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Abstract

Specializing string matchers is a canonical example of partial evalua-
tion. A naive implementation of a string matcher repeatedly matches a
pattern against every substring of the data string; this operation should
intuitively benefit from specializing the matcher with respect to the pat-
tern. In practice, however, producing an efficient implementation by per-
forming this specialization using standard partial-evaluation techniques
has been found to require non-trivial binding-time improvements. Start-
ing with a naive matcher, we thus present a derivation of a binding-time
improved string matcher. We prove its correctness and show that special-
ization with respect to a pattern yields a matcher with code size linear
in the length of the pattern and running time linear in the length of its
input. We then consider several variants of matchers that specialize well,
amongst them the first such matcher presented in the literature, and we
demonstrate how variants can be derived from each other systematically.
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1 Introduction

The Knuth-Morris-Pratt string-matching algorithm (KMP) [16] tests whether
a pattern string p occurs in a data string d in time O(|p| + |d|). Although the
KMP can be written in a few lines, it proves surprisingly difficult to comprehend.
This has made it a fruitful topic in the area of program transformation, from
Knuth’s original derivation onwards.

Partial evaluation is an automatic program transformation that specializes a
program with respect to partial information about the input. Because a string
matcher conceptually matches a single pattern against every possible starting
position in the data string, string matching seems like a compelling target for
partial evaluation. The question is whether an efficient string matcher can be
derived from a naive one by specialization with respect to the pattern. Indeed,
this “KMP-test” has become a popular benchmark for partial evaluators and
related systems [21]. The systems that pass the KMP test have the ability
to infer information about the unknown input based on the form of enclosing
conditional tests [6, 20, 21]. Such capability, however, goes beyond standard
partial evaluation.

Another approach is to rewrite a naive string matcher to make it more
amenable to standard partial evaluation by augmenting the implementation
with static data recording the results of tests on the dynamic data: A standard
partial evaluator, such as Mix [13], Schism [4] or Similix [3], can generate an effi-
cient implementation from such a modified version. This insight, which inspired
further investigations into the applicability of program-specialization systems to
the string-matching problem, is due to Consel and Danvy [5]. Modifications to
the source program to improve the result of partial evaluation are common in
practical applications of partial evaluation, and are known as binding-time im-
provements [12, Chapter 12]. But, because in previous applications [2, 5, 12, 21]
of this technique to string matching the naive matcher is modified in a single
step, it is neither obvious that the modifications preserve semantics, nor clear
how such binding-time improvements can be achieved in a systematic way.

In this paper we present a simple and intuitive derivation of a matcher; we
prove that using Similix to specialize our matcher with respect to a pattern
string yields a residual program that has size linear in the length of the pattern
and that runs in time linear in the length of the data string. The first step of
our derivation improves the result of partial evaluation by making explicit in
the static data the information that can be derived from the truth of enclos-
ing conditional tests (positive information). The result of partial evaluation of
this implementation runs in time linear in the length of the data string, but
may perform some redundant tests. Therefore we modify the implementation
to make explicit information that can be derived from the falsity of enclosing
conditional tests (negative information); the result of applying partial evalua-
tion to this implementation never compares a character of the data string to the
same pattern character more than once. We then analyze how two published
matchers (namely those of Consel and Danvy [5] and of Jones, Gomard, and
Sestoft [12]) can be derived from our matcher. In doing so, we explore a number
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of variations that specialize well with partial evaluators such as Similix.
The paper is structured as follows: Section 2 gives a short overview of the

concepts of partial evaluation essential for this paper. In Section 3, a straight-
forward implementation of a string matcher is presented. Section 4 describes a
derivation of a string matcher that keeps positive information, and proves that
specializing this matcher with Similix yields a residual program of size linear in
the length of the pattern and with running time linear in the size of the data
string. Section 5 does the same for a matcher that also keeps negative infor-
mation, and shows that no redundant tests are performed by the specialized
matcher. Section 6 discusses possible variations in the design of string matchers
amenable for specialization, and shows how the matchers of Consel and Danvy
and of Jones et al. can be derived from our implementation. Section 7 treats
related work and Section 8 concludes.

2 Partial evaluation

Partial evaluation is an automatic program transformation that uses inter-
procedural constant propagation to specialize a program with respect to known
parts of its input, the so-called static input. Running the specialized program
on the remaining input (called the dynamic input) must yield the same result
as running the original program on the complete input. Here we only describe
the concepts of partial evaluation that are essential for this paper—a thorough
account of partial evaluation can be found in the textbook of Jones et al. [12].

In (offline) partial evaluation, the process of partial evaluation is staged
into (1) a binding-time analysis (BTA) and (2) the specialization of a program
annotated with binding-time information. Binding-time analysis classifies as
static the expressions that depend only on the static input; such expressions are
evaluated during specialization. Expressions that also depend on the dynamic
input are classified as dynamic, and are reconstructed to form the specialized
program. The goal of a binding-time improvement is to rearrange the code so
that more terms are classified as static.

In this paper, we use the Similix [3] partial evaluator for Scheme. Similix
has the following notable features:

• Monovariant BTA: A monovariant BTA annotates each program construct
with exactly one binding time.

• Memoization of specialized code: A memoizing specializer associates with
each block of specialized code the set of static values with respect to
which the code has been specialized. When the original code is to be
specialized again with respect to the same static values, the specializer
simply generates a function call or jump to the previously generated code.
Similix considers a conditional expression with a dynamic test to be such
a block of code, and these memoization points are identified during the
BTA. Other degrees of granularity are possible. Residual code originating
from a memoization point is called a variant of this memoization point.
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Even though the programs in this paper are presented in Scheme [15] (de-
scribed briefly in Appendix A), no Scheme-specific features are used; we expect
the results to carry over directly to other functional languages and memoizing
offline partial evaluators with a standard monovariant BTA.

3 A straightforward implementation of a string

matcher

A pattern string p appears in a data string d if p is the prefix of some suffix
of d. Thus, a straightforward algorithm to match a pattern p against a data
string d is to proceed as follows: compare p against the prefix of d; if the
match fails, restart, by trying to match against the tail of d. Figure 1 shows a
direct implementation of this algorithm, where strings are represented as lists of
symbols: main takes a pattern p and a data string d; it calls a procedure match,
passing p and d also to additional parameters pp and dd. During execution of
match, p and d hold the part of the pattern that is still to be matched and the
part of the data string it has to be matched against, respectively. Argument
pp always holds the complete pattern, whereas dd contains the part of the data
string on which the algorithm was last restarted. Both pp and dd are used
for a restart in case of a mismatch: in the last branch of the conditional p
is reinitialized to the complete pattern pp and d is set to the tail of dd. The
algorithm succeeds when the pattern that is still to be matched is empty; it
fails when the end of the data string is reached and the pattern has not been
matched completely.

The straightforward algorithm has a running time of O(|p| · |d|). An obvious
worst-case example is matching ’(a a a b) against ’(a a a a a a b): The
complete pattern is repeatedly matched against the data string. Figure 2 shows
the result of specializing the straightforward algorithm with respect to ’(a a
a b):1 All Similix can do is to unfold the static recursion on p; no noteworthy
efficiency gain is achieved.

4 Pattern matching with positive information

Our derivation begins with the straightforward implementation of a string matcher
from Figure 1. We rewrite this implementation by exploiting information that
can be deduced from the truth of dynamic conditional tests (positive informa-
tion). Specialization of the resulting program with respect to a pattern of length
n produces a specialized program that consists of n comparisons and null-tests,
and that performs at most 2m comparisons and at most 2m+1 null-tests when
applied to a string of length m.

1In order to improve readability, in the output of Similix we have substituted more intuitive
function names and changed local to global definitions.
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(define (main p d)

(match p d p d))

(define (match p d pp dd)

(cond

[(null? p) ’accept] ; matched the complete pattern
[(null? d) ’reject] ; reached end of text without complete match
[(equal? (car p) (car d)) ; continue matching (cdr p) against (cdr d)

(match (cdr p) (cdr d) pp dd)]

[else ; restart, matching pp against (cdr dd)

(match pp (cdr dd) pp (cdr dd))]))

Figure 1: A straightforward implementation of a string matcher

(define (main-0 d_0) (matchaaab d_0 d_0))

(define (matchaaab d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’a (car d_1)) (matchaab (cdr d_1) dd_0)]

[else (matchaaab (cdr dd_0) (cdr dd_0))]))

(define (matchaab d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’a (car d_1)) (matchab (cdr d_1) dd_0)]

[else (matchaaab (cdr dd_0) (cdr dd_0))]))

(define (matchab d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’a (car d_1)) (matchb (cdr d_1) dd_0)]

[else (matchaaab (cdr dd_0) (cdr dd_0))]))

(define (matchb d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’b (car d_1)) ’accept]

[else (matchaaab (cdr dd_0) (cdr dd_0))]))

Figure 2: The straightforward implementation, specialized to ’(a a a b). A
call (matchx d dd) corresponds to (match x d ’(a a a b) dd).

4.1 Implementation

For a matcher to run in time O(|d|), repeated comparisons of the pattern with
overlapping portions of the data string have to be avoided, i.e., the matcher
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should not backtrack on the data string.
During the matching process, the straightforward implementation (Figure 1)

loses information with every restart: if k characters of the pattern have been
successfully matched against the data string, and a restart occurs, then the first
k−1 characters of the data string on which the matcher is restarted are already
known (see Figure 3a). This kind of information is called positive information,
because it originates from successful equality tests (the third “cond” line in
Figure 1). Instead of backtracking on the data string by “shifting” the pattern
one position and matching it against the data string (Figure 3b), a matcher
that collects the positive information can initially compare the pattern against
the positive information (Figure 3c). For the running time of the matcher
itself, this modification obviously does not make any difference: comparing the
pattern with the positive information takes just as much time as comparing the
pattern with the data string. The specialized program, however, runs faster:
positive information is only dependent upon the pattern, so partial evaluation
can precompute the result of comparisons with positive information.

a) a a a b

a a a a a a ba

mismatch
Pattern string

Data string

b)

a a a a a a ba

a a ba

Data string

Pattern string

c) a a ba

a a a

a a a a b

Pattern string

Data string

Positive info.

