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Abstract

Fractures in a porous medium are considered individually and are supposed to be a
porous medium of higher permeability than in the surrounding rock. Since their thickness
is supposed to be small with respect to the dimension of the domain of calculation they
are modelled as interfaces. We formulate the flow and the transport in the medium,
taking into account interaction between the fracture and the surrounding rock. We proved
existence and uniqueness of the flow problem and give numerical experiments illustrating
the model. The case of intersecting fractures is also considered.

1 Introduction

We are concerned with flow and transport in a fractured porous medium at a scale where the
fractures can be modelled individually. The fractures themselves are porous media with large
permeability in comparison with that in the surrounding rock. For a general description of
fracture modeling we refer to [1] and for examples of numerical experiments with fractures
see for instance [5, 6, 8]. Contrarily to many studies in which the contrast in permeabilities
is of such an order that the flow outside of the fracture is neglected, the purpose of this work
is to consider the case where the exchange between the fractures and the surrounding rock is
significant. Then it is necessary to take into account this interaction because it has a profound
effect on the flow and the transport of a solute.

The main idea for this work is to treat fractures as interfaces. Then it will not be necessary
to use mesh refinements around the fractures, which is an important drawback of most models.
Treating fractures as interfaces leads to nonoverlapping domain decomposition methods, using
the natural domain decomposition suggested by the fracture network.

This paper is organized as follows. In Section 2, we present the model, and in Section 3,
we show that the corresponding problem has a unique solution. In Section 4, we reduce
the approximate problem to a problem with unknowns on the interface. Numerical results
are given in Section 5 for the simple case of a domain divided into two subdomains by one
fracture. In Section 6 we extend the formulation to the case of intersecting fractures and in
Section 7 to that of a solute transport.
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2 The flow model

Let Ω, be a domain in R
n, n = 2 or 3, with boundary Γ, divided into two subdomains

Ωi, i = 1, 2 by a fracture γ as in Figure 1. γ is a surface of dimension n − 1. We denote by
Γi = ∂Ω ∩ ∂Ωi the part of the boundary of the subdomains which cöıncides with that of the
whole domain. Also ni denotes the unit outside normal to Γi, n that to γ pointing toward
Ω2, and nγ that to ∂γ.

The domain Ω represents a porous medium. The fracture itself is supposed to be a porous
medium with high permeability Kγ compared to that in the subdomains Ki. Its thickness d

is supposed to be small with respect to the size of the domain Ω, so it is represented actually
by an interface of dimension R

n−1.

���

���
� �

�

� �

�
� �� �

Figure 1: The domain Ω with the fracture γ as an interface

In the subdomains Ωi as well as in the fracture γ the flow is assumed to be incompressible
and to satisfy Darcy’s law. We denote by pi,ui, pγ ,uγ the pressures and the Darcy velocities
in the subdomains and in the fracture. Then the flow can be modelled by the following system
of equations, in the subdomains,

divi ui = qi on Ωi,

ui = −Ki∇ pi on Ωi,

pi = pdi on Γi,

pi = pγ on γ, i = 1, 2,

(1)

and in the fracture
divγ uγ = qγ + (u1 · n− u2 · n) on γ,

uγ = −dKγ∇γ pγ on γ,

pγ = pdγ on ∂γ,

(2)

where the divergence and gradient operator along the fracture are defined as

divγv = divv −∇(v · n) · n and ∇γr = ∇r −∇r · n.

The first equations (1),(2) represent volume conservation in the subdomains and in the frac-
ture (volume conservation is equivalent to mass conservation since we assumed the incom-
pressibility of the flow). qi, i = 1, 2 and qγ are given source terms in the subdomains and in
the fracture. One should notice that in the first equation (2) an extra source term u1 ·n−u2 ·n
appears in the righthand side. This source term represents the contribution of the subdomain
flows to the fracture flow.
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The second equations (1),(2) are Darcy’s laws for the subdomains and the fracture. Note
that uγ gives the flow rate through the cross section of the fracture, which is the reason for
the presence of the width d of the fracture in the righthand side of the second equation (2).

The third equations are Dirichlet boundary conditions on ∂Ω and on ∂γ. Of course we
could also replace the Dirichlet conditions by Neumann conditions (given flow rate through
the boundary) on part of these boundaries.

Finally the fourth equation (1) represents continuity of the pressure across the fracture
γ. This continuity condition is physically valid when the permeability in the fracture is much
larger than that in the subdomains.

3 Existence and uniqueness of a solution

To obtain a weak formulation of equations (1),(2), we introduce the Hilbert spaces

W = {u = (u1,u2,uγ) ∈ L2(Ω1)
n × L2(Ω2)

n × L2(γ)n−1 :
div ui ∈ L2(Ωi), i = 1, 2, divγ uγ − (u1 · n− u2 · n) ∈ L2(γ)}

M = {p = (p1, p2, pγ) ∈ L2(Ω1)× L2(Ω2)× L2(γ)},

and their norms

‖u‖2
W

=
2
∑

i=1

(

‖ui‖
2
0,Ωi

+ ‖div ui‖
2
0,Ωi

)

+ ‖uγ‖
2
0,γ + ‖divγuγ − (u1 · n− u2 · n)‖2

0,γ

‖p‖2
M =

2
∑

i=1

‖pi‖
2
0,Ωi

+ ‖pγ‖
2
0,γ .

We also need the bilinear forms

α : W×W → R and β : W×M → R

defined by

α(u,v) =

2
∑

i=1

∫

Ωi

K−1
i ui · vi +

∫

γ

(dKγ)−1
uγ · vγ

β(u, r) =
2
∑

i=1

∫

Ωi

div ui ri +

∫

γ

(divγuγ − (u1 · n− u2 · n)) rγ

and the linear form L : M → R

L(r) =

2
∑

i=1

∫

Ωi

qi ri +

∫

γ

qγ rγ .

Assuming that the Dirichlet data are null, pdi = pdγ = 0, i = 1, 2, the mixed formulation
of equations (1),(2)) is

Find u ