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Abstract. We consider a fractured porous medium that is studied at a scale such that the
fractures can be modeled individually. Models for flow in which the fractures are interfaces between
subdomains are presented. These models take into account interactions between the fractures and
the surrounding porous medium. Existence and uniqueness of the solution to the model problem are
proved. Error estimates show convergence as O(max{h, d}) in the L2 norm, where h is the mesh size
and d the fracture width. Numerical experiments confirm the theoretical results.
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1. Introduction. We are concerned with flow of a single phase fluid in a frac-
tured porous medium. Our study is carried out at a scale for which the fractures can
be modeled individually. The fractures have a small width and are treated as inter-
faces between subdomains. We also assume that the fractures are filled with debris
and that flow in the fractures respects Darcy’s law; cf. [1].

We distinguish two types of fractures: fractures which have a permeability higher
than that in the surrounding medium and those in which the permeability is lower
than that in the surrounding medium. In a medium with the former type of fracture
the fluid has a tendency to flow into the fracture and then along the fracture. In this
case, one should not expect the Darcy velocity to be identical on the two sides of the
fracture. Consequently, as the fracture is treated as an interface, the normal compo-
nent of the velocity need not be continuous across this interface. An earlier model
described by Alboin, Jaffré, and Roberts in [2] and [3] was based on the assumption
that the permeability in the fracture was large and a jump in the normal component
of the velocity across the interface was permitted.

However, when the fracture has a lower permeability, the fluid naturally tends to
avoid the fracture, which represents, in fact, a geological barrier. Two geological layers
separated by such a barrier have little communication. Thus, it is understandable that
the pressure need not be the same on the two sides of the fracture. In this case the
pressure is not continuous across the fracture-interface.

In this paper we present a model that generalizes the earlier model (see [2], [3])
so that it can handle both large and small permeability fractures. Indeed, the earlier
model assumed the continuity of the pressure across the interface. This is no longer
the case with the model presented here.
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The model is derived through a process of averaging across the fracture. This
process is carried out for the flow equation written in mixed form. One thereby
obtains a flow equation along the interface that is coupled with flow equations in the
neighboring subdomains. The main difference between this model and the previous
one is that here nonstandard Robin type conditions are imposed at the interface. The
Robin coefficient is proportional to the ratio of the permeability in the fracture to the
fracture width. A parameter is introduced yielding a family of models. Existence and
uniqueness of the solution of the mixed weak formulation of the problem are proved
for certain values of the parameter. An error estimate is obtained for a particular
choice of the parameter. Some numerical experiments show the quality of the results.

The simplest form of our model was presented in [12]. Others have also treated
fractures as interfaces: in [6], Helmig et al. represented the fracture by lower dimen-
sional finite elements. A model presented by Angot, Gallouët, and Herbin in [4] is
based on Robin boundary conditions at the interface and assumes the continuity of the
flux across the fracture. A model similar to ours for a certain value of the parameter
was studied by Faille et al. in [10].

Remark. The fracture model developed here is for two- or three-dimensional
spaces. Though numerical results are given only in the two-dimensional case, they
could easily be carried out for three-dimensional problems. We have treated the case
of a single linear or planar fracture. The fact that the fracture is linear or planar
is simply for convenience. Intersecting fractures can be treated by requiring equal
pressure and mass balance at the points (or curves) of intersection. This was done for
the earlier model in [2]. However, implementation in the case of intersecting fractures
in a three-dimensional model could easily become quite complicated. We are looking
at an extension of the model to the two-phase flow problem but this is considerably
more difficult.

In section 2, we describe the problem of flow in a domain containing a fracture.
In section 3, the model problem is derived and in section 4 it is analyzed at the
continuous level. In section 5 we obtain error estimates for the discrete model problem.
In section 6 we give numerical results, and section 7 offers a domain decomposition
formulation for the model problem.

2. Description of the problem. We suppose that Ω is a convex domain in
R

n, n = 2 or 3, and we denote by Γ = ∂Ω the boundary of Ω. We suppose that the
flow in Ω is governed by a conservation equation together with Darcy’s law relating
the gradient of the pressure p to the Darcy velocity u:

divu = q in Ω,

u = −K∇ p in Ω,

p = p on Γ,

(2.1)

where p is the pressure, u the Darcy velocity, K the hydraulic conductivity (or per-
meability) tensor, q a source term, and p the given pressure on the boundary Γ.
We suppose that K is diagonal and that each diagonal entry Kjj , j = 1, 2, . . . , n, is
positive and bounded above and away from 0,

0 < Kmin ≤ Kjj ≤ Kmax, j = 1, 2, . . . , n, a.e. in Ω.

We suppose (see Figure 2.1) that the fracture Ωf is a subdomain of Ω and that
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Fig. 2.1. Left: The domain Ω with the fracture Ωf . Right: The subdomains Ω1 and Ω2

separated by the fracture considered as an interface γ.

there is a hyperplane γ and a unit vector n = n1 = −n2 normal to γ such that

Ωf =

{

x ∈ Ω : x = s + rn for some s ∈ γ

and some r in the interval

(

−
d(s)

2
,
d(s)

2

)

}

,

where d(s) denotes the thickness of the fracture at h ∈ γ.
We also assume that Ωf separates Ω into two connected subdomains,

Ω\Ωf = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.

We denote by Γi the part of the boundary of Ωi shared with the boundary of Ω,
i = 1, 2, f ,

Γi = ∂Ωi ∩ Γ, i = 1, 2, f,

and we denote by γi the part of the boundary of Ωi shared with the boundary of the
fracture Ωf , i = 1, 2,

γi = ∂Ωi ∩ ∂Ωf ∩ Ω, i = 1, 2.

Let η be the outward unit normal vector field on Γ.
If we denote by pi, ui, Ki, and qi the restrictions of p, u, K, and q, respectively,

to Ωi, i = 1, 2, f , and by pi the restriction of p to Γi, i = 1, 2, f , we can rewrite the
above problem (2.1) as the following transmission problem:

divui = qi in Ωi, i = 1, 2, f,

ui = −Ki∇ pi in Ωi, i = 1, 2, f,

pi = pi on Γi, i = 1, 2, f,

pi = pf on γi, i = 1, 2,

ui · n = uf · n on γi, i = 1, 2.

(2.2)

3. Derivation of the model. In the model presented here the fracture is
treated as an interface between the domains Ω1 and Ω2. The model is obtained by
averaging along the line segments [s−d(s)n, s+d(s)n], s ∈ γ, normal to γ. Treatment
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of the conservation equation is straightforward: there results a conservation equation
on the surface γ with a source term representing flow into the fracture from the sub-
domains. Darcy’s law is a vector equation, and averaging the components tangential
to γ yields a Darcy law in γ relating the tangential component of the gradient of the
averaged pressure to the tangential component of the averaged Darcy velocity. The
system of these two equations in γ is then of the same form as the system in each of
the subdomains, except that we have here a source term representing the exchange
between γ and the subdomains. The remaining equation involving the normal compo-
nents of the vectors in Darcy’s law must be exploited to obtain boundary conditions
along γ for the systems in Ω1 and Ω2; however, averaging this equation yields only a
formula for the difference of the trace along γ of the pressure in Ω1 and that of the
pressure in Ω2. Several possibilities exist for closing the system.

