325
5 1804 | 1364 | 1137 || 10918 | 7053 | 4036 4516 | 2412 | 1711

Specialized code 1 168 109 83 946 536 301 460 309 239
5 705 423 269 4391 | 2334 | 1267 1697 | 1235 763

Table 2: Checkpoint execution time (in ms), 10 integers written for each element
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Figure 11: Specialization with respect to the object structure and the number of lists whose
last element is modified (Harissa JVM)
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Figure 12: Specialization with respect to the object structure and the number of lists whose
last element is modified (Sun JVM)

RR n~° 3810



20 Julia L. Lawall and Gilles Muller

compiler HotSpot, we obtain speedups of up to 6 over the performance of the unspecialized
code, also running on HotSpot. As shown by Table 2, the Harissa code is significantly faster
than the code produced by the JDK 1.2.2 JIT compiler or HotSpot. Table 2 also shows that
the unspecialized code run with HotSpot can be faster than the specialized code run with-
out HotSpot. Thus, one may wonder whether HotSpot subsumes program specialization.
Nevertheless, Figure 12b shows that the specialization further improves performance under
HotSpot, demonstrating that specialization and dynamic compilation are complementary.

6 Related work

Automatic program-transformation techniques have already been used to improve the relia-
bility and performance of source-level checkpointing. The C-to-C compilers c2ftc and porch,
developed by Ramkumar and Strumpen [24, 28] and by Strumpen respectively [27], add
code around each procedure call that enables a program to manage the checkpointing and
recovery of its control stack. A preprocessor in the Dome system provides a similar facility
for parallel C++ programs [5, 6]. Plank et al. propose to use data-flow analysis to determine
automatically, based on hints from the user, the regions of memory that are not modified
between checkpoints [4, 23]. Calls to functions in a checkpointing library (libckpt for Sparc
or CLIP for Intel Paragon) are then automatically inserted into the source program according
to the results of the analysis. Killijian et al. and Kasbekar et al. use compile-time reflection
provided by OpenC++ [10] to add checkpointing code at the source level to the definitions
of C++ objects [16, 17]. These approaches are most closely related to ours. Essentially, we
use program specialization to optimize checkpointing methods of the form they generate by
reflection.

Several of these source-level approaches address the problem of incremental checkpoint-
ing. The analysis proposed by Plank et al. to detect unmodified regions of memory is carried
out at compile time, and is thus necessarily approximate. The reflective approach of Kil-
lijian et al. associates a modification flag with each object field. Maintaining and testing
these flags at run time adds substantial overhead: extra space to store the modification
flags, extra time on every assignment in order to update the associated flag, and extra time
during checkpointing to test the flags. Our approach exploits both compile-time and run-
time information. When it is possible to determine at compile time that an object is not
modified between checkpoints, specialization eliminates the code to save the state of the
object. When it is not possible to determine this information at compile time, the modified
flag is retained in the specialized program to be tested at run time. Because specialization
is automatic, it is feasible to create many implementations, to account for the modification
patterns of each phase of the program.

Language-level checkpointing for Java provides independence from the virtual machine.
Other approaches have simplified the checkpointing process and reduced checkpoint size by
omitting aspects of the underlying language implementation. The Stardust [9] and Dome
[5, 6] systems for SIMD parallelism in heterogeneous environments restrict checkpointing to
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synchronization points in the main function, eliminating the need to record the stack.? In
the context of Java, Killijian et al. also record only object fields, and thus omit the stack
[17]. By comparing the checkpointing of a recursive Java program using their approach with
the checkpointing of a comparable C program using porch, they found that porch has a much
higher checkpoint overhead, because of recording the stack.

Checkpointing is conceptually similar to serialization, the conversion of an object struc-
ture into a flat representation. In Java, serialization is implemented using run-time reflec-
tion. Reflection is used both to determine the static structure of each object (its type, field
names, etc.), and to access the recorded field values. The structure of an object, however,
does not change during execution. Thus, repetitively determining this information at run
time is inefficient. Braux has proposed to eliminate the overheads of Java reflection using
program specialization [8]. These techniques could useful in extending our approach to a
checkpointing implementation based on reflection.

7 Conclusion and future work

In this paper, we have shown that automatic program specialization can significantly improve
the incremental checkpointing of Java programs. Because specialization is carried out auto-
matically, the generated code is correct. This approach has several advantages: (i) multiple
checkpoint procedures can be generated for a single program, permitting to exploit per-
phase modification patterns, and (ii) checkpointing can be implemented straightforwardly
to facilitate program evolution and maintenance, without sacrifying performance.

This work opens up many possibilities for further research. In the approach we have
presented, the user must identify which compound structures are used frequently in the pro-
gram, and the regions in which such structures are not modified. To automate this process,
we propose to develop an analysis that identifies phases of the program in which particular
structures are not modified. Specialization classes could be automatically constructed based
on this information. If we additionally use reflection as proposed by Kasbekar et al. and by
Killijian et al. to automatically generate the checkpointing methods for each class [16, 17]
and automatically modify the source code as proposed in the c2ftc and porch systems to
save and restore the stack [24, 27, 28], we obtain an efficient and transparent language-level
implementation of checkpointing for Java programs.
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Availability

Selected examples from this paper are available at http://www.irisa.fr/compose/jspec/checkpoint.
Tempo, Harissa, and the Java Specialization Class Compiler are available through the Com-

pose web page http://www.irisa.fr/compose/. A first prototype of specialization of Java
programs using Tempo, including Assirah, will be available in December 1999.
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