Figure 3: The role of positive information. a) A mismatch occurs. To the
left of the mismatch, pattern string and data string are equal (positive infor-
mation). b) Restart of the straightforward matcher. The pattern string is
shifted one position to the right and matching resumes by comparing the pat-
tern string with the data string. c) Restart of a matcher that specializes well.
Positive information has been collected, and matching resumes by comparing
the pattern string against it.

The straightforward matcher can be transformed into a matcher behaving
as outlined above as follows:
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1. We transform the algorithm to make positive information explicit.

2. The static positive information is still lost because it is mixed with dy-
namic data. We remedy this by separating the affected static and dynamic
values.

3. We reorder the algorithm such that decisions that depend only on static
data are always made before examining dynamic data.

Making positive information explicit Figure 4 shows an implementation
of the string matcher in which the arguments pp and dd have been replaced
by the single argument pi (“positive information”). As shown in the third
“cond” line, the argument pi records the characters that have been successfully
matched: The fourth “cond” line shows that this information is sufficient to
restart the matching process on failure: at all times, the original pattern is the
value of (append pi p), while the current position in the data is the value of
(append pi d). Note that we are not concerned with efficiency when collect-
ing the positive information in (append pi (list (car p))); the operation is
static and thus will be performed by the partial evaluator.

(define (main p d)

(match p d ’()))

(define (match p d pi)

(cond

[(null? p) ’accept]

[(null? d) ’reject]

[(equal? (car p) (car d))

(match (cdr p) (cdr d) (append pi (list (car p))))]

[else (match (append pi p) (cdr (append pi d)) ’())]))

Figure 4: The string matcher with explicit positive information

Separating static and dynamic values The static positive information
collected in pi does not survive a restart: pi is bound to ’() and the concate-
nation of the positive information pi with the dynamic data string d produces
a dynamic value. Our next step is a binding-time improvement to separate
(append pi d). We divide the dynamic parameter d into two parameters s d
(“static d”) and d d (“dynamic d”); the former essentially corresponding to the
pi portion of (cdr (append pi d)) and the latter essentially corresponding
to the d portion of (cdr (append pi d)). Static positive information is then
held both in s d and pi. The s d and d d parameters now represent the pre-
fix and suffix of a single list, so we must rewrite each operation on the data
string accordingly. Basically, code that accesses (car d) or (cdr d) in the
implementation of Figure 4 has to be duplicated to access either (car s_d) or
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(car s_d), or to access (car d d) or (cdr d d), respectively, if s d is empty.
Note that (cdr (append pi d)) may access (cdr d) if pi is empty. Therefore,
the transformed code contains a null test for pi in this case. The result of this
binding-time improvement is displayed in Figure 5.

(define (main p d)

(match p ’() d ’()))

(define (match p s_d d_d pi)

(cond

[(null? p) ’accept]

[(and (null? s_d) (null? d_d)) ’reject]

[(and (not (null? s_d)) ; match with (car s d)

(equal? (car p) (car s_d)))

(match (cdr p) (cdr s_d) d_d (append pi (list (car p))))]

[(and (null? s_d) ; match with (car d d)

(equal? (car p) (car d_d)))

(match (cdr p) s_d (cdr d_d) (append pi (list (car p))))]

[(not (null? s_d)) ; mismatch with (car s d)

(match (append pi p) (cdr (append pi s_d)) d_d ’())]

[(null? s_d) ; mismatch with (car d d)

(if (null? pi)

(match (append pi p) ’() (cdr d_d) ’())

(match (append pi p) (cdr (append pi s_d)) d_d ’()))]))

Figure 5: The string matcher where static and dynamic values are separated

Reordering control-flow decisions In the implementation of Figure 5, the
tests in the second and fourth “cond” line contain some “and” expressions where
the first argument is static and the second argument is dynamic. If the first
argument turns out to be false, the result of an “and” expression is false based
on this information alone. Nevertheless, because the binding-time analysis does
not know the value of the first argument, it must classify an “and” expression
as dynamic if either argument is dynamic. Thus, we improve the binding times
by rewriting the program such that these tests are separated. The result is
shown in Figure 6. We also simplify subexpressions where possible to improve
readability: for example (append pi s d) in a branch where s d is known to be
’() is rewritten to pi. Because these simplifications are only applied to static
expressions, performing them by hand has no effect on the result of partial
evaluation.

Specializing the string matcher from Figure 6 with respect to the pattern
’(a a a b) produces the residual program displayed in Figure 7. Specializa-
tion unrolls the loop according to the elements of the pattern. Furthermore,
when matching fails, the specialized program restarts the matching on either
the current string, or on the tail of the current string, never backing up as done

9



(define (main p d)

(match p ’() d ’()))

(define (match p s_d d_d pi)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() (cdr d_d) ’())]

[else (match (append pi p) (cdr pi) d_d ’())])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d (append pi (list (car p))))]

[else (match (append pi p) (cdr (append pi s_d)) d_d ’())])]))

Figure 6: The string matcher, ready for specialization

by the original implementation. Compare this with the result of specializing the
straightforward implementation (Figure 2).

4.2 Correctness

We show that the derived implementation using positive information from Fig-
ure 6 (in this section referred to as mainpos and matchpos) is equivalent to the
original implementation from Figure 1 (mainorig and matchorig). The following
theorem shows how matchpos and matchorig are related:

Theorem 1 For all p, s d, d d and pi,

(matchpos p s d d d pi) =
(matchorig p (append s d d d) (append pi p)

(append pi (append s d d d))).

Proof: The lexicographic ordering on 〈|d|, |(append pi s d)|, |p|〉 constitutes
a termination relation for matchpos, i.e., 〈|d|, |(append pi s d)|, |p|〉 decreases
with every recursive call and the order is well-founded. Hence the proof can be
conducted by well-founded induction; it is deferred to Appendix B. 2

Using the relation between matchorig and matchpos, we can show directly
that the two implementations are equivalent.

Corollary 2 For all p and d, (mainpos p d) = (mainorig p d).
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(define (main-0 d_0) (match|aaab d_0))

(define (match|aaab d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’a (car d_d_0)) (matcha|aab (cdr d_d_0))]

[else (match|aaab (cdr d_d_0))]))

(define (matcha|aab d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’a (car d_d_0)) (matchaa|ab (cdr d_d_0))]

[else (match|aaab d_d_0)]))

(define (matchaa|ab d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’a (car d_d_0)) (matchaaa|b (cdr d_d_0))]

[else (matcha|aab d_d_0)]))

(define (matchaaa|b d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’b (car d_d_0)) ’accept]

[else (matchaa|ab d_d_0)]))

Figure 7: The string matcher, specialized to ’(a a a b). A call (matchx|y
d d) corresponds to (match y ’() d d x).

Proof:

(mainpos p d) = (matchpos p ’() d ’())

= (matchorig p (append ’() d) (append ’() p)

(append ’() (append ’() d)))

= (matchorig p d p d) = (mainorig p d)

2

4.3 Complexity of the specialized code

We consider two aspects of the complexity of the specialized code. First, we
analyze the size of the specialized program. Then, we analyze its running time.
In both cases, it is helpful to distinguish the code that is residualized from the
code that is evaluated during specialization. We thus refer to the result of the
binding-time analysis by Similix, illustrated in Figure 8: The parameters of each
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(define (main ps dd)

(match p ’() d ’()))

(define (match ps s_ds d_dd pis)

(cond

[(null? p) ’accept ]

[(null? s_d)

(cond ; memoization point
[(null? d_d) ’reject ]

[(equal? ( car p) (car d_d))

(match (cdr p) ’() (cdr d_d) (append pi (list (car p))))]

[else

(cond

[(null? pi) (match p ’() (cdr d_d) ’())]

[else (match (append pi p) (cdr pi) d_d ’())])])]

[else

(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d (append pi (list (car p))))]

[else (match (append pi p) (cdr (append pi s_d)) d_d ’())])]))

Figure 8: The annotated string matcher

function are annotated with their binding times. Basic function calls that are
reconstructed during specialization are printed in italics; user-defined functions
are always unfolded. Static expressions whose results have to be residualized are
enclosed by italic parenthesis. A comment marks a memoization point inserted
by Similix.

Meaningful metrics for measuring the size of the residual code and its run-
ning time can only be found with some basic information about the shape of
the residualized code. This kind of information can be deduced from the an-
notated code: For any static input, the residualized code will consist of null
(null?) tests, comparisons (equal?) (both wrapped into an enclosing “cond”
statement), the cdr and car primitives, and occurrences of the symbols ’accept
and ’reject.

It is easy to see that the size of the residual code is governed by the number
of residualized conditionals; we therefore make the number of residualized null
tests and comparisons (which directly corresponds to the number of residualized
conditionals) our measure for the size of residualized code.

The running time of residualized programs will be measured in terms of
the number of null tests and comparisons that are performed. The only other
operations present in the residualized code are cdr and car operations. The
latter always appear inside a comparison and are thus accounted for by counting
the number of comparisons. The cdr operation is only applied to the dynamic
data d; since there is no operation that adds to the length of d, the residual
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program can only apply cdr to d for |d| times and thus can be disregarded.
We measure complexity in terms of the length of input, assuming a finite

alphabet of a given fixed size.

4.3.1 Size

We prove the following theorem:

Theorem 3 Specializing the implementation in Figure 6 with respect to a pat-
tern of length n yields a residual program of size linear in n. More precisely,
exactly n comparisons and null tests on the dynamic data are generated.

For the proof of Theorem 3 we need the following lemma:

Lemma 4 In the evaluation of (main p0 d0) (as defined in Figure 6), for any
k ≥ 1, in the kth call to match, the concatenation of argument pi with argument
p is equal to p0.

Proof: The proof is by induction on k.

• The initial call to match in main is (match p0 ’() d0 ’()). Clearly
(append ’() p0) = p0.