3.1. Averaging across the fracture. First, decompose uf as uf = uf,n +uf,τ

with uf,n = uf · nn (recall that n = n1 = −n2). Let ∇τ and divτ denote the
tangential gradient and divergence operators and ∇n and divn the normal gradient
divergence operators.

3.1.1. Averaging the conservation equation. With the above notation, the
first equation of (2.2) for i = f may be rewritten as

divn uf + divτ uf = qf in Ωf .(3.1)

Integrating in the direction normal to the fracture, one obtains

uf · n|γ2
− uf · n|γ1

+ divτ Uf = Qf on γ,(3.2)

where Uf =
∫ d/2

−d/2
uf,τ dn and Qf =

∫ d/2

−d/2
qf dn. Then, using the continuity of the

fluxes across γ1 and γ2, the last equation of (2.2) for i = 1 and 2, we may write

divτ Uf = Qf + (u1 · n1|γ1
+ u2 · n2|γ2

) on γ.(3.3)

This is the conservation equation on γ with the additional source term u1 · n1|γ1
+

u2 · n2|γ2
.

3.1.2. Averaging Darcy’s law. The second equation of (2.2) for i = f may be
written

uf,τ = −Kf,τ∇τpf in Ωf ,

uf,n = −Kf,n∇npf in Ωf .
(3.4)

Again, integrating in the direction normal to the fracture, one obtains from the first
equation of (3.4)

Uf = −Kf,τ d ∇τPf on γ,(3.5)

where Pf = 1
d

∫ d/2

−d/2
pf dn and where we have assumed that Kf,τ is constant along the

segments [s−d(s)n, s+d(s)n]. This is Darcy’s law in the (n−1)-dimensional domain γ.
Together, (3.3) and (3.5) give a flow equation in γ with a source term representing
the flow from the subdomains Ω1 and Ω2 into the fracture. The remaining equation,
the second equation of (3.4), must now be used to give boundary conditions along γ
for the systems in Ω1 and Ω2 which allow for a pressure difference from one side of γ
to the other.
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Integrating the remaining equation, the second equation (3.4), in the direction
normal to the fracture, one obtains

∫ d/2

−d/2

uf,n · n dn = −Kf,n(pf |γ2
− pf |γ1

).(3.6)

The integral
∫ d/2

−d/2
uf,n ·n dn has not been computed but can be approximated using

the trapezoidal rule,

∫ d/2

−d/2

uf,n · n dn ≈
d

2
(uf · n|γ2

+ uf · n|γ1
) =

d

2
(u2 · n|γ2

+ u1 · n|γ1
),

where we have used the continuity along γ1 and γ2 of the fluxes, the fifth equation of
(2.2). Now using the continuity along γ1 and γ2 of the pressures, the fourth equation
of (2.2), the second equation of (3.4) is approximated by

1

2
(u2 · n|γ2

+ u1 · n|γ1
) = −Kf,n

p2 |γ2
− p1 |γ1

d
,(3.7)

or using the notation

αf =
2Kf,n

d
,(3.8)

−u1 · n1|γ1
+ αf p1 |γ1

= −u2 · n2|γ2
+ αf p2 |γ2

.

This gives an equation for the pressure difference across the fracture.

Boundary conditions along γ, I. To close the system and obtain boundary
conditions on γ for the problems in Ω1 and Ω2 one last equation is necessary. As (3.7)
gives the difference between the pressures across γ, a natural choice is to obtain an
equation for the sum of the pressures on γ by supposing that the average pressure
across the fracture Pf is also the average of the pressures on the boundaries γ1 and γ2.
Thus to calculate p2 |γ2

and p1 |γ1
, we use the following two equations:

p2 |γ2
− p1 |γ1

=
d

2Kf
(u2 · n2|γ2

− u1 · n1|γ1
),

p2 |γ2
+ p1 |γ1

= 2Pf .

(3.9)

Summing and subtracting the two equations in (3.9), one gets

−1/2u1 · n1|γ1
+ αf p1|γ1

= −1/2u2 · n2|γ2
+ αf Pf ,

−1/2u2 · n2|γ2
+ αf p2|γ2

= −1/2u1 · n1|γ1
+ αf Pf .

(3.10)

Boundary conditions along γ, II. If we approximate the value of pf at the
center of the fracture by Pf and the value of (uf · n) at the center of the fracture by

the averaged flux,
uf ·nf |γ1

+uf ·nf |γ2

2 , and then average across each half of the fracture
in the same way that we averaged across the entire width of the fracture above, we
obtain the following two equations:

1

4
(3u2 · n|γ2

+ u1 · n|γ1
) = −Kf,n

pf |γ2
− Pf

d/2
,

1

4
(u2 · n|γ2

+ 3u1 · n|γ1
) = −Kf,n

Pf − pf |γ1

d/2

(3.11)
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or

−3/4u1 · n1|γ1
+ αf p1|γ1

= −1/4u2 · n2|γ2
+ αf Pf ,

−3/4u2 · n2|γ2
+ αf p2|γ2

= −1/4u1 · n1|γ1
+ αf Pf .

(3.12)

These equations can be subtracted to recover (3.7) or the first equation of (3.9), but
addition does not yield the second equation of (3.9), but (after dividing by d/2)

−Kf

p2 |γ2
+ p1 |γ1

− 2Pf

d2/4
=

u2 · n|γ2
− u1 · n|γ1

d
.(3.13)

The two equations of (3.12) can also be combined to obtain

u1 · n1|γ1
= −

Kf

d
(4Pf − 3p1|γ1

− p2|γ2
),

u2 · n2|γ2
= −

Kf

d
(4Pf − p1|γ1

− 3p2|γ2
).

(3.14)

Boundary conditions along γ, III. The two equations of (3.14) suggest an-
other possibility:

u1 · n1|γ1
= −Kf

pf |γ1
− Pf

d/2
,

u2 · n2|γ2
= −Kf

pf |γ2
− Pf

d/2

(3.15)

or, using the coefficient αf defined in (3.8),

−u1 · n1|γ1
+ αf p1|γ1

= αf Pf ,

−u2 · n2|γ2
+ αf p2|γ2

= αf Pf .
(3.16)

From these two equations we can again recover (3.7) or the first equation of (3.9), but
the second equation of (3.9) is replaced by

−Kf

p2 |γ2
+ p1 |γ1

− 2Pf

d2/2
=

u2 · n|γ2
− u1 · n|γ1

d

or

p2 |γ2
+ p1 |γ1

= 2Pf −
d

2Kf
(u2 · n|γ2

− u1 · n|γ1
).

(3.17)

Boundary conditions along γ, the general case. The three sets of equations
(3.10), (3.12), and (3.16) can be rewritten in the form

−ξ u1 · n1|γ1
+ αf p1|γ1

= −(1 − ξ) u2 · n2|γ2
+ αf Pf ,(3.18)

−ξ u2 · n2|γ2
+ αf p2|γ2

= −(1 − ξ) u1 · n1|γ1
+ αf Pf(3.19)

for the values ξ = 1/2, ξ = 3/4, and ξ = 1, respectively.

