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Modélisation de fractures comme des interfaces: un modèle

avec écoulement de Forchheimer dans la fracture

Résumé : Dans ce rapport, nous nous intéressons à la modélisation des écoulements mono-
phasiques dans un milieu poreux fracturé. En particulier, nous supposons que l'écoulement
est su�sament rapide dans la fracture pour qu'il soit gouverné par la loi de Forchheimer alors
que l'écoulement dans la matrice rocheuse est gouverné par la loi de Darcy. Nous décrivons
un modèle où la fracture est considérée comme étant une interface. Nous considérons aussi
les cas des fractures qui se croisent et le cas des maillages non-conformes.

Mots-clés : écoulement en milieu poreux; fractures; loi de Forchheimer; éléments �nis
mixtes; décomposition de domaines; maillages non-conformes.
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Modeling fractures as interfaces: a model for Forchheimer fractures 3

1 Introduction

Modeling �ow in porous media is made di�cult by the presence of heterogeneities in the
characteristics of the medium. In particular, it is di�cult to take into account fractures in a
numerical model, because of their width which is very small in comparison to the size of the
domain. Yet because their permeability may also di�er greatly from that of the surrounding
medium, they may have a very important in�uence on the �ow in the medium. They may act
as privileged channels for �ow or they may act as barriers.

Fractures may occur as networks of very �ne fractures, impossible to localize individually,
[8]. These are taken into account using homogenization techniques or double porosity models,
[16], [6]. Here however, we are concerned with larger known fractures. In [1], a model was
introduced in which such larger fractures are modeled as (n−1) dimensional interfaces in an n
dimensional medium. The fractures were supposed to be of high permeability so the pressure
was assumed to be continuous across the fractures. However the �ux was not supposed to
be continuous as the �uid could �ow into and out of as well as along the fractures. A model
introduced in [17] generalizes the earlier model so that it can handle both large and small
permeability in the fracture. For this model it is no longer assumed that the pressure is
continuous across the fracture. In [2], a 3-D model with intersecting fractures was introduced.
For all of these models, �ow in the fractures as well as in the surrounding medium is governed
by Darcy's law. In an earlier article, [13], a model was introduced in which the �ow in the
fracture is su�ciently rapid that it is governed by a nonlinear law, Forchheimer's law, see [7],
[11], [12] and [20]. In the present article we develop the model of [13] in more detail, extending
it to the case of intersecting fractures and giving more numerical results. We also show that
nonmatching grids may be used for the subdomains and for the fractures.

We mention that others have also treated fractures as interfaces: for Darcy �ow, a model
introduced by Angot et al. in [3] is based on Robin boundary conditions at the interface and
assumes the continuity of the �ux across the fracture. A model similar to that of [17] was
studied by Flauraud et al. in [10]. For a problem of multiphase �ow in a fractured medium,
Helmig et. al. in [18], represented the fracture by lower dimensional �nite elements.

In Section 2, we describe the di�erent equations governing single phase, incompressible
�ow in a porous media. In Section 3, we describe a simple model problem with a domain
containing a single fracture. Then, in Section 4, the interface model of [13] is derived for this
simple problem and in Section 5 we give the discrete formulation along with some numerical
results. In Section 6, we extend the simple model problem to a problem with intersecting
fractures. In Section 7, we use nonconforming meshes and we show some numerical results
with several intersecting fractures.

2 Equations governing �ow in a porous medium

Flow of a single-phase, incompressible �uid in a porous medium Ω is governed by the law of
mass conservation:

div (u) = q in Ω, (1)

where q is a source term and u is a volumetric �ow rate or velocity. The velocity u is related
to the gradient of the pressure p (in the absence of gravity) by Darcy's law:

u + K ∇ p = 0, in Ω, (2)
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4 N. Frih, J. E. Roberts, & A. Saâda

where K is the permeability of the medium.
Darcy's law is valid for low �ow rates for which inertial e�ects are negligible. For higher

�ow rates however, the results obtained by Darcy's law do not coincide with experimental
results; the �ow rate predicted by Darcy's law is too high. Forchheimer's law introduces an
inertial term, a quadratic term, which slows down the �ow. So, when the �ow is su�ciently
rapid, Forchheimer's law gives a more accurate relation between the gradient of the pressure
and the �ow rate. This law is a nonlinear law given by

(1 + b |u|) u + K ∇p = 0 in Ω, (3)

where b denotes the Forchheimer constant also called the inertial constant. In some works b
is taken to be a tensor, but here we have restricted our attention to the case b is a scalar. For
both experimental and theoretical derivations of Forchheimers law see the list of references in
the introduction of [15].