• For the remaining cases, we assume that the lemma is true of the first k
calls, and consider the possibilities for the k+1st call. It is straightforward
to see that every call maintains the invariant (append pi p) = p0.

2

We now turn to the proof of Theorem 3.

Proof: In match there is only one occurrence of a null? test and one occur-
rence of an equal? test to be reconstructed during specialization (shown by the
italic constructs in Figure 8). Both of them are in the scope of the memoization
point in match. Thus, the number of residual tests depends on the number of
variants generated.

Analyzing the guards of the outer cond-expression in the definition of match
in Figure 8 shows that the memoization point is reached only if s d = ’().
Hence the number of possible configurations of the static data at the memoiza-
tion point is governed by the contents of p and pi. Lemma 4 implies that there
are at most n + 1 different configurations of p and pi. It is easy to see that all
n + 1 of them are indeed reached during partial evaluation; however only n of
them will be encountered at the memoization point, because with p = ’(), it
cannot be reached. 2
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4.3.2 Execution time

We measure the execution time in terms of the number of equality and null tests
performed by the algorithm:

Theorem 5 Let main res be the code generated by specializing (main p d)
with respect to p. Let te be the number of equality tests and tn be the number
of null tests performed when applying main res to any d. Then te ≤ 2|d| and
tn ≤ te + 1.

For the proof of Theorem 5 we need the following lemma:

Lemma 6 Let match res be the code generated by specializing (match p s d
d d pi) with respect to p, s d and pi. Let te be the number of equality tests
and tn the number of null tests performed by applying match res to any d d.
Then, te ≤ 2|d d| + |s d| + |pi| and tn ≤ te + 1.

Proof: Equality tests and null tests that have been marked as irreducible
(italic font in Figure 8) by the binding time analysis are called irreducible
tests in this proof. For every equality test performed during the evaluation
of (match res d d), the evaluation of (match p s d d d pi) performs one ir-
reducible equality test; the same holds for null tests. Hence we can establish
the bounds te and tn by showing that at most te irreducible equality tests and
at most tn irreducible null tests are performed during the evaluation of (match
p s d d d pi).

It is easy to see that a termination relation for match is given by the lex-
icographic order on 〈|d d|, |(append pi s d)|, |s d|〉. Hence we can use well-
founded induction.

Consider the evaluation of (match p s d d d pi). If (match p s d d d
pi) terminates immediately with ’accept or ’reject, no irreducible equality
tests and at most one irreducible null test (for termination with ’reject) are
performed.

By the induction hypothesis we know that every internal call (match p' s d'
d d' pi') performs at most te' ≤ 2|d d'|+ |s d'|+ |pi'| irreducible equality tests
and at most tn' ≤ te' + 1 irreducible null tests We conduct a case distinction
on whether s d is empty or not:

• If s d is empty, then any recursive call follows one irreducible null test and
one irreducible equality test. Thus in each case te = te' + 1 ≤ 2|d d'| +
|s d'| + |pi'| + 1. In each case, 2|d d'| + |s d'| + |pi'| + 1 is less than or
equal to 2|d d| + |s d| + |pi|, so te ≤ 2|d d| + |s d| + |pi|. Also, in each
case, tn = tn' + 1. Since tn' ≤ te' + 1, also tn ≤ te' + 2 = te + 1.

• If s d is nonempty, then any recursive call follow no irreducible null or
equality tests, so te = te' and tn = tn'. In each case, 2|d d'| + |s d'| +
|pi'| ≤ 2|d d|+ |s d|+ |pi|, and therefore te ≤ 2|d d|+ |s d|+ |pi|. Since
tn' ≤ te' + 1, also tn ≤ te + 1.
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This concludes the proof. 2

Now we can turn to the proof of Theorem 5:

Proof: Specialization of (main p d) with respect to any p results in special-
ization of match with respect to p, ’(), and ’(). By Lemma 6, the num-
ber te of equality tests performed when applying this code to any d satisfies
te ≤ 2|d| + 0 + 0. Further, also by Lemma 6, tn ≤ te + 1. 2

5 Pattern matching with both positive and neg-

ative information

Even though the result of partially evaluating the string matcher from Figure 6
has a running time linear in the size of the data string, its behavior is not
optimal. This is because there may be redundant tests, i.e., a character of the
data string may be repeatedly compared with the same character. Consider how
the matcher specialized for ’(a a a b) (Figure 7) behaves on the input ’(a a
a c): after matching the first three characters of the pattern against the data
string, a mismatch occurs on the fourth character. The function matchaa|ab
is called, and compares the fourth character of the input against ‘a’. This
comparison fails, resulting in a call to matcha|aab, where a second comparison
with ‘a’ is performed. The subsequent call to match|aaab conducts yet a third
comparison with ‘a’.

Redundant comparisons can be avoided by using negative information, i.e.,
information about which comparisons have already failed for the current first
character of d d. In the following, we use the same techniques as presented in
Section 4.1, now to exploit negative information such that the specialized code
does not perform redundant comparisons.

5.1 Implementation

We transform the algorithm from Figure 6 in three steps. In the first step we
add negative information. In the second step we use the negative information
to avoid dynamic operations when their result can be deduced statically from
the negative information. As before, this change only improves the result of
specialization after we reorganize conditionals to improve the binding times in
the third step.

Making negative information explicit We introduce an additional argu-
ment ni that contains negative information: whenever a mismatch between a
character c from the pattern and the head of the dynamic data d d occurs, c is
added to ni. Whenever the first character of d d is thrown away, the informa-
tion collected in ni is outdated and therefore ni is set to ’(). Figure 9 shows
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an implementation that keeps track of negative information according to this
strategy.

(define (main p d)

(match p ’() ’() d ’()))

(define (match p s_d ni d_d pi)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else

(match (append pi p) (cdr pi) (cons (car p) ni) d_d ’())])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) ni d_d (append pi (list (car p))))]

[else

(match (append pi p) (cdr (append pi s_d)) ni d_d ’())])]))

Figure 9: A string matcher that keeps track of negative information

Using negative information The following invariant can be shown by straight-
forward induction on the number of calls to match (cf. the proof of Lemma 4):

Lemma 7 In the evaluation of (main p0 d0) (as defined in Figure 9), for any
k ≥ 1, in the kth call to match, if a character c is in ni then (car d d) 6= c.
Furthermore, if ni 6= ’() then d d 6= ’().

Using this invariant, we transform the code of Figure 9 to only perform null
tests on d d and comparisons with (car d d) when their outcome cannot be
determined from the negative information. The result of this transformation
is shown in Figure 10; the expression (member c cs) returns true when the
character c occurs in the list cs.

Reordering control-flow decisions As in Section 4.1, Figure 5, the code
in Figure 10 has “and” expressions where the first argument is static and the
second argument is dynamic. Again, we improve the binding times by separating
these tests; the result is shown in Figure 11.
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(define (main p d)

(match p ’() ’() d ’()))

(define (match p s_d ni d_d pi)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(and (null? ni) (null? d_d)) ; use negative information
’reject]

[(and (not (member (car p) ni)) ; use negative information
(equal? (car p) (car d_d)))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else

(match (append pi p) (cdr pi) (cons (car p) ni) d_d ’())])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) ni d_d (append pi (list (car p))))]

[else

(match (append pi p) (cdr (append pi s_d)) ni d_d ’())])]))

Figure 10: A string matcher that uses both positive and negative information

5.2 Correctness

The derived implementation of match using positive and negative information
from Figure 11 (in this section referred to as mainneg and matchneg) is related to
the original implementation from Figure 1 (mainorig and matchorig) as follows:

Theorem 8 For all p, s d, d d, pi and ni, where ni is a set of characters such
that if ni is nonempty then d d is nonempty and (car d d) 6∈ ni, then

(matchneg p s d ni d d pi) =
(matchorig p (append s d d d) (append pi p)

(append pi (append s d d d))).

Proof: The proof is conducted by well-founded induction (the lexicographic
ordering on 〈|d|, |(append pi s d)|, |p|〉 is a termination relation for matchneg)
and is deferred to Appendix C. 2

Using the relation between matchorig and matchneg, we can show directly
that the two implementations are equivalent.

Corollary 9 For all p and d, (mainneg p d) = (mainorig p d).
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(define (main p d)

(match p ’() ’() d ’()))

(define (match p s_d ni d_d pi)

(cond

[(null? p) ’accept]

[(and (null? s_d) (null? ni)) ; no static information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else (match (append pi p) (cdr pi) (list (car p)) d_d ’())])]

[(null? s_d) ; negative information available
(cond

[(member (car p) ni)

(if (null? pi)

(match p ’() ’() (cdr d_d) ’())

(match (append pi p) (cdr pi) ni d_d ’()))]

[(equal? (car p) (car d_d))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else

(match (append pi p) (cdr pi) (cons (car p) ni) d_d ’())])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) ni d_d (append pi (list (car p))))]

[else

(match (append pi p) (cdr (append pi s_d)) ni d_d ’())])]))

Figure 11: A string matcher that uses both positive and negative information,
ready for specialization

Proof:

(mainneg p d) = (matchneg p ’() ’() d ’())

= (matchorig p (append ’() d) (append ’() p)

(append ’() (append ’() d)))

= (matchorig p d p d) = (mainorig p d).

2
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5.3 Complexity of the specialized code

Again, we analyze the size of the specialized program and its running time.
Figure 12 shows the binding-time annotated string matcher from Figure 11.
In Figure 12 we have noted the memoization points using comments. The
subscripts of the recursive calls to match are used for referencing and do not
carry any meaning.