4. Model problem for the fracture. We study the following model problem,
which is an extension of the previous work (see [3], [2]).
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4.1. Strong formulation of the model problem. The parameter ξ is a pos-
itive real number that will be determined later on. For common applications, this
parameter should be such that ξ ∈ ]1/2, 1]. We use the notation ∇τ (and, respectively,
divτ ) for the tangential gradient (and, respectively, tangential divergence) operators
along the fracture γ. We assume that the index i of the subdomains varies in Z/2Z

(so that 2 + 1 = 1). Posing αf =
2Kf,n

d , the problem can be written

ui = −Ki∇ pi in Ωi, i = 1, 2,

divui = qi in Ωi, i = 1, 2,

uτ
f = −Kf,τ d ∇τ pf in γ,

divτ uτ
f = qf + (u1 · n1|γ + u2 · n2|γ) in γ,

−ξ ui · ni + αf pi = αf pf − (1 − ξ) ui+1 · ni+1 in γ, i = 1, 2,

pi = pi on Γi, i = 1, 2,

pf = pf on ∂γ.

(4.1)

This system can be seen as a domain decomposition problem, with nonstan-
dard and nonlocal boundary conditions between the subdomains. The third equa-
tion in (4.1) represents Darcy’s law in the direction tangential to the fracture. The
fourth equation in (4.1) models mass conservation inside the fracture. A source term
(u1 · n1|γ1

+ u2 · n2|γ2
) is introduced to take into account the contribution of the

subdomain flows to the fracture flow. The fifth equation in (4.1) is a Robin boundary
condition for the subdomain Ωi with a dependence with the pressure in the fracture pf
and also with neighboring subdomain Ωi+1’s fluxes. This last dependence disappears
only when ξ is equal to 1, and this case will be seen to be important for the domain
decomposition formulation below (see section 7).

This fifth equation in (4.1) is equivalent to

pi|γ = pf +
ξ

αf
ui · ni −

1 − ξ

αf
ui+1 · ni+1 on γ, i = 1, 2.(4.2)

It is in this form that Robin boundary conditions are expressed in mixed formulation.
If ξ is greater than 1/2, we can also write

u2 · n2|γ2
+ u1 · n1|γ1

=
αf

2ξ − 1
(p2|γ2

+ p1|γ1
− 2pf ),(4.3)

u2 · n2|γ2
− u1 · n1|γ1

= αf (p2|γ2
− p1|γ1

).(4.4)

Remark. The difference between this model and the model with pressure con-
tinuous across the (n − 1)-dimensional fracture (see [2], [3]) is that, in the earlier
model, equations (4.2) were replaced by p2 |γ2

= p1 |γ1
= pf . This corresponded to the

assumption 1
αf

= d
2Kf

≈ 0 made previously (large permeability and small width in

the fracture).
Remark. The model depends actually on two physical, fracture-dependent coeffi-

cients: the product Kf,τ d and the ratio Kf,n/d. The first coefficient is related to the
jump in the normal component of the velocity (noncontinuity of the Darcy velocity
across the fracture). The second is related to the pressure jump (noncontinuity of
pressure across the fracture).

The coefficient Kf,τ d represents the equivalent permeability for the flow along the
fracture. When this coefficient is of the same order as the permeability in the other
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subdomains (Kf,τ d ≈ Ki, i = 1, 2), i.e., when the fracture permeability is sufficiently
large, the flow along the fracture interacts with the flow in the rocks. In this case, the
jump of the Darcy velocity across the fracture (u1 ·n1|γ1

+u2 ·n2|γ2
) is generally not

zero, because it is the contribution of the rock flow to the fracture flow. This result is
in agreement with the asymptotic analysis study by Hung and Sánchez-Palencia [11],
where the fracture permeability was large. One example of this type of behavior is
shown in section 6.1.

The coefficient Kf,n/d (= αf/2) represents an equivalent “resistivity” across the
fracture. Let us assume that the fracture permeability is small and that the coefficient
is of the same order as the permeability in the subdomains (Kf,n/d ≈ Ki, i = 1, 2).
In this case, the fluid barely flows along the fracture and the normal velocity jump is
almost zero. Equations (4.3), (4.4) become, after dividing the second equation by 2,
equations (4.5), (4.6), which are similar to the transmission equations of [4]. This re-
sult is also in agreement with the asymptotic analysis study by Sánchez-Palencia [17],
where the fracture permeability was small. One example of this type of behavior is
shown in section 6.2,

u2 · n2|γ2
+ u1 · n1|γ1

= 0,(4.5)

u2 · n2|γ2
=

Kf,n

d
(p2|γ2

− p1|γ1
).(4.6)

4.2. Weak formulation of the model problem. We will need the following
Hilbert spaces M and W. It is necessary to assume more regularity than the H(div, ∗)
regularity (used commonly for the mixed finite element methods) in order to take into
proper account the Robin boundary conditions (see [16, pp. 589–590], for instance),

M = {r = (r1, r2, rγ) ∈ L2(Ω1) × L2(Ω2) × L2(γ)},

W = {v = (v1,v2,vf ) ∈ H(div,Ω1) ×H(div,Ω2) ×H(divτ , γ) :

vi · ni ∈ L2(γ), i = 1, 2},

equipped with the norms

‖r‖2
M =

2
∑

i=1

‖ri‖
2
0,Ωi

+ ‖rf‖
2
0,γ ,

‖v‖2
W =

2
∑

i=1

(‖vi‖
2
0,Ωi

+ ‖div vi‖
2
0,Ωi

) + ‖vf‖
2
0,γ + ‖divτ vf‖

2
0,γ +

2
∑

i=1

‖vi · ni‖
2
0,γ .

Let the bilinear forms αξ : W × W → R and β : W ×M → R be defined by

αξ(u,v) =

2
∑

i=1

(K−1
i ui, vi)Ωi

+ ((Kf,τ d)−1uf , vf )γ

+

2
∑

i=1

(

1

αf
[ξui · ni − (1 − ξ)ui+1 · ni+1], vi · ni

)

γ

,

β(u, r) =

2
∑

i=1

(div ui, ri)Ωi
+ (divτ uf , rf )γ −

(

2
∑

i=1

ui · ni, rf

)

γ

.
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Let the linear forms Lq : M → R and Ld : W → R be defined by

Lq(r) =

2
∑

i=1

(qi, ri)Ωi
+ (qf , rf )γ ,

Ld(v) =

2
∑

j=1

(vj · nj, pj)Γj
+ (vf · nf , pf )∂γ .

With these spaces and forms, one can easily see that the weak form of (4.1) may
be written as follows:

u ∈ W, p ∈ M,

αξ(u,v) − β(v, p) = −Ld(v) ∀ v ∈ W,

β(u, r) = Lq(r) ∀ r ∈ M.

(4.7)

4.3. Existence and uniqueness of the solution. We assume that the right-
hand side q is sufficiently regular (in M , for instance) and for simplicity that there
are homogeneous Dirichlet boundary conditions imposed (Ld = 0). The domain and
the fracture are also assumed to be smooth enough. Then we can state the following
existence theorem.

Theorem 4.1. Assume that there exist two positive constants, 0 < Kmin < Kmax,
such that the permeabilities in the two subdomains and the coefficients (Kf,τd) and
(Kf,n/d) = αf/2 are bounded by these constants: 0 < Kmin ≤ Ki ≤ Kmax, i = 1, 2,
0 < Kmin ≤ (Kf,τd) ≤ Kmax, and 0 < Kmin ≤ (Kf,n/d) ≤ Kmax. Assume also that
the parameter ξ > 1/2. Then the model problem (4.7) has a unique solution.

Proof. It is easy to check that W and M are Hilbert spaces (see [16, p. 530]).
The continuity of αξ over W2 and of β over W ×M is straightforward.

We introduce the subspace W̃ = {v ∈ W : β(v, r) = 0 ∀r ∈ M}. To show
existence and uniqueness of the solution of (4.7), it is sufficient to show that αξ is

W̃-elliptic and that β satisfies the inf-sup condition (see [16, 7]); that is, there exist
constants Cα and Cβ such that

inf
v∈W̃

αξ(v,v)

‖v‖2
W

≥ Cα, inf
r∈M

sup
v∈W

β(v, r)

‖r‖M ‖v‖W
≥ Cβ .

To check that αξ is W̃-elliptic, we note that for u ∈ W̃, ‖div ui‖0,Ωi
= 0 and

divτ uf = u1 · n1 + u2 · n2. Thus

‖u‖2
W =

2
∑

i=1

‖ui‖
2
0,Ωi

+ ‖uf‖
2
0,γ +

∥

∥

∥

∥

∥

2
∑

i=1

ui · ni

∥

∥

∥

∥

∥

2

0,γ

+

2
∑

i=1

‖ui · ni‖
2
0,γ .

For this u ∈ W̃, αξ can be written as

αξ(u,u) =

2
∑

i=1

(K−1
i ui,ui)Ωi

+ ((Kf,τ d)−1uf ,uf )γ

+ ξ

2
∑

i=1

(

ui · ni

α
1/2
f

,
ui · ni

α
1/2
f

)

γ

− 2 (1 − ξ)

(

u1 · n1

α
1/2
f

,
u2 · n2

α
1/2
f

)

γ

.

(4.8)
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The two first terms in (4.8) are easily estimated because the product (Kf,τd) and the

permeabilities are bounded. Introducing φi = α
−1/2
f ui · ni, i = 1, 2, the two other

terms are equal to the quadratic form B(φ1, φ2) = ξ‖φ1‖
2
0,γ − 2(1 − ξ) (φ1, φ2)γ +

ξ‖φ2‖
2
0,γ . The eigenvalues of B are 1 and 2ξ − 1. Therefore, B is strictly elliptic if

and only if ξ > 1/2. In this case, we obtain the inequality

αξ(u,u) ≥ K−1
max

(

2
∑

i=1

‖ui‖
2
0,Ωi

+ ‖uf‖
2
0,γ

)

+ min{1, 2ξ − 1}
2
∑

i=1

∥

∥

∥

∥

∥

ui · ni

α
1/2
f

∥

∥

∥

∥

∥

2

0,γ

.

As the ratio (Kf,n/d) = (αf/2) is bounded, and because ‖
∑2

i=1 ui · ni‖
2
0,γ ≤

2
∑2

i=1 ‖ui · ni‖
2
0,γ , for ξ > 1/2, we have

αξ(u,u) ≥ K−1
max

(

2
∑

i=1

‖ui‖
2
0,Ωi

+ ‖uf‖
2
0,γ + min{1, 2ξ − 1}

2
∑

i=1

‖ui · ni‖
2
0,γ

)

≥ 1/3 K−1
max min{1, 2ξ − 1}‖u‖2

W.

To see that β satisfies the inf-sup condition, given r ∈ M , we construct using the
adjoint equation a v ∈ W such that β(v, r) = ‖r‖2

M and ‖v‖W ≤ C‖r‖M , where C
is the constant of elliptic regularity for the adjoint problem.

For r = (r1, r2, rτ ) ∈ M , let (ϕ1, ϕ2, ϕγ) ∈ H2(Ω1) × H2(Ω2) × H2(γ) be the
solution of

−∆ϕ = r̃ on Ω,

ϕ = 0 on Γ,

where r̃ ∈ L2(Ω) is given by r̃|Ωi
= ri, i = 1, 2, and

−∆τϕγ = rτ on γ,

ϕγ = 0 on ∂γ.

Pose vi = −∇ϕ|Ωi
, i = 1, 2, and vγ = −∇γ ϕγ , and note that divvi = ri ∈

L2(Ωi), i = 1, 2, divτ vγ = rτ ∈ L2(γ), and v1 · n1 = −v2 · n2 ∈ L2(γ), because
vi ∈ (H1(Ω))d. Thus v = (v1,v2,vγ) ∈ W and β(v, r) = ‖r̃‖2

0,Ω + ‖rf‖
2
0,γ = ‖r‖2

M .
We have

‖v‖2
W = ‖r̃‖2

0,Ω + ‖rf‖
2
0,γ + ‖∇ϕ‖2

0,Ω + ‖∇f ϕf‖
2
0,γ + 2‖v1 · n1‖

2
0,γ

≤ (1 + C(Ω))‖r̃‖2
0,Ω + (1 + C(γ))‖r‖2

0,γ + C(Ω)‖r̃‖2
0,Ω.

Remark. The case in which the parameter ξ = 1/2, which appeared to be natural
in the derivation of the model, corresponds to a stability limit for this model. In
some numerical cases (for instance, in the cases presented in sections 6.1 and 6.2), the
model problem gives very good results when the parameter ξ is equal to 1/2. But on
some other numerical tests, instabilities appear (see, for instance, section 6.3).

Remark. One can prove in the same way that the discrete problem has a unique
solution and that it converges toward the continuous solution of the model problem.

5. Interpretation of the discrete model and error estimates. We have
seen in section 3 that one could derive the models by simply averaging the transmission
problem under its strong formulation (2.2). In this section, we seek a simple error
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Ω2

Γ1

∂γ

γ

Ω1

Γ1

Γ2

Γf

γ2

Ω1 Ωf

γ1

Ω2

n = n1 = −n2 n = n1 = −n2

Fig. 5.1. Left: The domain Ω with a two-dimensional fracture Ωf that is meshed with rectan-
gles. Right: The one-dimensional fracture γ is meshed with the projection of the two-dimensional
mesh on γ1 (or γ2).

estimate for the model problem. For this purpose, we show that the discrete model
problem for ξ = 1 and 2/3 is actually none other than the discrete transmission
problem under a specific domain decomposition formulation, with certain hypotheses
concerning the approximation spaces and the mesh. Throughout this section, we will
assume for simplicity that homogeneous Dirichlet boundary conditions are imposed
on ∂Ω.

5.1. Assumptions concerning the mesh. Let Th = ∪Th,i be a conforming
finite element partition of Ω = ∪Ωi, i = 1, 2, f . The meshes Th,i, i = 1, 2, and
the mesh Th,f match on the interfaces γi, i = 1, 2. We assume henceforth that the
following hypothesis concerning the mesh is true.

Hypothesis 1. We assume that the mesh Th of the whole domain Ω possesses
the following shape: in the fracture Ωf there exists only one strip of rectangular
(two-dimensional) or parallelepiped (three-dimensional) cells, i.e., in three dimensions,
each cell in the fracture is a parallelepiped with one face on γ1 and the opposite face
contained in γ2. (See Figure 5.1.)

Of course this hypothesis is quite restrictive, as it forbids in three dimensions a
mesh made exclusively of tetrahedra. However, this assumption is made here only
to show the link between the discrete transmission problem and the discrete model
problem; therefore, this restriction is only for theoretical and not computational pur-
poses.

5.2. The discrete transmission multiblock problem. Let us define the ap-
proximation spaces used in this paper:

Zi = H(div; Ωi), i = 1, 2, f, Z =
⊕

i=1,2,f

Zi,

Ni = L2(Ωi), i = 1, 2, f, N =
⊕

i=1,2,f

Ni = L2(Ω).

Let

Zh,i ×Nh,i ⊂ Zi ×Ni, i = 1, 2, f,

be the usual mixed finite element approximation made of Raviart–Thomas (and
Nédélec in three dimensions) spaces of lowest order (see [14], [15], [16]). We recall
that Zh,i consists of some linear vector functions and that Nh,i is made up of cellwise
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constant scalar functions. Let

Zh =
⊕

i=1,2,f

Zh,i, Nh =
⊕

i=1,2,f

Nh,i.

Let

Λh = Q0(γ) = Zh,i · ni|γi
= Q0(γi), i = 1, 2, f,

be the interface approximation space made up of functions constant on each face. For
simplicity, but with an abuse of notation, we use the same notation Λh for the three
spaces on the interfaces γ1, γ2, and γ, as the spaces actually do match.

We write the discrete mixed finite element approximation for the original problem
(2.1) or, equivalently, for the transmission problem (2.2) introducing interelement
multipliers (λh,1, λh,2) (see [5], [9], and the references therein). We seek uh ∈ Zh,
ph ∈ Nh, (λh,1, λh,2) ∈ Λ2

h such that

(K−1
i uh, v)Ωi

− (div v, ph)Ωi
= −(v · ni, λh,i)γi

, v ∈ Zh,i, i = 1, 2,

(K−1
f uh, v)Ωf

− (div v, ph)Ωf
= −

∑

j=1,2

(v · nf , λh,j)γj
, v ∈ Zh,f ,

(div uh, r)Ωi
= (qi, r)Ωi

, r ∈ Nh,i, i = 1, 2, f,

(uh,1 · n1 + uh,f · nf , µh,1)γ1
= 0, µh,1 ∈ Λh,

(uh,2 · n2 + uh,f · nf , µh,2)γ2
= 0, µh,2 ∈ Λh.

(5.1)

5.3. The discrete model problem. Now we write the discretization of the
model problem (4.7) using the spaces of approximation defined in the previous section.
Let

Wh,γ × Λh ⊂ H(divτ ; γ) × L2(γ)

be the usual Raviart–Thomas mixed finite element space of lowest order defined in
the (n − 1)-dimensional interface γ. We then define the spaces of approximation of
the spaces W ×M set in section 4.2. Let

Wh =
⊕

i=1,2

Zh,i ⊕ Wh,γ , Mh =
⊕

i=1,2

Nh,i ⊕ Λh.

The discrete mixed model problem then becomes the following (with homogeneous
Dirichlet boundary conditions):

Find um
h ∈ Wh, p

m
h ∈ Mh such that

αξ(u
m
h ,v) − β(v, pmh ) = 0 ∀ v ∈ Wh,

β(um
h , r) = Lq(r) ∀ r ∈ Mh.

(5.2)

5.4. Link between transmission and model problems. With these spaces
and Hypothesis 1, one can simply eliminate two unknowns of the transmission prob-
lem: first, the normal component of the Darcy velocity in the fracture can be com-
puted as a function of the Darcy velocities in the neighboring subdomains from the
continuity of the fluxes across the interfaces γ1 and γ2. Second, one can eliminate the
Lagrange multipliers that enforce the continuity of the pressure on γ1 and γ2. This
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is done with the equation expressing Darcy’s law in the fracture written for a test
function normal to the fracture. This can be done in two different ways yielding two
different parameters, ξ = 1 and ξ = 2/3; see section 5.5.

After these eliminations we obtain a new system of equations, the model problem
(4.7). We illustrate this at an algebraic level in section 5.5.

5.5. The algebraic system. The discretization of the transmission problem in
a mixed weak form (5.1) yields the following symmetric system (5.3). In this section,
we do not write the right-hand side explicitly, because it is of no interest to our
purpose here.
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(5.3)

Here, Uj , j = 1, 2, f (and Pj , j = 1, 2, f), represent the velocity (respectively,
pressure) unknowns in the subdomains Ωj , j = 1, 2, f . TP1 and TP2 are the Lagrange
multipliers (trace-of-pressure unknowns) living on the interfaces γi, i = 1, 2. The first
pair of equations in (5.3) represents Darcy’s law and the conservation equation in Ω1.
The matrix E⊤

1 ensures the Dirichlet boundary condition on the interface γ1. The
second pair of equations is the same as the previous pair, but this time in Ω2. The third
pair of equations is the same in the domain Ωf , except here there are two matrices
D⊤

1 and D⊤
2 for the source term. So far, all these equations enforce continuity of the

pressure across the interfaces γ1 and γ2 through the Lagrange multipliers TP1 and
TP2. The last two equations, respectively, enforce continuity of the velocities at the
interfaces γ1 and γ2.

We decompose the velocities in the fracture Uf into a tangential component Uτ
f

and a normal component Un
f = [Un

f,1|U
n
f,2]

⊤, which is itself split into a part based on

the interface γ1 and the other on γ2. (We recall that we have assumed that there is
only one strip of cells along the fracture.)

With this notation, the third pair of equations in (5.3) becomes (5.4), where the
symmetric matrix Af is also split into tangential and normal parts,
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(5.4)

To obtain the discretization of the model problem (4.1) with ξ = 2/3, it suffices
to eliminate the following unknowns: the normal velocity in the fracture Un and the
two Lagrange multipliers TP1 and TP2.
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It is easily seen that D11 and D22 are square and invertible. In the case of RT0

spaces, these matrices are actually the identity. So, we first use the last pair of
equations in (5.3) to compute Un

f,1 and Un
f,2 as functions of U1 and U2,

Un
f,i = D−1

ii EiUi, i = 1, 2.

Plugging Un
f,i, i = 1, 2, into the last equation in (5.4), we get the conservation equation

for the model problem,

Bτ
fU

τ
f +

∑

i=1,2

Bn
f,iD

−1
ii EiUi = ∗.

Next, we eliminate TPi, i = 1, 2, from the second and third equations of (5.4) and
obtain the following:

TPi = D−⊤
ii

∑

j=1,2

An
f,ijD

−1
jj EjUj + D−⊤

ii Bn,⊤
f,i Pf , i = 1, 2.

We thus obtain the symmetric system (5.5). This system corresponds to the discrete
model problem (5.2) when the parameter ξ = 2/3,
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(5.5)

with

Ãi = Ai + E⊤
i An

f,iiD
−1
ii Ei, F̃i = Bn

f,iD
−1
ii Ei, i = 1, 2,

and

C̃ = E⊤
2 D−⊤

22 An
f,21D

−1
11 E1.

In this system (5.5), the terms Ãi and F̃⊤
i , i = 1, 2, ensure a Robin type boundary

condition on the interface γi, i = 1, 2. The unusual coupling term C̃ disappears when
using a quadrature rule that kills the extra block-diagonal terms An

f,21 = An,⊤
f,12 in An

f .
This is what happens when the parameter ξ is equal to 1, which amounts to a finite
volume modeling (see [8], for instance).

Conclusion. The two systems (5.5) and (5.3) are equivalent. The system (5.5) rep-
resents exactly the discretization of model problem (4.7) when the parameter ξ = 2/3
(or ξ = 1 with a finite volume discretization).

5.6. Error estimates. We have shown that the two algebraic systems (5.3) and
(5.5) are equivalent, under the hypothesis concerning the spaces of approximation and
the mesh. Therefore, the error estimates that hold for the transmission problem also
hold for the model problem, when the parameter ξ = 2/3.

We obtain the error estimate (5.6) below. If Th is a regular family of triangulations
of Ω respecting Hypothesis (1), there exists a constant C independent of h and d, such
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that if the mixed solution (u, p) of the original problem (2.1) is such that (u, p) ∈
(H1(Ω))n ×H1(Ω) and divu ∈ H1(Ω), and if (uh, ph) in Zh ×Nh is the solution to
the discrete problem (5.1), we have the standard error estimate

‖u − uh‖H(div,Ω) + ‖p− ph‖L2(Ω) ≤ C max{h, d}(|p|1,Ω + |u|1,Ω + |divu|1,Ω).(5.6)

We denote by (um
h , pmh ) = ((um

h,1,u
m
h,2,u

m
h,f ), (p

m
h,1, p

m
h,2, p

m
h,f )) the solution to the

discrete model problem (5.2). The solution (um
h , pmh ) that lives in Wh×Mh is extended

to a function (ũm
h , p̃mh ) that lives in Zh ×Nh. This is simply done in (5.7). We define

the constant extension from γ to Ωf : Ef : L2(γ) → L2(Ωf ), Ef (p) = p⊗ 1[−d/2,d/2],
where 1[−d/2,d/2] is the characteristic function of the segment [−d/2, d/2],

ũm
h,i = um

h,i in Ωi, i = 1, 2,

p̃mh,i = pmh,i in Ωi, i = 1, 2,

ũm
h,f =

(

[|um
h,i · ni|γ |]

x

d
+ {um

h,i · ni|γ};
1

d
Efu

m
h,f

)

in Ωf =

[

−
d

2
,
d

2

]

× γ,

p̃mh,f = Ef pmh,f in Ωf =

[

−
d

2
,
d

2

]

× γ.

(5.7)

In (5.7), the expression [|um
h,i · ni|γ |] (respectively, {um

h,i · ni|γ}) represents the
jump of the normal velocity (respectively, the mean velocity from Ω1 to Ω2) on the
interface γ = ∂Ω1∩∂Ω2. The extension of the velocity from γ to Ωf is thus composed
of a linear approximation in the normal direction (first component along the Ox axis)
and a constant extension of the tangential component. It is not difficult to see that
such an extension lives in Zh.

Finally, we have seen in section 5.5 that the algebraic solution of the discrete
model problem (5.2) and of the original discrete problem (5.1) were the same, in the
sense that (uh, ph) = (ũm

h , p̃mh ). So this yields the error estimate (5.8) for the discrete
model problem,

‖u − ũm
h ‖H(div,Ω) + ‖p− p̃mh ‖L2(Ω) ≤ C max{h, d}(|p|1,Ω + |u|1,Ω + |divu|1,Ω).(5.8)

Remark. This error estimate (5.8) has a limitation: in some cases, the solution of
a fractured problem has little regularity. In these cases, the constant in the estimate
may become very large and delay the convergence. This is probably what happens in
section 6.3, where the permeability jumps are large.

Remark. This error estimate (5.8) holds as well when the parameter ξ = 1 because
one gets the same error estimates from a finite volume discretization.

Remark. In the thin subdomain Ωf , the cells are in general very long and narrow.
This can produce large errors, but in [13] it was pointed out that the mixed finite
element method behaves well even when the cells are thus stretched. Hence the
estimates (5.6) and therefore (5.8) remain significant despite the thin subdomain Ωf .

6. Numerical results. Some numerical results are given in this section in order
to illustrate the properties of the model presented in this paper. In the first test case
(see section 6.1), we show that the model presented in this paper gives good results
under the hypotheses that were made to derive the former model (see [2]): velocity
jumps across the fracture that can occur when the tangential permeability is large
are properly modeled. In the second test case (see section 6.2), one can see that
this improved model is able to properly handle a geological barrier (with a small
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Fig. 6.1. Left: Dirichlet test case with two permeability tensors in the fracture. Right: Neumann
test case. Homogeneous Neumann boundary conditions are depicted with fat lines. The spatial
extension of the fracture is depicted with dashed lines.

normal permeability in the fracture). It is shown that this was not possible with the
former model. The third test case (see section 6.3) is more difficult: it combines the
two previous classes of problems. In the third test case, the fracture has anisotropic
permeabilities, thus creating a zone where neither the pressure nor the velocities is
continuous across the fracture. These two very stiff test cases show an influence of
the parameter ξ, and also show that the model can tackle—when the fracture width
is small enough—these types of problems quite reasonably.

The discrete relative L2 errors are computed in the following way. A direct
two-dimensional computation is performed with a mixed hybrid method on a fine
mesh Tη (η being the mesh size, sufficiently small (≤ 1/200)). This gives a “reference”
pressure P ⋆

η that we assume to be a “good” approximation to the solution. We present
this pressure, for instance, in Figure 6.2, where the grid is considerably coarsened for
picture purposes. Note that the grid is locally refined around the fracture. We call
Pm
h the solution computed with the model presented in this paper. We use a square

mesh with a mesh size h (> η) in each subdomain, and a one-dimensional mesh in
the fracture (with the same mesh size h). We call ΠηP

m
h its projection onto the fine

mesh Tη. The square of the error is then equal to

‖Pm
h − P ⋆

η ‖
2
L2

h(Ω) =

∑

Cη∈Tη
(ΠηP

m
h − P ⋆

η )2 meas(Cη)
∑

Cη∈Tη
(P ⋆

η )2 meas(Cη)
,

where Tη is the fine mesh and meas(Cη) the measure of the cell Cη.