3 Description of a simple model problem

Suppose that Ω is a convex domain in Rn, n = 2 or 3, and denote by Γ = ∂Ω the boundary
of Ω. We suppose that the �ow in Ω is governed by a conservation equation together with
Forchheimer's law relating the gradient of the pressure p to the �ow velocity u:

divu = q in Ω
(1 + b|u|)u = −K∇ p in Ω

p = pD on Γ,
(4)

where q is a source term, b the Forchheimer coe�cient, pD the given pressure on the boundary
Γ and K a diagonal permeability (or hydraulic conductivity) tensor which is supposed to
satisfy

0 < Kmin ‖x‖20 ≤ (Kx, x) ≤ Kmax ‖x‖20 <∞, ∀x 6= 0.

For this simple model problem, we suppose (see Figure 1) that the fracture Ωf , a subdomain
of Ω, is such that there is a hyperplane γ with unit normal vector n so that

Ωf = {x ∈ Ω : x = s + rn for some s ∈ γ ∩ Ω

and some r in the interval(−d(s)
2

,
d(s)
2

)},

where d(s) denotes the thickness of the fracture at s ∈ γ. We also suppose that Ωf separates
Ω into two disjoint, connected subdomains:

Ω\Ωf = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.

We will use the notation Γi for the part of the boundary of Ωi which lies on Γ, i = 1, 2, f

Γi = ∂Ωi ∩ Γ, i = 1, 2, f

and we denote by γi the part of of the boundary of Ωi, i = 1, 2 which lies on ∂Ωf

γi = ∂Ωi ∩ ∂Ωf ∩ Ω, i = 1, 2.
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Modeling fractures as interfaces: a model for Forchheimer fractures 5

←−−→
−→n = n1 = −n2

Ω1 Ω2Ωf

γ1 γ2

d

Ω1 Ω2γ

−→n = n1 = −n2

Figure 1: Left: the domain Ω with the fracture Ωf . Right: the subdomains Ω1 and Ω2

separated by the fracture considered as an interface γ.

The case of interest for us is that the velocity in the subdomains is small enough for
Darcy's law to be su�cient while that in the fracture requires the use of Forchheimer's law.
In this case in order to avoid having to solve a nonlinear problem in all of Ω it would seem
appropriate to formulate the problem as a transmission problem using the nonlinear law only
in the fracture. If we assume that the �ow in the subdomains is governed by Darcy's law and if
we denote by pi,ui,Ki, and qi the restrictions of p,u,K, and q respectively to Ωi, i = 1, 2, f ,
and by pD i the restriction of pD to Γi, i = 1, 2, f we can rewrite the above problem (4) as a
transmission problem:

divui = qi in Ωi, i = 1, 2, f,
ui = −Ki∇ pi in Ωi, i = 1, 2,

(1 + b|uf |)uf = −Kf∇ pf in Ωf ,
pi = pDi on Γi, i = 1, 2, f,
pi = pf on γi, i = 1, 2,

ui · n = uf · n on γi, i = 1, 2.

(5)

The system (5) could then be solved by using a conventional nonoverlapping domain decom-
position technique in which Ωf would be considered simply as a third subdomain. Following
[1], [17] and [2], we propose here as in [13] the alternative technique of treating Ωf not as a
subdomain, but as an interface γ between the subdomains Ω1 and Ω2 (see Figure 1) on which
nonlocal transmission conditions are imposed. The advantage of using domain decomposi-
tion for modeling the fractured medium is that one no longer needs to have local re�nement
around the fracture. However if the fracture is taken to be a subdomain itself this intro-
duces a subdomain much thiner than other subdomains which is not usually desirable for
domain decomposition algorithms. Further with a standard domain decomposition approach
the elements in the fractures would either have one dimension much smaller than the other
dimensions or the grids would be nonconforming requiring the use of mortar elements or other
special techniques. By treating the fracture not as a thin subdomain but as an interface this
problem is eliminated. An added advantage of the interface approach in the present case with
Forchheimer �ow in the fracture is that one has only an (n−1) dimensional nonlinear problem
to solve instead of an n dimensional one.
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6 N. Frih, J. E. Roberts, & A. Saâda

4 Derivation of the interface model

The model in which the subdomain Ωf is replaced by the interface γ, is obtained by using the
technique of averaging across the fracture. For this however, a simplifying hypothesis, that
�ow in the fracture in the direction normal to the central hyperplane γ is much smaller than
that in the tangential direction, is used. This hypothesis seems reasonable in light of the very
small ratio, width to length of the fracture. Thus we suppose that the �ow in the direction
normal to the fracture is adequately described by Darcy's law and that in the tangential
direction, it is described by Forchheimer's law.

The �rst step toward deriving the model is to decompose uf as uf = uf,n + uf,τ with
uf,n = (uf ·n)n (recall that that n = n1 = −n2), and to introduce the notation ∇τ and divτ

for the tangential gradient and divergence operators and ∇n and divn for the normal gradient
and divergence operators.

4.1 Averaging the conservation equation

With the above notation, the �rst equation of (5) for i = f , may be rewritten as

divn uf + divτ uf = qf in Ωf . (6)

Integrating in the direction normal to the fracture, one obtains

uf · n|γ2
− uf · n|γ1

+ divτ Uγ = Qγ on γ, (7)

where Uγ =
∫ d

2

− d
2

uf,τ dn is the �ow rate through a normal cross section of the fracture and

Qγ =
∫ d

2

− d
2

qf dn.