(define (main ps dd)

(match p ’() ’() d ’()))

(define (match ps s_ds nis d_dd pis)

(cond

[(null? p) ’accept ]

[(and (null? s_d) (null? ni))

(cond ; memoization point M1
[(null? d_d) ’reject ]

[(equal? ( car p) (car d_d))

(match1 (cdr p) ’() ’() (cdr d_d)

(append pi (list (car p))))]

[else

(if (null? pi)

(match2 p ’() ’() (cdr d_d) ’())

(match3 (append pi p) (cdr pi) (list (car p))

d_d ’()))])]

[(null? s_d)

(if (member (car p) ni)

(if (null? pi)

(match4 p ’() ’() (cdr d_d) ’())

(match5 (append pi p) (cdr pi) ni d_d ’()))

(if (equal? ( car p) (car d_d)) ; memoization point M2
(match6 (cdr p) ’() ’() (cdr d_d)

(append pi (list (car p))))

(if (null? pi)

(match7 p ’() ’() (cdr d_d) ’())

(match8 (append pi p) (cdr pi)

(cons (car p) ni) d_d ’()))))]

[else

(cond

[(equal? (car p) (car s_d))

(match9 (cdr p) (cdr s_d) ni d_d (append pi (list (car p))))]

[else

(match10 (append pi p) (cdr (append pi s_d)) ni d_d ’())])]))

Figure 12: The annotated string matcher (with negative information)
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5.3.1 Size

At the first memoization point (M1), a null? and equal? test are generated,
whereas at the second memoization point (M2) a single equal? test is gener-
ated. We measure the size of the residual code by counting null? and equal?
tests.

Theorem 10 Specializing the algorithm from Figure 11 with respect to a pattern
of length n containing c distinct characters yields a residual program with at most
n null tests and n · c equality tests.

As in the proof of Theorem 3, we give an upper bound for the number of variants
that are generated of each memoization point. We start by showing a lemma
corresponding to Lemma 4.

Lemma 11 In the evaluation of (main p0 d0), for any k ≥ 1, in the kth call
to match, the concatenation of argument pi with argument p is equal to p0.

The proof proceeds just like the proof of Lemma 4. We can now calculate the
number of variants of M1:

Lemma 12 Specializing the algorithm from Figure 11 with respect to a pattern
of length n yields a residual program with at most n variants of M1.

Proof: M1 is guarded by s d = ’() ∧ ni = ’(); thus, just as in the proof of
Theorem 3, the number of variants is bounded by the number of different con-
figurations of p and pi. Lemma 11 limits the number of different configurations
of p and pi to n+1. Since M1 is never reached with p = ’(), we have an upper
bound of n variants of M1. 2

Next, we analyze the number of variants generated of M2. All variants of
M2 arise from specializing the body of a variant of M1: the initial s d and
ni arguments of match are ’(), so specialization of main first reaches either
’accept or M1, rather than M2. We thus need to bound the number of variants
of M2 generated in specializing the bodies of all variants of M1. In doing so, we
assume that the names for the variants of M1 are generated in advance, so that
specialization stops when an instance of M1 is reached. Under this assumption
we can show the following lemma:

Lemma 13 When specializing (match p s d ni d d pi) with respect to some
static input p, s d, ni and pi such that specialization stops when an instance of
M1 is encountered, then (1) if ni = ’(), no variant of M2 is generated; (2) if
ni 6= ’(), then at most |A − ni| variants of M2 are generated (where A is the
set of characters contained in (append pi p)).
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Proof: We begin with part (1): Because by assumption we start with ni being
empty, and because M2 is guarded with ni 6= ’(), ni has to be augmented
before M2 can be reached. The only call that adds an element to ni and is
reachable with ni = ’() is in the scope of M1. Therefore, by assumption, it
never is reached, so no variant of M2 is generated.

Now we show part (2): We order configurations of static data 〈p, s d, ni, pi〉
according to the lexicographic order on 〈|A − ni|, |(append pi s d)|, |p|〉; we
prove by well-founded induction with respect to this ordering. Suppose match
is specialized with respect to the static input 〈p, s d, ni, pi〉. We proceed with
an exhaustive case distinction:

• p = ’(): Because no memoization point is reached and no new calls are
encountered, specialization creates no variants of M2.

• s d = ’() ∧ ni = ’(): Memoization point M1 is encountered. No vari-
ants of M2 are generated, because by assumption specialization does not
proceed.

• s d = ’() ∧ ni 6= ’() ∧ (car p) ∈ ni: Calls 4 and 5 are reachable.
From the first part of this proof we know that call 4 does not generate
any variants of M2, because it calls match with ni = ’(). For call 5
the induction hypothesis applies and ni is unchanged: at most |A − ni|
variants are generated.

• s d = ’() ∧ ni 6= ’() ∧ (car p) 6∈ ni: A variant of M2 is generated; we
have to make sure that specializing with respect to all new calls that are
encountered generates strictly fewer than |A − ni| variants of M2. Calls
6, 7, and 8 are reachable. From the first part of this lemma we know that
calls 6 and 7 produce no variants of M2, because they call match with
ni = ’(). For call 8 the induction hypothesis holds; because in the call
the parameter ni is augmented by one character, at most |A − ni| − 1
variants of M2 are generated. So in all at most |A − ni| variants are
generated.

• s d 6= ’(): Call 9 or call 10 is reached. Because the induction hypothesis
applies, and since ni is unchanged in the call, we can conclude that at
most |A − ni| variants of M2 are generated.

2

Now we are in a position to give a proof of Theorem 10.

Proof: Analyzing Figure 12 we see that null-tests are only generated at M1.
Lemma 12 shows that at most n variants of M1 are generated.

Each of the at most n variants of M1 also generates one comparison in the
residual code. Each variant of M2 also generates one such comparison. Hence
it remains to show that M2 only gives rise to n · (c − 1) variants. Consider the
specialization of the body of one of the at most n variants of M1; the body
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contains the call sites 1, 2 and 3. From the first part of Lemma 13 we can infer
that call 1 and call 2 never produce any variants of M2. For call 3, the second
part of Lemma 13 tells us that at most (c − 1) variants of M2 are generated.
Multiplying this by at most n variants of M1 gives us the desired upper bound
of at most n · (c− 1) variants of M2. Thus, in all, we have n · c residual equality
tests. 2

5.3.2 Execution time

When running the result of specializing a matcher with respect to p on some
data string d, the number of equality and null tests performed is equal to the
number of irreducible equality and null tests performed by the unspecialized
matcher when applied to p and d (cf. the proof of Lemma 6). The following
theorem gives an upper bound on the number of irreducible null tests performed
by the optimized matcher from Figure 11 (referred to as mainneg and matchneg in
this section). It further shows that the optimized matcher performs at most as
many irreducible equality and null tests as the matcher that only uses positive
information from Figure 6 (mainpos and matchpos).

Theorem 14 For all p, s d, ni and d d such that if d d = ’() then ni = ’()
and (car d d) 6∈ ni otherwise, (1) the number of irreducible null tests per-
formed by (matchneg p s d ni d d pi) is at most |d d|+1− sign(|ni|) (where
sign(0) = 0 and sign(n) = 1 for n > 0), and (2) (matchneg p s d ni d d pi)
always performs at most as many irreducible null tests and equality tests as
(matchpos p s d d d pi).

Proof: We prove by well-founded induction with respect to the termination
relation for matchneg (see the proof for Theorem 8). The proof of (1) proceeds
just like the proof of Lemma 6 and is omitted here. For the proof of (2) we
conduct an exhaustive case distinction over the input.

• p = ’(): Both matchneg and matchpos terminate without performing an
irreducible test.

• s d = ’() ∧ d d = ’(): Because d d = ’() we know ni = ’() by
assumption. Both matchneg and matchpos terminate after performing an
irreducible null test.

• s d = ’() ∧ ni = ’() ∧ d d 6= ’(): Both matchneg and matchpos perform
an irreducible null test and an irreducible equality test. For each possible
pair of subsequent calls in matchneg and matchpos the induction hypothesis
applies.

• s d = ’() ∧ ni 6= ’(): By assumption we know that d d 6= ’() and
(car d d) 6∈ ni. If (car p) ∈ ni we can conclude that (car p) 6=
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(car d d); matchpos performs both an irreducible null test and an irre-
ducible equality test, whereas matchneg performs no irreducible tests. For
the subsequent calls the induction hypothesis holds.

If (car p) 6∈ ni then matchpos performs both an irreducible null test and
an irreducible equality test, whereas matchneg only performs an irreducible
equality test. For the subsequent calls the induction hypothesis holds.

• s d 6= ’(): Neither matchpos nor matchneg performs irreducible tests. For
the subsequent calls, the induction hypothesis holds.

2

Corollary 15 Let mainneg res be the result of specializing (mainneg p d) with
respect to p, and mainpos res be the result of specializing (mainpos p d) with
respect to p. When applying mainneg res to d, the following holds:

1. At most as many equality and null tests are performed as when applying
mainpos res to d.

2. At most |d| + 1 null tests are performed.

We can further show that the optimized matcher performs no redundant
irreducible equality tests:

Theorem 16 In the evaluation of (mainneg p0 d0) for any k ≥ 1, in the kth

call to matchneg, (1) the argument ni contains all the characters that (car d d)
has been matched against in the previous calls, and (2) the kth call matches
(car d d) only against a character not in ni.

The theorem is proven by straightforward induction on k.

6 Variants

So far, we have derived two implementations of the naive KMP algorithm that
specialize well using standard partial-evaluation techniques. Previously, other
implementations have been proposed that have similar properties [2, 5, 12, 21].
In this section, we explore the relationship between our implementation and the
variants proposed by Consel and Danvy [5] and by Jones et al. [12], as well as
other possible variants.

6.1 Linguistic variants

Our implementation can be characterized as using a single loop expressed as a
recursive equation, in which all of the arguments are disjoint, all of the recursive
calls are in tail position, the positive information is accumulated and maintained
in an auxiliary list, and (optionally) a set of negative information is maintained.
This characterization suggests that alternative implementations can be derived
by varying the following characteristics:
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• Disjoint parameters vs. overlapping parameters (this point is rather tech-
nical, but is explained in Section 6.2 below).

• A single loop processing both the dynamic data string and the static
positive information vs. one loop processing the dynamic data string and
another processing the static positive information.

• Tail recursion vs. non-tail recursive calls.

• Accumulating positive information vs. reconstructing it where needed.

• Maintaining the positive information using a list vs. maintaining the pos-
itive information as an offset into the pattern.

• Recording 0, 1, or a set of characters of negative information.

• Recursive equations vs. block structure.

6.2 Overlapping parameters

We first consider the implementation of Jones et al. While this implementation
postdates the implementation of Consel and Danvy, it can be derived from our
implementation more simply, by adding extra, overlapping parameters.

In our implementation, the parameters pi and p maintain disjoint partitions
of the pattern, while pi and s d maintain disjoint partitions of the positive
information. This approach implies that when we need to access the complete
pattern, we must append pi and p, and when we need to access the complete
positive information, we must append pi and s d. To avoid these append op-
erations, an alternative is to maintain the values (append pi p) and (append
pi s d) as extra parameters. The values of these parameters overlap, because
both contain the value of pi. The result of performing this transformation, and
using the new parameters where appropriate, is shown in Figure 13.

Maintaining (append pi p) and (append pi s d) makes pi redundant: ev-
ery remaining occurrence either is used to rebind the parameter pi or can be
replaced by the parameter representing (append pi s d) because s d is known
to be empty. Thus, we can completely remove pi, as shown in Figure 14, where
we also rename pi p as pat (for pattern) and pi s d as pos (for positive infor-
mation).

Because this implementation maintains static information in a form isomor-
phic to the use of static information in our implementation, the specialized code
is unchanged. Jones et al. also present a version using negative information,
which can be derived using the same techniques as presented in Section 5.1.

6.3 Overlapping parameters, two loops, non-tail recur-
sion, reconstructing, indices, one character of negative
information

The implementation proposed by Consel and Danvy can be derived from ours
by adding most of the identified linguistic variations. We describe each step in
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(define (main p d)

(match p ’() d ’() p ’()))

(define (match p s_d d_d pi pi_p pi_s_d)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() (cdr d_d) (append pi (list (car p)))

pi_p (append pi (list (car p))))]

[(null? pi) (match p ’() (cdr d_d) ’() pi_p ’())]

[else (match pi_p (cdr pi) d_d ’() pi_p (cdr pi))])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d

(append pi (list (car p))) pi_p pi_s_d)]

[else (match pi_p (cdr pi_s_d) d_d ’() pi_p (cdr pi_s_d))])]))

Figure 13: Extra arguments pi p and pi s d are added

(define (main p d)

(match p ’() d p ’()))

(define (match p s_d d_d pat pos)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() (cdr d_d) pat (append pos (list (car p))))]

[(null? pos) (match p ’() (cdr d_d) pat ’())]

[else (match pat (cdr pos) d_d pat (cdr pos))])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d pat pos)]

[else (match pat (cdr pos) d_d pat (cdr pos))])]))

Figure 14: Argument pi is eliminated

one possible derivation path, beginning with the implementation of Jones et al.,
which already uses overlapping parameters.
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6.3.1 Two loops

In the variants we have explored so far, there is a single loop, matching the
pattern to either the static positive information or the dynamic data string.
Nevertheless, the computation performed and the binding-time properties of
these two cases are quite distinct, and the emptiness of s d is essentially used as
a flag to distinguish between the two. Thus, it can be illuminating to manually
separate the implementation into specific functions that address each case. The
result of carrying out this transformation is shown in Figure 15. This transfor-
mation could indeed be applied to any variant we have proposed.

(define (main p d)

(match_d p d p ’()))

(define (match_d p d_d pat pos) ; no positive information is available
(cond

[(null? p) ’accept]

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match_d (cdr p) (cdr d_d) pat (append pos (list (car p))))]

[(null? pos) (match_d p (cdr d_d) pat ’())]

[else (match_s pat (cdr pos) d_d pat (cdr pos))]))

(define (match_s p s_d d_d pat pos) ; positive information might be available
(cond

[(null? s_d) (match_d p d_d pat pos)]

[(equal? (car p) (car s_d))

(match_s (cdr p) (cdr s_d) d_d pat pos)]

[else (match_s pat (cdr pos) d_d pat (cdr pos))])]))

Figure 15: The implementation is separated into static and dynamic loops

Because the part of the positive information held in s d is always empty
when match d is called, we have eliminated the parameter s d. We can also
eliminate the test whether the pattern is empty in match s; it is easy to show
that here the length of the positive information is always shorter than the length
of the pattern.

Because Similix inserts memoization points only at dynamic conditionals,
this transformation is merely cosmetic if Similix is used. Another strategy is to
add a memoization point at the top of any function that contains a dynamic
conditional. Following this strategy, in the monolithic implementation, every
call to match would be a memoization point, introducing a chain of trivial
function calls. Splitting the implementation, producing the completely static
match s function, avoids this problem.
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6.3.2 Non-tail recursion

The purpose of the static loop match s is essentially to skip over the prefix of
the pattern that matches the positive information. The function match s thus
ends by restarting the dynamic loop with new values of the unmatched pattern
p and the matched positive information. The values of the other arguments, d d
and pat are identical to their values when match s was called. Accordingly, we
can factor the call to match s into a call to a simpler definition of match s that
determines the new values of p and pos, and a direct recursive call to match d
that uses these values, as well as the existing values of d d and pat. The result of
carrying out this transformation is shown in Figure 16. Note that the parameter
d d is eliminated from match s, producing a completely static definition.

(define (main p d)

(match_d p d p ’()))

(define (match_d p d_d pat pos) ; no positive information is available
(cond

[(null? p) ’accept]

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match_d (cdr p) (cdr d_d) pat (append pos (list (car p))))]

[(null? pos) (match_d p (cdr d_d) pat ’())]

[else

(let ([p-pos (match_s pat (cdr pos) pat (cdr pos))])

(match_d (car p-pos) d_d pat (cadr p-pos)))]))

(define (match_s p s_d pat pos) ; positive information might be available
(cond

[(null? s_d) (list p pos)]

[(equal? (car p) (car s_d)) (match_s (cdr p) (cdr s_d) pat pos)]

[else (match_s pat (cdr pos) pat (cdr pos))])]))

Figure 16: The static loop match s is called non-tail recursively

6.3.3 Reconstructing positive information

All variants so far accumulate positive information by appending characters to
additional arguments such as pos. It is easy to show that (append pos p) =
pat for every call to match d in Figure 16; therefore, whenever pos is needed, it
can be reconstructed by collecting the first |pat|−|p| characters of pat. The null
test on pos can be implemented by testing whether p is equal to pat. Figure 17
shows the resulting implementation. The function (take n xs) returns the
prefix of xs with length n; the function (length xs) returns the length of xs.
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(define (main p d)

(match_d p d p))

(define (match_d p d_d pat) ; no positive information is available
(cond

[(null? p) ’accept]

[(null? d_d) ’reject]

[(equal? (car p) (car d_d)) (match_d (cdr p) (cdr d_d) pat)]

[(equal? p pat) (match_d p (cdr d_d) pat)]

[else

(let* ([pos (take (- (length pat) (length p)) pat)]

[p (match_s pat (cdr pos) pat (cdr pos))])

(match_d p d_d pat))]))

(define (match_s p s_d pat pos) ; positive information might be available
(cond

[(null? s_d) p]

[(equal? (car p) (car s_d)) (match_s (cdr p) (cdr s_d) pat pos)]

[else (match_s pat (cdr pos) pat (cdr pos))])]))

Figure 17: Positive information is reconstructed, not accumulated

6.3.4 Indices

Instead of reconstructing the positive information by copying a prefix of the
pattern pat, one can use pat as it is, using an additional parameter to keep
track of the length of the prefix that corresponds to the positive information.
The modifications to the code in Figure 17 are straightforward; the resulting
code is displayed in Figure 18.

6.3.5 Consel and Danvy’s implementation

Consel and Danvy [5] present two implementations of a string matcher:

• Both of Consel and Danvy’s implementations avoid redundant null tests
on d d, which may be performed by the code in Figure 18.

• The first implementation proposed by Consel and Danvy uses negative
information in the special case that match s returns the original pattern.

• The second implementation maintains one character of negative informa-
tion.

Avoiding redundant null-tests In Figure 18 the recursive call to match d
in the “else” branch of the conditional leads to a redundant null-test on d d: at
this point we know d d to be nonempty. Rather than test d d at the beginning
of every invocation of match d, we can move the test back to each call site, and
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(define (main p d)

(match_d p d p))

(define (match_d p d_d pat) ; no positive information is available
(cond

[(null? p) ’accept]

[(null? d_d) ’reject]

[(equal? (car p) (car d_d)) (match_d (cdr p) (cdr d_d) pat)]

[(equal? p pat) (match_d p (cdr d_d) pat)]

[else

(let* ([pos_len (- (length pat) (length p))]

[p (match_s pat (cdr pat) (- pos_len 1)

pat (cdr pat) (- pos_len 1))])

(match_d p d_d pat))]))

(define (match_s p s_d s_d_len pat pos pos_len) ; positive information
(cond ; might be available

[(= s_d_len 0) p]

[(equal? (car p) (car s_d))

(match_s (cdr p) (cdr s_d) (- s_d_len 1) pat pos pos_len)]

[else

(match_s pat (cdr pos) (- pos_len 1)

pat (cdr pos) (- pos_len 1))]))

Figure 18: Indices are used to keep track of positive information

thus omit the test at the call site where d d is known not to be empty. Whether
the match succeeds or fails when d d is empty depends on whether p is empty
as well. Thus, at each call site where it is not also known that p is nonempty,
we have to test p before d d. The resulting code is displayed in Figure 19—the
additional entry point match d orig p treats the case where match d is called
recursively and p is known to be the original nonempty pattern, but nothing is
known about d d. Note that the use of match d orig p rather than main does
not improve the result of specialization, because the test on p is static.

A special case of using negative information Now, we can add the use
of negative information. First, we note that in the “else” case of match d in
Figure 19, it has already been determined that (car p) is different from (car
d d). Thus, if (car np) = (car p), the comparison between (car np) and
(car d d) performed by the recursive call to match d is guaranteed to fail.
Instead of calling match d, we therefore can attempt to restart the matching
process on (cdr d d). However, in the current formulation, there is no conve-
nient way to restart the matching process except in the case where np = pat.
Rather than reorganize the code, we follow the approach of Consel and Danvy
and and restart the matching process on (cdr d d) in only this case: p is known
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(define (main p d)

(cond [(null? p) ’accept]

[else (match_d_orig_p p d)]))

(define (match_d_orig_p p d)

(cond [(null? d) ’reject]

[else (match_d p d p)]))

(define (match_d p d_d pat)

(cond

[(equal? (car p) (car d_d))

(cond [(null? (cdr p)) ’accept]

[(null? (cdr d_d)) ’reject]

[else (match_d (cdr p) (cdr d_d) pat)])]

[(equal? p pat) (match_d_orig_p p (cdr d_d))]

[else

(let* ([pos_len (- (length pat) (length p))]

[np (match_s pat (cdr pat) (- pos_len 1)

pat (cdr pat) (- pos_len 1))])

(match_d np d_d pat))]))

(define (match_s p s_d s_d_len pat pos pos_len)

(cond

[(= s_d_len 0) p]

[(equal? (car p) (car s_d))

(match_s (cdr p) (cdr s_d) (- s_d_len 1) pat pos pos_len)]

[else

(match_s pat (cdr pos) (- pos_len 1)

pat (cdr pos) (- pos_len 1))]))

Figure 19: Redundant null tests are avoided

to be the original pattern, but it is not known whether (cdr d d) is empty, so
we call match d orig p. The resulting code is displayed in Figure 20.

One character of negative information The implementation presented
by Consel and Danvy as a matcher that uses negative information maintains
exactly one character of negative information. The following lemma shows how
one character of negative information already is maintained “automatically” in
match s:

Lemma 17 In the evaluation of (main p0 d0) (as defined in Figure 20), when-
ever match s is called, the (s d len + 1)st character of s d is different from
(car d d).

This information can be used when match s is about to return p such that
(car p) is equal to the (s d len + 1)st character of s d: Instead of return-
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(define (main p d)

(cond [(null? p) ’accept]

[else (match_d_orig_p p d)]))

(define (match_d_orig_p p d)

(cond [(null? d) ’reject]

[else (match_d p d p)]))

(define (match_d p d_d pat)

(cond

[(equal? (car p) (car d_d))

(cond [(null? (cdr p)) ’accept]

[(null? (cdr d_d)) ’reject]

[else (match_d (cdr p) (cdr d_d) pat)])]

[(equal? p pat) (match_d_orig_p p (cdr d_d))]

[else

(let* ([pos_len (- (length pat) (length p))]

[np (match_s pat (cdr pat) (- pos_len 1)

pat (cdr pat) (- pos_len 1))])

(if (and (equal? np pat) (equal? (car np) (car p)))

(match_d_orig_p p (cdr d_d))

(match_d np d_d pat)))]))

(define (match_s p s_d s_d_len pat pos pos_len)

(cond

[(= s_d_len 0) p]

[(equal? (car p) (car s_d))

(match_s (cdr p) (cdr s_d) (- s_d_len 1) pat pos pos_len)]

[else

(match_s pat (cdr pos) (- pos_len 1)

pat (cdr pos) (- pos_len 1))]))

Figure 20: Negative information is used in a special case

ing p, match s continues matching against the remaining positive information.
Figure 21 shows code that has been transformed along these lines; we don’t
go into details—two lemmas that justify the transformations (and also imply
Lemma 17) are deferred to Appendix D.

The code from Figures 20 and 21 is very similar to Consel and Danvy’s
implementations. They, however, additionally split match d into two functions,
distinguishing whether positive information has been accumulated (i.e., p 6=
pat) or not. The transformation does not affect the result of specialization and
we therefore omit it.
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(define (main p d)

(cond [(null? p) ’accept]

[else (match_d_orig_p p d)]))

(define (match_d_orig_p p d)

(cond [(null? d) ’reject]

[else (match_d p d p)]))

(define (match_d p d_d pat)

(cond

[(equal? (car p) (car d_d))

(cond [(null? (cdr p)) ’accept]

[(null? (cdr d_d)) ’reject]

[else (match_d (cdr p) (cdr d_d) pat)])]

[(equal? p pat) (match_d_orig_p p (cdr d_d))]

[else

(let* ([pos_len (- (length pat) (length p))]

[np (match_s pat (cdr pat) (- pos_len 1)

pat (cdr pat) (- pos_len 1))])

(if (and (equal? np pat) (equal? (car np) (car p)))

(match_d_orig_p p (cdr d_d))

(match_d np d_d pat)))]))

(define (match_s p s_d s_d_len pat pos pos_len)

(cond

[(= s_d_len 0)

(if (and (equal? (car p) (car s_d)) (> pos_len 0))

(match_s pat (cdr pos) (- pos_len 1)

pat (cdr pos) (- pos_len 1))

p)]

[(equal? (car p) (car s_d))

(match_s (cdr p) (cdr s_d) (- s_d_len 1) pat pos pos_len)]

[else

(match_s pat (cdr pos) (- pos_len 1)

pat (cdr pos) (- pos_len 1))]))

Figure 21: One character of negative information is used

7 Related work

Consel and Danvy [5] conceived a binding-time improvement of naive match-
ers that makes it possible to generate efficient matchers with standard partial-
evaluation techniques. Their insight was to exploit the relationship between the
pattern string and the dynamic data, as exemplified by the diagram of Figure 3
(a similar diagram appeared in their original paper). Based on this insight,
further investigations into the derivation of efficient matchers using partial eval-
uation have been carried out. Jones et al. [12] and Amtoft [2] present a modified
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version of a matcher that standard partial evaluation can specialize into an effi-
cient matcher. Sørensen et al. [21] presents a version that is basically equivalent
to the variant of Jones et al. Holst and Gomard [10] and Kaneko and Take-
ichi [14] show how to generate efficient matchers with variants of a specialization
scheme called fully lazy evaluation.

Other work on applying partial evaluation to string matching is mainly con-
cerned with identifying the additional features that must be added to the stan-
dard partial-evaluation framework in order to pass the KMP-test: Instead of
making positive/negative information explicit in the source program, one uses
a specializer with the capability of collecting and using such information. For
example Sørensen et al. [21] observe that positive supercompilation [8, 9] main-
tains more information during the transformation process than does partial
evaluation. More precisely, positive information is maintained; positive super-
compilation of a naive string matcher and a pattern results in a linear matcher
that may perform redundant tests. In contrast, Smith [20] observes that a par-
tial evaluator for a family of constraint logic programming languages succeeds
in generating linear matchers that do not perform redundant tests, because neg-
ative information is also maintained. The same is true for Generalized Partial
Computation [6], where a theorem prover is used to derive additional informa-
tion from the truth or falsity of enclosing conditional tests, and for Queinnec
and Geffroy’s intelligent backtracking system [19], where abstract descriptions of
the matched and unmatched patterns are maintained across success and failure
continuations. Other partial evaluators that pass the KMP-test include partial
deduction [18] and partial evaluators for functional logic programs [1, 17].

A generic way to make a given partial evaluator more powerful is the in-
terpretive approach where an interpreter is inserted between a partial evaluator
and a source program. Depending on how the interpreter is written, one can
use a partial evaluator like Similix to perform transformations that are out-
side the scope of standard partial evaluation. Glück and Jørgensen [7] show
that composing an interpreter that propagates positive information with Sim-
ilix produces a specializer that can specialize a naive string matcher to one that
runs in linear time.

8 Conclusion

Specializing string matchers is a canonical example of partial evaluation. Nev-
ertheless, it has been found that in string matchers that specialize well under
standard partial evaluation, statically-determinable implicit information about
the dynamic input has to be represented explicitly. Numerous implementa-
tions of such string matchers have been developed, usually by starting with a
naive string matcher and applying binding-time improvements to it. The pub-
lished presentations, however, generally carry out the binding-time improve-
ments atomically, and thus do not show how such binding-time improvements
can be achieved in a systematic way. Further, as Amtoft put it, “it is not ob-
vious that [the transformation applied to the naive string matcher] preserves
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semantics” [2, p. 176].
We have presented a simple and intuitive derivation of a string matcher that

makes positive information explicit in the static data, and that thus specializes
well using standard partial-evaluation techniques. We have also derived an
extension that makes negative information explicit; as a consequence, redundant
tests in the specialized code are eliminated. In both cases, we have proved
that the size of the specialized program is linear in the size of the pattern and
the running time of the specialized program is linear in the size of the data
string. We have further explored the relationship between our implementation
and alternative implementations: we identified properties of our implementation
that can be varied without changing the overall effect of partial evaluation and
derived several variants of our implementation. In particular, we have shown
how to derive two of the published implementations [5, 12], thus providing a
conceptual link between them and a wide range of variants, all of which specialize
well under standard partial evaluation.
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A An overview of Scheme

Scheme is a call-by-value, dynamically-typed, statically-scoped dialect of Lisp.
In this appendix, we give a brief overview of the features of Scheme, restricted
to their use in this paper.

A Scheme term is either a symbol, a number, or a list. A symbol is a sequence
of characters, such as match. A list is denoted by an open parenthesis followed by
a sequence of terms, separated by whitespace, followed by a close parenthesis.
Square brackets [ and ] may be used in place of parentheses. Programs are
represented as terms, such as x or (cons 3 x). A symbol represents a variable
reference. A list indicates an application, in which the first element is the applied
operator, and the remaining elements are the arguments. Data is constructed
by quoting a term, as in ’accept (the symbol accept), ’() (the empty list),
and ’(cons 5 x) (a list consisting of the symbol cons, the number 5, and the
symbol x). Note the difference between (cons 5 x) and ’(cons 5 x): the
former is interpreted by Scheme as a program, the latter constitutes a piece of
data. In this paper, we use quoted lists of symbols to represent the pattern and
data strings.

The application of most operators in Scheme is performed following a call-
by-value strategy, and the application of most operators returns a value. We
refer to operators that satisfy these two properties as functions. Some operators
return no value. Some built-in operators, such as the conditional operator if,
the local-binding operator let, and the boolean operator and, do not necessarily
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evaluate all of their arguments. We refer to operators that do not necessarily
evaluate all of their arguments as special forms.

Global functions are defined using the special form define:

(define (fn-name arg 1 arg 2 ...) body )

As shown by the example, define has two arguments: a list, of which the first
element is the function name and the remaining elements are the parameter
names, and the body of the function definition.

The list-processing functions we use are as follows (shown with arguments):

• (null? l): returns true if the value of l is the empty list, and false oth-
erwise.

• (cons a l): constructs a list with the value of a as the first element, and
the elements of l as the remaining elements.

• (car l): returns the first element of the list l.

• (cdr l): returns the a list containing all of the elements of l, except the
first one.

• (append l1 l2): constructs a list that contains all of the elements of l1,
followed by all of the elements of l1.

• (member a l): returns true if the value of a is an element of the list l,
and false otherwise.

• (list e1 e2 ...): constructs a list consisting of the elements e1, e2, etc.
The function list can take any number of arguments, including zero.

• (length l): returns the number of elements in the list l.

We also use the function equal?, which tests any two values for equality, the
function =, which tests two numerical values for equality, the function -, which
performs subtraction, and the special form and, which returns true if both of
its arguments are true, and false otherwise.

Conditionals are specified using an if expression, of the following form:

(if test consequent alternate)

If the value of the expression test is true, then the term consequent is eval-
uated; otherwise the term alternate is evaluated. A sequence of conditionals
can be abbreviated using a cond term, having the following form:

(cond [test 1 exp 1]
[test 2 exp 2]
...
[else exp n])
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The terms test1, test2, etc. are evaluated in order until one is true, in which
case the corresponding expression is evaluated. If none of the test expressions
evaluates to true, then the expression corresponding to the else expression is
evaluated. An else line is not needed when the sequence of tests is exhaustive.
For readability, we use square brackets rather than parentheses to delimit the
test-expression pairs.

Local variables are introduced using a let expression, having the following
form:

(let ([var 1 exp 1]
...
[var n exp n])

exp)

The first argument to let is a list of pairs associating variables to expressions.
These variables are bound to the values of the corresponding expressions during
the evaluation of the body exp. The bindings to the variables var1, . . . , varn

are not visible during the evaluation of any of the exp1, . . . , expn. The special
form let* is a variant of let, in which the bindings preceeding [vari expi] are
visible in the evaluation of expi. For readability, we use square brackets rather
than parentheses to delimit the variable-expression pairs.

B Correctness of the derived implementation us-
ing positive information

Theorem 1 of Section 4.2 is proved as follows:

Proof: The proof is by induction on the tuple 〈|d d|, |(append pi s d)|, |p|〉,
ordered lexicographically. It is straightforward to show that this value decreases
at every function call of matchpos . We thus do not explicitly check that the
induction hypothesis applies in each case.

For conciseness, we rewrite the Scheme code using a more mathematical
notation. In particular, @ replaces append, [ ] replaces ’(), and hd and tl
replace car and cdr, respectively. We also implicitly rely on the associativity
of append.

We want to show that for all p, sd, dd and pi,

matchpos(p, sd, dd, pi) = matchorig(p, sd@dd, pi@p, pi@sd@dd).

In all cases where p = [ ], the calls to matchpos and matchorig evaluate to
accept. Otherwise, assume that the theorem is true for all smaller tuples. We
proceed with an exhaustive case distinction. In the following, we assume for
every case that none of the preceeding cases holds.

Consider the case sd = [ ]:
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• dd = [ ]: In this case, the call to matchpos evaluates to reject. If both sd

and dd are empty, then the second argument of matchorig is empty as well,
and the call to matchorig also evaluates to reject.

• hd(p) = hd(dd): In this case the call to matchpos evaluates to

matchpos(tl(p), [ ], tl(dd), pi @[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(dd), pi@p, pi@dd).

Both are equal:

matchpos(tl(p), [ ], tl(dd), pi@[hd(p)])
IH= matchorig(tl(p), [ ]@tl(dd), pi @[hd(p)]@tl(p), pi @[hd(p)]@[ ]@tl(dd))
= matchorig(tl(p), tl(dd), pi@p, pi@dd)

• pi = [ ]: In this case, the call to matchpos evaluates to

matchpos(p, [ ], tl(dd), [ ]),

and the call to matchorig evaluates to

matchorig(p, tl(dd), p, tl(dd)).

Both are equal:

matchpos(p, [ ], tl(dd), [ ])
IH= matchorig(p, [ ]@tl(dd), [ ]@p, [ ]@[ ]@tl(dd))
= matchorig(p, tl(dd), p, tl(dd))

• pi 6= [ ]: In this case, the call to matchpos evaluates to

matchpos(pi @p, tl(pi ), dd, [ ]),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)).

Both are equal:

matchpos(pi @p, tl(pi ), dd, [ ])
IH= matchorig (pi @p, tl(pi )@dd, [ ]@pi@p, [ ]@tl(pi )@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))

Now we turn to the case sd 6= [ ]:
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• hd(p) = hd(sd): In this case, the call to matchpos evaluates to

matchpos(tl(p), tl(sd), dd, pi @[hd(p)]).

Because the first argument of matchorig is p and the second argument of
matchorig is sd@dd, the constraint hd(p) = hd(sd) implies that the third
cond line of matchorig is satisfied and the result is the value of

matchorig(tl(p), tl(sd@dd), pi@p, pi@sd@dd).

Both are equal:

matchpos(tl(p), tl(sd), dd, pi@[hd(p)])
IH= matchorig(tl(p), tl(sd)@dd, pi @[hd(p)]@tl(p), pi @[hd(p)]@tl(sd)@dd)
= matchorig(tl(p), tl(sd@dd), pi @p, pi @sd@dd)

• hd(p) 6= hd(sd): In this case the call to matchpos evaluates to

matchpos(pi @p, tl(pi @sd), dd, [ ]),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd)).

Both are equal:

matchpos(pi @p, tl(pi @sd), dd, [ ])
IH= matchorig (pi @p, tl(pi @sd)@dd, [ ]@pi@p, [ ]@tl(pi @sd)@dd)
= matchorig (pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd))

2

C Correctness of the derived implementation us-

ing negative information

Theorem 8 of Section 5.2 is proved as follows:

Proof: The proof is by induction on the tuple 〈|d d|, |(append pi s d)|, |p|〉,
ordered lexicographically. It is straightforward to show that this value decreases
at every function call of matchneg . We thus do not explicitly check that the
induction hypothesis applies in each case. As in Appendix B, we use a more
mathematical notation for conciseness.

We want to show that for all p, ds, dd, pi and ni, where ni is a set of
characters such that if dd is nonempty, then hd(dd) 6∈ ni,

matchneg(p, sd, ni, dd, pi) = matchorig(p, sd@dd, pi@p, pi@sd@dd).
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In all cases where p = [ ], the calls to matchneg and matchorig evaluate to
accept. Otherwise, assume that the theorem is true for all smaller tuples. We
proceed with an exhaustive case distinction. In the following, we assume for
every case that none of the preceeding cases holds.

Consider the case that sd = [ ] and ni = [ ]:

• dd = [ ]: In this case the call to matchneg evaluates to reject. If both sd

and dd are empty, then the second argument of matchorig is empty as well,
and the call to matchorig also evaluates to reject.

• hd(p) = hd(dd): In this case the call to matchneg evaluates to

matchneg(tl(p), [ ], [ ], tl(dd), pi@[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(dd), pi , pi@dd).

Both are equal:

matchneg(tl(p), [ ], [ ], tl(dd), pi @[hd(p)])
IH= matchorig(tl(p), [ ]@tl(dd), pi @[hd(p)]@tl(p), pi @[hd(p)]@[ ]@tl(dd))
= matchorig(tl(p), tl(dd), pi@p, pi@dd)

• pi = [ ]: In this case the call to matchneg evaluates to

matchneg(p, [ ], [ ], tl(dd), [ ]),

and the call to matchorig evaluates to

matchorig(p, tl(dd), p, tl(dd)).

Both are equal:

matchneg(p, [ ], [ ], tl(dd), [ ])
IH= matchorig(p, [ ]@tl(dd), [ ]@p, [ ]@[ ]@tl(dd))
= matchorig(p, tl(dd), p, tl(dd))

• pi 6= [ ]: In this case the call to matchneg evaluates to

matchneg(pi @p, tl(pi ), [hd(p)], dd, [ ]),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)).

Both are equal:

matchneg(pi @p, tl(pi ), [hd(p)], dd, [ ])
IH= matchorig (pi @p, tl(pi )@dd, [ ]@pi@p, [ ]@tl(pi )@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))
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Now we turn to the case that sd = [ ] and ni 6= [ ]. Recall that ni is a set of
characters that does not contain the first element of dd.

• hd(p) ∈ ni and pi = [ ]: In this case the call to matchneg evaluates to
matchneg(p, [ ], [ ], tl(dd), [ ]). hd(p) ∈ ni implies that hd(p) 6= hd(dd), and
since sd = [ ], hd(p) 6= hd(sd@dd). Thus the call to matchorig evaluates to
matchorig(p, tl(dd), p, tl(dd)). Both are equal:

matchneg(p, [ ], [ ], tl(dd), [ ])
IH= matchorig(p, [ ]@tl(dd), [ ]@p, [ ]@[ ]@tl(dd))
= matchorig(p, tl(dd), p, tl(dd))

• hd(p) ∈ ni and pi 6= [ ]: In this case the call to matchneg evaluates to
matchneg(pi @p, tl(pi ), ni, dd, [ ]), and again the call to matchorig evaluates
to matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)). Both are equal:

matchneg(pi @p, tl(pi ), ni, dd, [ ])
IH= matchorig (pi @p, tl(pi )@dd, [ ]@pi@p, [ ]@tl(pi )@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))

• hd(p) = hd(dd): In this case the call to matchneg evaluates to

matchneg(tl(p), [ ], [ ], tl(dd), pi@[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(dd), pi@p, pi@dd).

Both are equal:

matchneg(tl(p), [ ], [ ], tl(dd), pi @[hd(p)])
IH= matchorig(tl(p), [ ]@tl(dd), pi @[hd(p)]@tl(p), pi @[hd(p)]@[ ]@tl(dd))
= matchorig(tl(p), tl(dd), pi@p, pi@dd)

• pi = [ ]: In this case the call to matchneg evaluates to

matchneg(p, [ ], [ ], tl(dd), [ ]),

and the call to matchorig evaluates to

matchorig(p, tl(dd), p, tl(dd)).

Both are equal:

matchneg(p, [ ], [ ], tl(dd), [ ])
IH= matchorig(p, [ ]@tl(dd), [ ]@p, [ ]@[ ]@tl(dd))
= matchorig(p, tl(dd), p, tl(dd))
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• pi 6= [ ]: In this case the call to matchneg evaluates to

matchneg(pi @p, tl(pi ), hd(p) :: ni, dd, [ ]),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)).

Both are equal:

matchneg(pi @p, tl(pi ), hd(p) :: n, dd, [ ])
IH= matchorig (pi @p, tl(pi )@dd, [ ]@pi@p, [ ]@tl(pi )@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))

Finally, we consider the case that sd 6= [ ]:

• hd(p) = hd(sd): In this case the call to matchneg evaluates to

matchneg(tl(p), tl(sd), ni, dd, pi@[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(sd@dd), pi@p, pi@sd@dd).

Both are equal:

matchneg(tl(p), tl(sd), ni, dd, pi @[hd(p)])
IH= matchorig(tl(p), tl(sd)@dd, pi @[hd(p)]@tl(p), pi @[hd(p)]@tl(sd)@dd)
= matchorig(tl(p), tl(sd@dd), pi @p, pi @sd@dd)

• hd(p) 6= hd(sd): In this case the call to matchneg evaluates to

matchneg(pi @p, tl(pi @sd), ni, dd, [ ]),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd)).

Both are equal:

matchneg(pi @p, tl(pi @sd), ni, dd, [ ])
IH= matchorig (pi @p, tl(pi @sd)@dd, [ ]@pi@p, [ ]@tl(pi @sd)@dd)
= matchorig (pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd))

2
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D One character of negative information—cor-
rectness of the transformation

The essence of the transforming the code from Figure 20 into the code from
Figure 21 is the following change: In a call

(match s p s d s d len pat pos pos len),

with s d len = 0, when it can be deduced from the negative information, that
returning to match from match s will result in a call to match s, then match s
is called directly instead of returning. In effect, the call

(match_s pat (cdr pat) (- (- (length pat) (length p)) 1)
pat (cdr pat) (- (- (length pat) (length p)) 1))

is replaced by a call

(match_s pat (cdr pos) (- pos_len 1) pat (cdr pos) (- pos_len 1))

In order to justify the transformation, we have to show that it is valid to
(1) use pos len instead of (- (length pat) (length p)) and (2) use (cdr
pos) instead of (cdr pat). The first part of Lemma 18 below shows that, since
s d = 0, pos len is equal to (- (length pat) (length p)). Lemma 19 on
page 46 shows that under certain conditions it is possible to change s d and pos
in a call to match s without affecting the result. Using part four of Lemma 18,
one can see that these conditions are met when exchanging (cdr pos) for (cdr
pat). Part two of Lemma 18 shows the presence of negative information, thus
providing a justification for Lemma 17.
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Figure 22: Interdependencies between the arguments of match s as proven by
Lemma 18. Parts of the strings that have the same shading are equal.

Lemma 18 In the evaluation of (main p0 d0) (as defined in Figure 20), when-
ever match s is called, the following properties hold:
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1. pos len− s d len = |pat| − |p|.
2. The (s d len+ 1)st character of s d is different from (car d d).

3. p is a suffix of pat.

4. The first pos len − s d len characters of pos are a prefix of pat, the
remaining characters are equal to s d.

These interdependencies between the arguments of match s are illustrated in
Figure 22.

Proof: Consider the call of match s from match d:

(match s p' s d' s d len' pat' pos' pos len'),

where

p' = pat' = pat

s d' = pos' = (cdr pat)

s d len' = pos len' = (- (- (length pat) (length p)) 1)

From the enclosing conditionals we can deduce that (car p) is different from
(car d d) and that p different from pat. We further know that p is a suffix of
pat.

Parts 1, 3 and 4 of the lemma can easily be seen. For the second part,
remember that we know from the enclosing conditionals that (car p) is different
from (car d d). It therefore suffices to show that the (s d len' +1)st character
of s d' (= (cdr pat)) is equal to (car p). This holds, because p is a suffix of
pat and s d len' is equal to the difference in length of p and (cdr pat).

Assume the lemma holds for the k-th call. There are two possibilities for a
(k+1)st recursive call of match s. Consider the case s d len > 0 and (car p) =
(car s d), which leads to the first possible call

(match s p' s d' s d len' pat' pos' pos len'),

where

p' = (cdr p) s d' = (cdr s d) s d len' = (- s d len 1)

pat' = pat pos' = pos pos len' = pos len

We show that the four parts of the lemma hold for this call:

1. s d len is decreased by one and p is rebound to (cdr p), so |p| also is
decreased by one, whereas pos len and |pat| stay the same. Therefore,
by assumption, pos len'− s d len' = |pat'| − |p'|.

2. s d len is decreased by one and s d is rebound to (cdr s d), hence the
(s d len'+ 1)st character of s d' is equal to the (s d len+ 1)st character
of s d. By assumption it thus is different from (car d d).
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3. We know that p is a suffix of pat. Because pat does not change and p is
rebound to (cdr p), it follows by assumption that p' is a suffix of pat'.

4. s d len is decreased by one and s d is rebound to (cdr s d). The prefix
of pos that is a prefix of pat has length pos len − s d len, which by
assumption (part two) is equal to |pat| − |p|. Because p is a suffix of pat,
because (car p) = (car s d), and the remainder of pos is equal to s d,
it follows that the first pos len−s d len+1 characters of pos are a prefix
of pat. The remaining characters are equal to (cdr s d) = s d'.

In the second possible call, pos len' = s d len' = (- pos len 1), pat' = p' =
pat and s d' = pos' = (cdr pos); all parts except the second follow immedi-
ately. For the second part recall that by assumption the (s d len+1)st character
of s d is different from (car d d). Because of the interdependencies between
s d, pos, s d len and pos len, this implies that also the (pos len+1)st charac-
ter of pos is different from (car d d) (see also Figure 22). Therefore, because
s d is rebound to (cdr pos) and s d len to (- pos len 1), the (s d len'+1)st

character of s d' is different from (car d d). 2
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Figure 23: Requirements on pos, pos', s d and s d' as used in Lemma 19.
Parts of the strings that have the same shading are equal.

Lemma 19 Let match s be defined as in Figure 20. Consider any pat, pos len,
s d len, p, s d, pos, s d', pos', such that the following holds (see also Fig-
ure 23):

1. The first pos len characters of pos and pos' are equal, i.e., (take pos
pos len) = (take pos' pos len), where (take n xs) returns the first
n elements of list xs. We denote this common part of pos and pos' as
cpos.

2. s d len ≤ pos len
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3. The first s d len characters of s d len and s d len' are equal to the
remainder of dropping the first pos len− s d len characters from cpos,
i.e., (take s d s d len) and (take s d' s d len) are equal to (drop
cpos (- pos len s d len)).

where (drop n xs) returns xs without the first n elements.

Then (match s p s d s d len pat pos pos len) = (match s p s d' s d len
pat pos' pos len).

Proof: The proof is by induction on the lexicographic order of 〈pos len, s d len〉.
We proceed by cases, following the definition of match s.

Case s d len = 0: In this case a call to match s always returns p.
Case (car p) = (car s d): Because s d len > 0 and by assumption three,

it follows that (car s d) = (car s d'). Hence, also (car p) = (car s d'),
and thus both invocations of match s use the second case. We now show that
(match s (cdr p) (cdr s d) (- s d len 1) pat pos pos len) is equal to
(match s (cdr p) (cdr s d') (- s d len 1) pat pos' pos len).

Because 〈pos len, (- s d len 1)〉 is smaller than 〈pos len, s d len〉 in the
lexicographic order, if we can show that the three assumptions hold, then the
equality holds by induction:

1. pos, pos' and pos len remain unchanged, so part one holds by assumption
one.

2. We have to show that (- s d len 1) ≤ pos len. By assumption two,
s d len ≤ pos len, so (- s d len 1) ≤ pos len follows immediately.

3. We have to show that (take (cdr s d) (- s d len 1)) and (take (cdr
s d') (- s d len 1)) are equal to (drop cpos (- pos len (- s d len
1))).

Observe that (take (cdr s d) (- s d len 1)) is the same as (cdr (take
s d s d len)), which, by assumption three, is equal to (cdr (drop cpos
(- pos len s d len))). This can be rewritten as (drop cpos (- pos len
(- s d len 1))). For the other equality, the same steps of reasoning ap-
ply.

Case (car p) 6= (car s d): By the same reasoning as used in the second
case, (car p) 6= (car s d'). Thus both invocations of match s use the third
case. We now show that: (match s pat (cdr pos) (- pos len 1) pat (cdr
pos) (- pos len 1)) is equal to (match s pat (cdr pos') (- pos len 1)
pat (cdr pos') (- pos len 1))

As before, we can use the induction hypothesis and only have to show that
the three assumptions hold.

1. We have to show that (take (cdr pos) (- pos len 1)) is equal to
(take (cdr pos') (- pos len 1)). This holds, because by assumption
one, (take pos pos len) is equal to (take pos' pos len).
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2. We have to show that (- s d len 1) ≤ (- pos len 1). This follows
immediately from s d len ≤ pos len (assumption two).

3. For the first equation, we have to show that (take (cdr pos) (- pos len
1)) is equal to (drop (take (cdr pos) (- pos len 1)) 0), which is
obvious. The second equation holds similarly.

2
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RS-00-27 Zolt́an Ésik and Werner Kuich. Inductive -Semirings. October
2000. 34 pp.
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