6.1. First test case: Large permeability in the fracture and Dirichlet

boundary conditions. The test case is described in Figure 6.1 (left figure). The
lengths of the domain along the Ox and Oy axes are, respectively, Lx = 2, Ly = 1. The
permeability tensor in the fracture depends on a parameter Kf . The permeability
in the other subdomains is constant and isotropic: K = Id, where Id is the two-
dimensional identity matrix. The fracture width is denoted by d. Dirichlet conditions
hold on the fracture boundaries. Finally, in this test case, the permeability tensors in
the fracture are given by

Kf1 = Kf2 =

[

Kf 0
0 Kf

]

= KfId,

where Kf is a parameter greater than 1. This means that the fluid tends to flow
rapidly along the fracture.
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Fig. 6.2. First test case. Reference pressure (left) and Darcy velocity (right) given by a locally
refined mesh computation. Kf = 100, d = 0.01. (The grid is very coarse for picture purposes.)
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Fig. 6.3. First test case. Pressure (left) and Darcy velocity (right) given by the model. Kf =
100, d = 0.01, ξ = 2/3.

One can see a reference computation performed with a locally refined mesh in
Figure 6.2. One example of a solution given by the model is shown in Figure 6.3.

Most of the figures plotting the L2 error that follow can be interpreted in three
ways: first, for a constant mesh size h, we can see the dependence of the model
when d tends to 0 (“horizontal” curves). Second, for a constant fracture width d
(“vertically”), one can see the convergence of the discrete model solution toward
the reference solution. Third, one can see the influence of the parameter ξ. The
convergence rate was plotted for four values: ξ = 0.51, 2/3, 1, 10. In sections 6.1
and 6.2, there is little influence of the parameter ξ.

For instance, in Figure 6.4 (left figure), the L2 errors are plotted as a function of
the fracture width d, with Kf = 1/d, for different values of ξ and for different mesh
sizes. Here the curves can be interpreted in three ways: first, for a constant h we can
hardly see any convergence when d tends to 0. Actually, this is normal as the model
depends very little on d, but depends on the product Kfd that is constant in this test
case. Second, for a constant d (small enough: < 1E − 2), when h is divided by a
factor 2, the L2 error is divided by a constant factor that is close to 2. The discrete
model solution converges as O(max{h, d}) toward the reference solution: this confirms
the previously stated error estimate. The parameter ξ ≤ 1 has little influence on the
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Fig. 6.4. First test case. Discrete relative L2 error variation as a function of the fracture
width d for different values of ξ. ξ = 0.51 in solid line, ξ = 2/3 in dashed line, ξ = 1 in dotted
line, and ξ = 10 in dash-dotted line. The five sets of curves show the dependency over the mesh
size. From the upper curves to the lower ones: h = 1/10, h = 1/20, h = 1/40, h = 1/80, and
h = 1/160. Left: The fracture permeability varies as 1/d. The permeability increases as the fracture
width decreases: Kf × d = 1. Right: The fracture permeability is constant: Kf = 100.

solution given by the model in this case. Still, one should not take ξ greater than 1
as in general it degrades the solution.

The behavior of the solution when the fracture width varies for a fixed fracture
permeability is shown in Figure 6.4 (right figure). The L2 error picture shows again
a convergence in O(max{h, d}).

6.2. Second test case: Small permeability in the fracture and Neumann

boundary conditions. The test case is described in Figure 6.1 (right figure). The
permeability outside the fracture is again equal to the identity: K = Id. There
is a low permeability fracture in the middle of the domain. Homogeneous Neumann
conditions are imposed at the upper and lower parts of the fracture. The permeability
tensor in the fracture is given by

Kf1 =

[

1 0
0 1

]

and Kf2 =

[

Kf 0
0 Kf

]

,

where Kf is a parameter smaller than 1. Obviously, the fluid tends to avoid the
fracture that represents a geological barrier.

As a reference, one can see the result of a computation performed with a mesh
that is refined around the fracture in Figure 6.5. One example of a solution given
by the model is shown in Figure 6.7. For comparison, a result given by the previous
model (with a pressure assumed to be continuous across the fracture (see [2]) is shown
in Figure 6.6. The result given by the previous model is not satisfactory.

The behavior of the solution when the fracture width and the permeability vary
in the same manner is shown in Figure 6.8 (left figure). There is little dependence
of Kf/d (which is constant in the model). The behavior of the solution when the
fracture width varies for a fixed fracture permeability is shown in Figure 6.8 (right
figure).
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Fig. 6.5. Second test case. Reference pressure (left) and Darcy velocity (right) given by a
locally refined mesh computation. Kf = 2e− 3, d = 0.01.
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Fig. 6.6. Second test case. Pressure (left) and Darcy velocity (right) given by the OLD model.
Kf = 2e− 3, d = 0.01. This result is obviously not satisfactory.
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Fig. 6.7. Second test case. Pressure (left) and Darcy velocity (right) given by the model.
Kf = 2e− 3, d = 0.01, ξ = 2/3.
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Fig. 6.8. Second test case. Discrete relative L2 error variation as a function of the fracture
width d for different values of ξ. ξ = 0.51 in solid line, ξ = 2/3 in dashed line, ξ = 1 in dotted line,
and ξ = 10 in dash-dotted line. The five sets of curves show the dependence on the mesh size. From
the upper curves to the lower ones: h = 1/10, h = 1/20, h = 1/40, h = 1/80, and h = 1/160. Left:
The fracture permeability varies as d. The permeability decreases like the fracture width: Kf/d = 1.
Right: The fracture permeability is constant: Kf = 0.01.

6.3. Third test case: Two anisotropic permeabilities in the fracture

and Dirichlet boundary conditions. This is the same test case as in section 6.1
(see Figure 6.1 (left figure)), with a modification in the permeability tensor in the
fracture. Dirichlet conditions hold on the fracture boundaries and there are two
different anisotropic permeability tensors,

Kf1 =

[

1/Kf 0
0 Kf

]

and Kf2 =

[

Kf 0
0 1/Kf

]

,

where Kf is a parameter greater than 1. This means that in the middle part of
the fracture where the permeability is equal to Kf2, the fluid cannot flow along the
fracture but can easily cross it. It is the opposite in the upper and lower parts of the
fracture.

Some reference results can be seen in Figure 6.9. Some examples of solutions given
by the model for different parameters ξ are shown in Figures 6.10 and 6.11. One can
notice that, in this test case, the model does not correctly approach the reference
solution everywhere. This is especially true in the regions close to the fracture, where
the permeability tensor is Kf1 (extremities of the fracture). It might be due to the high
singularities at the exits of the fractures. All the results given by the model strongly
depend on the parameter ξ, and none of them are completely satisfactory. The lowest
errors are generally provided for ξ = 0.51, but the model with this parameter does
not respect the maximum principle: pressures greater than 1 are computed. And for
ξ greater than 1, the L2 errors are very large. The best compromise seems to be
ξ = 2/3 in this example: the maximum principle is respected and the error remains
reasonable.

The behavior of the solution is shown in Figure 6.12, when d tends to 0 with a
constant product Kfd. The solution given by the model is almost independent of Kfd.
In Figure 6.13, the error is plotted as a function of d for two constant values of Kf .
In all these curves, one must note that the error is relatively large in comparison to
the previous test cases.
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Fig. 6.9. Third test case. Reference pressure (left) and Darcy velocity (right) given by a locally
refined mesh computation. Kf = 200, d = 0.01.
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Fig. 6.10. Third test case. Pressure (left) and Darcy velocity (right) given by the model.
Kf = 200, d = 0.01, ξ = 2/3.
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Fig. 6.11. Third test case. Pressure given by the model. Left: ξ = 0.49; the parameter ξ is
smaller than the stability limit; the model is not stable when ξ < 1/2; scales for the pressure are
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Fig. 6.12. Third test case. Discrete relative L2 error variation as a function of the fracture
width, the fracture permeability parameter varying as 1/d, for different values of ξ. ξ = 0.51 in
solid line, ξ = 2/3 in dashed line, ξ = 1 in dotted line, and ξ = 10 in dash-dotted line. The fracture
permeability varies as 1/d; the permeability parameter increases as the fracture width decreases:
Kf × d = 1. nx = 160, h = 6.25E− 3. Mind the error scales: From 0.1% up to 20%, errors remain
at a quite high level.
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Fig. 6.13. Third test case. Discrete relative L2 error variation as a function of the fracture
width, for different values of ξ. ξ = 0.51 in solid line, ξ = 2/3 in dashed line, ξ = 1 in dotted line,
and ξ = 10 in dash-dotted line. The fracture permeability parameter is constant. Left: Kf = 200.
Right: Kf = 20. For both figures, nx = 160, h = 6.25E − 3. Mind the error scales: From 0.1% up
to 20%, errors remain at a quite high level.

7. Domain decomposition. In this section we present a way of efficiently solv-
ing the problem arising from the model (4.1).

7.1. Domain decomposition formulation. The direct mixed discretization
of problem (4.1) given in (5.2) yields the algebraic system (5.5). As this system (5.5)
is not positive definite and is very large, it is expensive to solve. The goal then is to
eliminate some of the unknowns to obtain a problem easier to solve.

When the parameter ξ = 1, the model problem reduces to the nonlocal nonstan-
dard positive definite interface problem (7.6). For other values of the parameter ξ, it
is not yet clear what to do (see (7.3)).

Throughout this section, for simplicity, we will assume that homogeneous Dirich-
let boundary conditions are imposed on ∂Ω. We introduce the discrete Dirichlet to
Neumann operators S1 and S2 in (7.1) for the subdomains Ω1 and Ω2 (analogous to
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the discrete Steklov–Poincaré operator, except here they include the source term),

Si : Λh ×Nh,i → Λh, i = 1, 2,

Si(λi, qi) = −ui · ni,
(7.1)

so that

divui = qi in Ωi,

ui = −Ki∇ pi in Ωi,

pi = 0 on Γi,

pi = λi on γ.

(7.2)

In terms of these operators, the problem to be solved, (4.1), becomes

S1(λ1, q1) + S2(λ2, q2) − divτ (Kf,τ d ∇τpf ) = qf ,

ξ S1(λ1, q1) + αf λ1 − (1 − ξ)S2(λ2, q2) − αf pf = 0,

−(1 − ξ)S1(λ1, q1) + ξ S2(λ2, q2) + αf λ2 − αf pf = 0,

(7.3)

and it is not obvious how to solve this problem.
If ξ = 1, we can express separately λ1 and λ2 as functions of pf . In this case,

we replace the Dirichlet to Neumann operators by the discrete Robin to Neumann
operators Si defined by (7.4),

Si : Λh ×Nh,i → Λh, i = 1, 2,

Si(λi, qi) = −ui · ni,
(7.4)

so that

divui = qi in Ωi,

ui = −Ki∇ pi in Ωi,

pi = 0 on Γi,

−ui · ni + αf pi = αfλi on γ.

(7.5)

Then with ξ = 1, problem (4.1) becomes the simpler interface problem (7.6) that
depends on one scalar unknown, pf , that lives on the interface:

S1(pf , q1) + S2(pf , q2) − divτ (Kf,τ d ∇τpf ) = qf .(7.6)

We recall here that the fracture data are present in two different ways in (7.6).
First, the product Kf,τ d plays the role of a mean permeability for the Darcy law
equation along the fracture. Also, the operators Si, i = 1, 2, are Robin to Neumann
operators with a specific Robin coefficient that depends on the quotient Kf,n/d.

7.2. Weak formulation. It is well known that the Dirichlet to Neumann opera-
tors Si(·, 0), i = 1, 2, defined in (7.1), are symmetric positive semidefinite (see [9], [5]).
We show that this property also holds for the operators defined in (7.4).

Lemma 7.1. If the Robin coefficient is positive (αf > 0), the discrete Robin to
Neumann operators Si(·, 0) are symmetric positive semidefinite on Λh for i = 1, 2.

Proof. Define the bilinear operators

si : Λh × Λh → Λh, i = 1, 2,

si(λ, µ) = 〈Si(λ, 0), µ〉 = (µ,uh,i(λ) · ni)γ , i = 1, 2,
(7.7)
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with uh,i(λ) the solution of (7.8) in Ωi, i = 1, 2.
Given λ in Λh, seek uh,i(λ) ∈ Zh,i and ph,i ∈ Nh,i, such that for v ∈ Zh,i and

r ∈ Nh,i,

(K−1
i uh,i(λ), v)Ωi

= (div v, ph,i)Ωi
−

(

v · ni, λ +
1

αf
uh,i(λ) · ni

)

γ

,

(div uh,i(λ), r)Ωi
= 0.

(7.8)

Take v = uh,i(µ) in (7.8) to see that the operators si can be expressed as

si(λ, µ) =
(

K−1
i uh,i(λ), uh,i(µ)

)

Ωi
+

(

1

α
1/2
f

uh,i(λ) · ni,
1

α
1/2
f

uh,i(µ) · ni

)

γ

.(7.9)

It is now easy to see that the operators si, i = 1, 2, are symmetric and positive
semidefinite.

7.3. Solving the system efficiently. In the case ξ = 1, a good way to solve the
model problem (4.1) is to solve iteratively the linear interface equation (7.6). To do
so, a good idea would be to take a standard finite volume discretization of the Laplace
operator (−divτ (Kf,τ d ∇τ ·)) that yields a symmetric positive semidefinite operator.
One has to invert the operator S1(·, 0)+S2(·, 0)−divτ (Kf,τ d ∇τ ·), which is symmetric
positive semidefinite as a sum of such operators (actually it is positive definite because
of the Dirichlet boundary conditions). Thus a simple conjugate gradient method can
be applied.

Preliminary numerical results using this iterative method are promising but could
probably be improved by an appropriate preconditioner.

8. Conclusion. The models presented in this paper allow the treatment at the
same time in the same model of the case in which there is a small permeability in
the fracture, involving a pressure discontinuity, and the case in which there is a large
permeability in the fracture, involving a velocity discontinuity. In each case, the
models agree with the asymptotic analysis given by Hung and Sánchez-Palencia [11]
and Sánchez-Palencia [17]. They also make it possible to treat high anisotropies
in the fractures (see section 6.3), though the numerical results are not completely
satisfactory and further studies would probably be useful to understand clearly where
the solution lives (as neither the scalar unknown nor its normal derivative is continuous
at the interface).

Some further work is under way to test a more realistic three-dimensional problem
involving two or three intersecting fractures. These tests should also involve the
transport equations. Also, a preconditioner for the iterative method described in
section 7 will be studied and tested.
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minces de conductivité élevée, J. Math. Anal. Appl., 47 (1974), pp. 284–309.
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