Then using the continuity of the �uxes across γ1 and γ2, the last equation of (5) for i = 1 and
2, we may write

divτ Uγ = Qγ + (u1 · n1|γ1
+ u2 · n2|γ2

) on γ. (8)

This is the conservation equation on γ with the additional source term u1 · n1|γ1
+ u2 · n2|γ2

representing the di�erence between what �ows into the fracture and what �ows out of the
fracture at a given point of γ.

4.2 Averaging Forchheimer's law

With the hypothesis that �ow in the fracture in the direction normal to the fracture is described
by Darcy's law, the decomposition of the second equation of the system (5) into its tangential
direction and the normal direction parts is given by

(1 + b |uf |) uf,τ = −Kf,τ ∇τ pf (a)
uf,n = −Kf,n ∇n pf . (b)

(9)

Integrating the �rst equation of the system (9, a) along the line segments (−d

2
,
d

2
), yields:

∫ d
2

− d
2

(1 + b |uf |) uf,τ dn = −Kf,τ ∇τ

∫ d
2

− d
2

pf dn, (10)

INRIA

in
ria

-0
02

07
99

3,
 v

er
si

on
 2

 - 
21

 J
an

 2
00

8



Modeling fractures as interfaces: a model for Forchheimer fractures 7

where we have assumed that Kf,τ is constant along the segments (−d

2
,
d

2
). We approximate

|uf | = |uf,τ + uf,n| by |uf,τ |(1 +
1
2

u2
f,n

u2
f,τ

).

Then using the hypothesis that uf,n is very small in comparison to uf,τ , we obtain the
approximation

|uf | ' |uf,τ | '
|Uγ |

d
.

Replacing |uf | by
|Uγ |

d
in (10) and integrating one obtains

(1 +
b

d
|Uγ | ) Uγ = −Kf,τ d ∇τPγ , (11)

where Pγ =
1
d

∫ d
2

− d
2

pf dn is the average pressure along a normal cross section of the fracture.

Equation (11) is Forchheimer's law in the (n−1) dimensional domain γ. Together (8) and
(11) give a �ow equation in γ with a source term representing the �ow from the subdomains
Ω1 and Ω2 into the fracture. The second equation of (9) can now be used to give boundary
conditions along γ for the subdomains Ω1 and Ω2.

Integrating the second equation of the system (9, b) along the line segments (−d

2
,
d

2
),

yields: ∫ d
2

− d
2

uf,n = −Kf,n

∫ d
2

− d
2

∇n pf , (12)

where we have assumed that Kf,n is constant along the segments (−d

2
,
d

2
).

Equation (12) is equivalent to

p2|γ − p1|γ = − 1
Kf,n

∫ d
2

− d
2

uf,n dn (13)

With the hypotheses that the fracture width d is much smaller than the fracture length, and
the high permeability in the fracture, i.e Kf,n is large, then we can suppose that the pressure
p is continuous through γ so that

p1|γ = Pγ = p2|γ .

4.3 The strong formulation of the interface model problem

The interface model for the fracture problem can now be written

div ui = qi in Ωi, i = 1, 2
ui = −Ki∇ pi in Ωi, i = 1, 2

divτ Uγ = Qγ + (u1 · n− u2 · n) on γ

(1 +
b

d
|Uγ |)Uγ = −Kf,τ d∇τPγ on γ

pi = pD i on Γi, i = 1, 2
pi = Pγ on γ, i = 1, 2
Pγ = PD γ on ∂γ,

(14)
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8 N. Frih, J. E. Roberts, & A. Saâda

where PD γ is the average value of pD f along the segment (−d

2
,
d

2
) in Γf .

5 Numerical discretization for the interface model

5.1 The discrete formulation of the model problem

Let Th,i be a conforming �nite element partition of Ωi, i = 1, 2, and suppose that the meshes
Th,i, i = 1, 2 match at the interface γ between the subdomains Ωi, i. e. suppose that these
partitions are such that the two partitions induced on γ by these partitions Th,i coincide. In
other words Th,1∪Th,2 forms a standard �nite element partition of Ω. Then denote by Th,γ the
induced mesh on γ consisting of all edges of elements of Th,i that lie on γ. Then let Th = ∪Th,i,
i = 1, 2, γ. Thus Th consists of both n-dimensional elements in Ωi and (n − 1)-dimensional
elements on γ.

To de�ne an approximation space for the pressure, let Mh,i, i = 1, 2 be the space of piece-
wise constant functions constant on each element T of Th,i and let Mh,γ be the approximation
space of piecewise constant functions constant on each element E of Th,γ . Then let

Mh = Mh,1 ×Mh,2 ×Mh,γ .

Similarly, to de�ne an approximation space for the velocity, let Wh,i, i = 1, 2 be the
Raviart-Thomas-Nedelec space of lowest order de�ned on the n-dimensional space Ωi subor-
dinate to the mesh Th,i, and let Wh,γ be the Raviart-Thomas space of lowest order de�ned
on the (n− 1)-dimensional interface γ subordinate to the mesh Th,γ . Then let

Wh = Wh,1 ×Wh,2 ×Wh,γ .

The discrete mixed �nite element approximation for the interface problem (14) can now
be written as follows:

(Ph)

Find (uh,1,uh,2,Uh,γ) ∈Wh and (ph,1, ph,2, Ph,γ) ∈Mh

such that for all (vh,1,vh,2,Vh,γ) ∈Wh and (rh,1, rh,2, rh,γ) ∈Mh∫
Ωi

K−1
i uh,i · vh,i −

∫
Ωi

ph,idivvh,i = −
∫

γ
Ph,γvh,i · ni −

∫
Γi

pD ivh,i · ni, i = 1, 2∫
Ωi

divuh,irh,i =
∫

Ωi

qirh,i, i = 1, 2∫
γ
(d Kf,τ )

−1(1 +
b

d
|Uh,γ |)Uh,γ ·Vh,γ −

∫
γ
Ph,γdivτVh,γ = −

∫
∂γ

PD γVh,γ · nγ∫
γ
divτUh,γrh,γ =

∫
γ
Qγrh,γ +

∫
γ
(uh,1 · n1 + uh,2 · n2)rh,γ .

(15)

Following [1, 2, 17], we use a domain decomposition type method [9] to solve the discrete
problem (Ph). In this way, the problem (15) is reduced to a problem only on the interface γ.
For i = 1, 2, uh,i and ph,i are decomposed into two parts,

uh,i = u0
h,i + u∗h,i, ph,i = p0

h,i + p∗h,i .
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Modeling fractures as interfaces: a model for Forchheimer fractures 9

For each i, we use the Steklov-Poincaré operator

Si : Mh,γ −→Mh,γ

rh,γ 7→ −u0
h,i · ni

which associates to an element rh,γ ∈ Mh,γ the element −u0
h,i · ni ∈ Mh,γ where (u0

h,i, p
0
h,i) ∈

Wh,i ×Mh,i is the solution of the problem

(P0
i )

Find (u0
h,i, p

0
h,i) ∈Wh,i ×Mh,i such that∫

Ωi

K−1
i u0

h,i · vh,i −
∫

Ωi

p0
h,idivvh,i = −

∫
γ
rh,γvh,i · ni ∀vh,i ∈Wh,i∫

Ωi

divu0
h,irh,i = 0 ∀rh,i ∈Mh,i .

(16)

We also use the notation χi = u∗h,i ·ni, i = 1, 2, where (u∗h,i, p
∗
h,i) ∈Wh,i×Mh,i is the solution

of the problem

(P∗i )

Find (u∗h,i, p
∗
h,i) ∈Wh,i ×Mh,i such that∫

Ωi

K−1
i u∗h,i · vh,i −

∫
Ωi

p∗h,idivvh,i = −
∫

Γi

pD ivh,i · ni ∀vh,i ∈Wh,i∫
Ωi

divu∗h,irh,i =
∫

Ωi

qirh,i ∀rh,i ∈Mh,i .

(17)

Then if (ph,1, ph,2, Ph,γ) with (uh,1,uh,2,Uh,γ) is the solution of (Ph), (u0
h,i, p

0
h,i) is the solution

of (P0
i ) with rh,γ = Ph,γ and (u∗h,i, p

∗
h,i) is the solution of (P∗i ) one has

ph,i = p0
h,i + p∗h,i and uh,i = u0

h,i + u∗h,i. (18)

Thus uh,i · ni = Si(Ph,γ) + χi, and (Uh,γ , Ph,γ) is the solution of the following problem:

(Pγ)

Find (Uh,γ , Ph,γ) ∈Wh,γ ×Mh,γ

such that for all rh,γ ∈Mh,γ and Vh,γ ∈Wh,γ∫
γ
(d Kf,τ )−1(1 +

b

d
|Uh,γ |)Uh,γ ·Vh,γ −

∫
γ
Ph,γdivτVh,γ = −

∫
∂γ

pD γVh,γ · nf∫
γ
divτUh,γrh,γ +

∫
γ
(S1(Ph,γ) + S2(Ph,γ))rh,γ =

∫
γ
Qγrh,γ +

∫
γ
(χ1 + χ2)rh,γ .

(19)

This problem is nonlinear but it is only an (n-1) dimensional nonlinear problem, and it can
be solved by using a �xed point iteration method or a quasi-Newton method. In either case
the iteration can be initialized with the solution for Darcy �ow in the fracture. The solutions
(uh,i, ph,i) in the subdomains can then be calculated using (18).

5.2 Some 2-D numerical results

A �rst numerical result for this type of problem is to obtain a good correspondence between
the solution obtained by the interface problem and a reference solution. We obtain a reference
solution by using the model problem where the fracture is considered as a third subdomain
and using a mixed �nite element method.
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10 N. Frih, J. E. Roberts, & A. Saâda

5.2.1 A simple test case

In this section numerical results obtained with the interface model will be compared with
those obtained using a standard model with 2-D fracture. The results are obtained for a
simple model problem: the subdomains Ω1 and Ω2 are both squares of unit length and width,
and the fracture Ωf separating the subdomains is of unit length and of width d = 0.01. The
permeability in each of the subdomains is assumed to be constant and equal to 10−9, and
the fracture is assumed to be of much higher (also constant) permeability, Kf = 10−6. The
Forchheimer coe�cient b is taken to be 10. The upper and lower boundaries of the the two
subdomains are assumed to be impermeable, and there is a pressure drop from right to left of
106. The same pressure drop from top to bottom of the fracture is imposed. See Figure 2.

u · n = 0

u · n = 0

Ω1

K1 = 10−9

Ω2

K2 = 10−9

Ωf

K
f

=
10

−
6

p
=

0

p
=

10
6

u · n = 0

u · n = 0

p = 0

p = 106

Figure 2: Test-case

To compare the di�erent results, one can see in Figure 3 the reference pressure and also
the reference velocity, both obtained by using the standard model (model with 2-D fracture).
In Figure 4, those obtained by using the interface model are given. In both cases a 15 by 15
grid was used for each of the subdomains Ω1 and Ω2, and in the case of the reference model
a 15 by 15 grid was also used for the fracture domain Ωf . As we can see, these results show
good agreement between the solutions obtained by the two models.
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Figure 3: Reference pressure (left) and reference velocity (right) given by the standard model
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Modeling fractures as interfaces: a model for Forchheimer fractures 11
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Figure 4: Numerical pressure (left) and numerical velocity (right) given by the interface model

5.2.2 Comparison between Darcy and Forchheimer velocity in the fracture

In the experiment above the data were chosen so that the Forchheimer term would have a
non negligible e�ect. Here a comparison between the Darcy and Forchheimer velocities in the
fracture is given. The same data as in the above experiment are used only in one case the
Forchheimer term in the fracture is omitted.

In Figure 5 the tangential Darcy velocity (which for this simple 2-D model is just a scalar)
is represented in blue while the Forchheimer velocity is given by the red curve. On the left,
the velocity calculated using the standard model along a central vertical section is shown, and
on the right is the velocity obtained using the interface model.
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Figure 5: Darcy and Forchheimer velocity in the fracture given both by the interface model
(left) and the standard model (right).

A good agreement between the results obtained by the standard model and the interface
model can be observed and in addition, the di�erence between the Forchheimer velocity and
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12 N. Frih, J. E. Roberts, & A. Saâda

the Darcy velocity can be seen. The Forchheimer velocity is of much smaller magnitude than
the Darcy velocity because of the large inertial coe�cient.

Indeed, in this example the Forchheimer coe�cient b was taken to be extremely large
to show that the model is valid even when the nonlinear term is very important. For more
physically correct values of b, the percent discrease in the magnitude of the velocity when the
Forchheimer law is used instead of simply the Darcy law is much smaller. To illustrate this, we
have shown in Figure 6, the average percent decrease in the velocity due to the Forchheimer
term for di�erent values of the Forchheimer coe�cient b. The percentage calculated using the
interface model is represented in blue and that obtained using the standard model is given in
red.
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Figure 6: Average precent velocity decrease due to Forchheimer term for di�erent values of
the Forchheimer coe�cient b.

INRIA

in
ria

-0
02

07
99

3,
 v

er
si

on
 2

 - 
21

 J
an

 2
00

8



Modeling fractures as interfaces: a model for Forchheimer fractures 13

5.2.3 Numerical study of the error

The object of this paragraph is to obtain a quantitative appreciation of the error made when
using the interface model. A relative L2 error in the pressure in the subdomains is calculated.
A reference solution P ∗

η is obtained using the standard model with 2-D fracture, using mixed
�nite elements on a regular �ne mesh Tη of square elements of side length η, with η = 1/192 in
the subdomains Ω1 and Ω2. Approximate solutions Ph for di�erent values of h are calculated
using the interface model with a uniform mesh of square elements of side length h in each
subdomain and a 1-D mesh in the fracture with elements of length h.

The discretization parameter h for each of the calculations below is chosen such that the
�ne mesh in the subdomains is a re�nement of the mesh of size h. Then a projection ΠηPh

of each approximate solution Ph onto the �ne mesh is obtained in the obvious way. Then the
relative L2 error in the pressure is given by

‖Ph − P ∗
η ‖2L2

rel(Ω) =

∑
Cη∈Tη

(ΠηPh − P ∗
η )2|Cη|∑

Cη∈Tη

(P ∗
η )2|Cη|

(20)

where |Cη| is the measure of the cell Cη.

In these experiments there are two sources of error, the usual numerical error dependent
upon the discretisation parameter h and an error due to the interface model dependent upon
the width d of the fracture.

In Figure 7, on the left, the log of the relative L2 pressure error in the total domain is
plotted as a function of the log of the fracture width d. Each curve corresponds to a di�erent
value of the mesh size h: h = 1/6, h = 1/12, h = 1/24, h = 1/48, h = 1/96, h = 1/192. On
the right, the log of the relative L2 pressure error in the total domain is plotted as a function
of the log of 1/h, the inverse of the mesh size, for a constant fracture width d = 0.01.

In the �rst �ve curves on the left there is no decrease in the error when the fracture width
diminishes because the error due to the model is dominated by the error due to the numerical
discretization. Only in the sixth curve with h = 1/192 can we see that the error diminishes
with decreasing d just until the numerical discretization error again becomes dominant. In
the curve on the right, as expected, the error decreases as 1/h increases. The large drop in
the error between 1/h = 96 and 1/h = 192 is due to the fact that the reference solution is not
an analytic solution but a solution obtained with a mesh for which h = 1/192.

6 A model with intersecting fractures

6.1 Description of the problem

For this model problem, as earlier, Ω is supposed to be a convex domain in Rn, n = 2 or
3, with boundary Γ = ∂Ω decomposed into a Dirichlet part ΓD and a Neumann part ΓN .
For simplicity, we suppose that there are three fractures γk, k = 1, 2, 3, dividing Ω̄ into three
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14 N. Frih, J. E. Roberts, & A. Saâda
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Figure 7: Left: the relative L2 error in the pressure in the total domain as a function of the
fracture width d for di�erent values of the mesh size: h = 1/6, h = 1/12, h = 1/24, h = 1/48,
h = 1/96, h = 1/192. Right: the relative L2 error variation in the total domain as a function
of 1/h for a constant fracture width d = 0.01.

subdomains Ωi, i = 1, 2, 3,

Ω̄ =
3⋃

i=1

Ω̄i, Ωi ∩ Ωj = ∅ and Ω̄i ∩ Ω̄j = γ̄k ∀ i, j, k with i 6= j 6= k 6= i,

in such a way that the intersection of each pair of distinct fractures is the same set T :

γ̄1 ∩ γ̄2 = γ̄1 ∩ γ̄3 = γ̄2 ∩ γ̄3 = T.

The intersection T is thus a point in the 2-D case and a segment in the 3-D case. See Figure
8.
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T
•

Figure 8: A domain with intersecting fractures

As before, in each subdomain Ωi, i = 1, 2, 3, we have the law of mass conservation together
with Darcy's law and the boundary conditions on the exterior boundary:

divui = qi in Ωi

ui = −Ki∇ pi in Ωi

pi = pDi on ∂Ω ∩ ΓD

ui · ni = 0 on ∂Ω ∩ ΓN .

(21)
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Modeling fractures as interfaces: a model for Forchheimer fractures 15

Also as before, we assume that the pressure is continuous across the fracture interfaces γk:

pi = Pγk
= pj on γk, i 6= j 6= k 6= i, (22)

where Pγk
is the pressure on the fracture γk. In each fracture we have the law of mass

conservation together with Forchheimer's law and the boundary conditions on the exterior
boundary:

divτ Uγk
= Qγk

+ (ui · ni + uj · nj) on γk

(1 +
bγk

dγk

|Uγk
|)Uγk

= −dγk
Kγk
∇τ Pγk

on γk

Pγk
= PDγk

on ∂γk ∩ Γ,

(23)

where Uγk
, Qγk

, Kγk
, bγk

and dγk
are respectively the pressure, the �ow velocity, the source

term, the permeability tensor, the Forchheimer coe�cient and the width of the fracture for
γk, and PDγk

is the average value of pD on ∂γk ∩ Γ.
On the intersection T of the fractures, following [1] and [2], we impose the continuity of

the pressure and also the continuity of the �ux:

Pγ1 = Pγ2 = Pγ3 on T
Uγ1 · νγ1 + Uγ2 · νγ2 + Uγ3 · νγ3 = 0 on T,

(24)

where νγk
is the exterior normal to γk on ∂γk, k = 1, 2, 3.

6.2 Numerical discretization

As in the case of a single simple fracture, to obtain a numerical solution of the system (21,
..., 24), we use mixed �nite elements of dimension n in the subdomains and mixed �nite
elements of dimension (n − 1) in the fractures. Thus as before the pressure is approximated
in each element (in dimension n and in dimension n − 1) by a constant, and the velocity is
approximated in the space of lowest order Raviart-Thomas-Nedelec elements. However, in
addition to the unknowns associated with these spaces there are scalar unknowns associated
with the the intersection T . In the case Ω ⊂ R2 so that T is simply a point this amounts
to one unknown which is a multiplier for enforcing continuity of the pressure at the fracture
intersection. In the case Ω ⊂ R3 so that T is a segment, there is a naturally induced mesh on
T from each fracture having T as part of its boundary, and as we have assumed here that the
meshes are compatible, i. e. the union of the meshes for the subdomains forms a conforming
mesh on all Ω, the meshes induced on T from the di�erent fractures having T as part of their
boundaries are all the same. Thus there is one additional unknown for each element of this
mesh.
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16 N. Frih, J. E. Roberts, & A. Saâda

Again as the nonlinearity of the problem is associated only with the fractures, domain
decomposition techniques can be used to reduced the problem to a problem posed only on the
fractures. The resulting nonlinear system can now be written as follows:



A1(Uγ1) −B>
1 0 0 0 0 M>

1

B1 S1,1 0 S1,2 0 S1,3 0
0 0 A2(Uγ2) −B>

2 0 0 M>
2

0 S2,1 B2 S2,2 0 S2,3 0
0 0 0 0 A3(Uγ3) −B>

3 M>
3

0 S3,1 0 S3,2 B3 S3,3 0
M1 0 M2 0 M3 0 MT





Uγ1

Pγ1

Uγ2

Pγ2

Uγ3

Pγ3

PT


=



∗
∗
∗
∗
∗
∗
0


(25)

where Uγk
and Pγk

for k = 1, 2, 3, are the velocity and the pressure respectively on the interface
γk and PT the trace of the pressure on the intersection T of the fractures. The matricies
Ak(Uγk

) and Bk, represent the mixed �nite element matricies for the �ow equations in the
fracture γk, k = 1, 2, 3. The matrix Si,j , i, j = 1, 2, 3, represents the domain decomposition
matrix associated with the Steklov-Poincaré operator taking into account the values of the
pressure on the fracture γi and returning the values of the �ux on the fracture γj . The matrix
Mi with i = {1, 2, 3, T} are the matrices associated with the equations of the continuity of the
pressure and the continuity of the �ux on the intersection of the fractures.

6.3 A numerical result for the case of intersecting fractures

In this experiment the domain Ω ⊂ R2 is divided into 4 subdomains Ωi, i = 1, . . . , 4 which
are separated by 4 fractures γk, k = 1, . . . , 4. These fractures intersect at the point T ; see
Figure 9. The width dγk

is the same in all fractures and is equal to 0.01. The permeability
in each of the subdomains is assumed to be constant and equal to 10−9, and the permeability
in each fracture is assumed to be much higher (also constant) Kγk

= 10−6. The Forchheimer
coe�cient bγk

is the same in all fractures and is taken to be 10. The upper and lower exterior
boundaries of the subdomains are assumed to be impermeable, and there is a pressure drop
from right to left of 106. A pressure of 106 is imposed at the ends of the fractures lying on
the upper and right-hand sides of the domain and a pressure of 0 is imposed on the ends of
the fractures on the left-hand and lower sides of the domain.

�
�
�
�
�
�
�
�
�
�
��

XXXXXXXXXXXXXXXXXXXXXXXX
Ω1

K1 = 10−9

Ω2

K2 = 10−9 Ω3

K3 = 10−9

Ω4

K4 = 10−9

T•γ1

γ2

γ3

γ4p
=

0

p
=

10
6

u · n = 0

u · n = 0

u · n = 0

u · n = 0

p = 0

p = 106

Figure 9: A test-case
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Modeling fractures as interfaces: a model for Forchheimer fractures 17

In Figure 10 the conforming mesh used for this test case is shown. In Figure 11 the
calculated pressure is shown on the left and the calculated velocity on the right.
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Figure 10: The mesh
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Figure 11: The numerical pressure (left) and the numerical velocity (right)
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18 N. Frih, J. E. Roberts, & A. Saâda

7 Nonconforming meshes

In many applications one may want to use nonconforming meshes. For simplicity, in this sec-
tion, we suppose that the domain is divided into only two subdomains separated by a single
fracture. In the numerical discretization, the domain will be decomposed into nonoverlapping
subdomains with the fracture as the interface between the two subdomains. The grids will be
de�ned independently in each subdomain and in the fracture, see Figure 12.

Ω1 γ Ω2

Figure 12: An example of nonconforming grids for the fracture and the subdomains

Let Th,i be a conforming �nite element partition of Ωi, i = 1, 2, and let Th,γ be a conforming
�nite element partition of the interface γ in (n−1)-dimensions. The meshes Th,1 and Th,2 need
not form a conforming mesh on Ω and Th,γ is independent of Th,1 and of Th,2. The notation
Th,γ,i, i = 1, 2, will be used for the partition induced on γ by the partition Th,i on Ωi; i. e.
Th,γ,i, i = 1, 2 consists of all of the (n-1) dimensional faces of elements of Th,i which lie on γ.
See Figure 13.

As above, we use the lowest order Raviart-Thomas-Nedelec mixed �nite element spaces
associated with Th,i, i = 1, 2, and Th,γ so that the vector variable is approximated in a space
Wh = Wh,1×Wh,2×Wh,γ and the spaces of piecewise constants associated with Th,i, i = 1, 2,
and Th,γ so that the scalar variable is approximated in a space Mh = Mh,1 ×Mh,2 ×Mh,γ .

Also as above, domain decomposition techniques are used to reduce the discrete problem
to a problem posed only on the interface γ, but here we can not use directly the operator
Si : Mh,γ −→Mh,γ as de�ned in Section 5.1 because of the incompatibility between the grids.
Letting Mh,γ,i denote the space of piecewise constants associated with Th,γ,i, i = 1, 2, we will,
with some slight abuse of notation, now denote by Si the mapping Si : Mh,γ,i −→ Mh,γ,i

de�ned in the obvious manner. Then, let Ri : Mh,γ −→ Mh,γ,i be the projection operator
de�ned by

Ri : Mh,γ −→Mh,γ,i

rh,γ 7→ rh,γ,i

where

rh,γ,i|E =
1
|E|

∫
E

rh,γ ∀E ∈ Th,γ,i.
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Modeling fractures as interfaces: a model for Forchheimer fractures 19

Th,1 Th,γ,1 Th,γ Th,γ.2 Th,2

Figure 13: An example of a numerical discretization with nonconforming grids for the fracture
and the subdomains

So, for the case of nonmatching grids the Steklov-Poincaré operator Si : Mh,γ −→Mh,γ of
Section 5.1 is replaced by the operator S̃i : Mh,γ −→Mh,γ with

S̃i = Rt
i ◦ Si ◦ Ri,

where Rt
i is just the transpose of the projection operator Ri.

In the numerical experiments below, no mortar elements were introduced as there already
(n − 1)-D elements on the fracture interfaces, nor were the usual size restrictions associated
with mortar elements, c.f. [4], [5] and [19], respected. We have been shown in [14] that this is
su�cient in the linear case, i. e. in the case of Darcy �ow in the fractures for the model of [17].

Remark: In the case of intersecting fractures in a 3-D domain, one would need either to have
compatible meshes at the intersection T or to use mortar elements on T .

7.1 A numerical experiment for nonconforming meshes

In this experiment the domain Ω ⊂ R2 is divided into 4 subdomains Ωi, i = 1, ..., 4 by 5
fracture interfaces γk, k = 1, ...5. The fractures γ1, γ2, and γ3 intersect at a point T1 and the
fractures γ3, γ4, and γ5 intersect at a point T2, see Figure 14.

The width dγk
is the same for all the fractures and is equal to 0.01. The permeability in

each of the subdomains is assumed to be constant and equal to 10−9, and the permeability
in each fracture is assumed to be much higher and also constant: Kγk

= 10−6 for each k.
The Forchheimer coe�cient bγk

is taken to be 10 in all of the fractures. The upper and lower
exterior boundaries of the subdomains are assumed to be impermeable, and there is a pressure
drop from right to left of 106. A pressure of 106 is imposed at the exterior ends of γ4 and γ5

and a pressure of 0 is imposed on the exterior ends of γ1 and γ2.
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20 N. Frih, J. E. Roberts, & A. Saâda
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Figure 14: Test-case

The nonconforming mesh used for this test case is shown in Figure 15. It is made up of
independently chosen grids for the subdomains and grids for the fracture interfaces. Here for
simplicity each of the one dimensional grids is a uniform grid. The mesh parameters for the
two dimensional subdomain grids and for the one dimensional fracture interface grids are given
in the tables below, where by mesh parameter of a two or three dimensional grid is meant
the maximum length of an edge of an element of the mesh and of a one dimensional grid the
maximum length of a segment of the mesh.

- Mesh parameters for the subdomain girds

subdomain Ω1 Ω2 Ω3 Ω4

mesh parameter 0.20 0.10 0.08 0.05

- Mesh parameters for the fracture interface grids

interface γ1 γ2 γ3 γ4 γ5

mesh parameter 0.035 0.029 0.07 0.048 0.11

The numerical solution obtained with the mesh shown in Figure 15 is given in Figure 16,
where the approximate pressure is shown on the left and the approximate velocity �eld on
the right. A good solution was obtained in spite of the nonconforming grid, even through no
additional mortar elements were introduced.
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Modeling fractures as interfaces: a model for Forchheimer fractures 21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15: The nonconforming meshes
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Figure 16: The pressure (left) and the velocity (right) computed solutions

8 Conclusion

This article is concerned with a numerical model, introduced in the short article [13], for �ow
in a porous medium with fractures. For this model it was assumed that the �ow rate in the
fractures is large enough to make it appropriate to use Forchheimer's law for modeling the
�ow in the fractures even though the �ow in the surrounding domain is such that Darcy's
law is adequate. The fractures were treated as interfaces between subdomains and nonlocal,
nonlinear transmission conditions were imposed on the interfaces. Then domain decomposition
techniques were used to reduce the problem to a problem posed on the interfaces.
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22 N. Frih, J. E. Roberts, & A. Saâda

In this article this model is described in more detail and numerical studies are given.
The model is extended to the case of intersecting fractures and to the case of nonconforming
meshes.
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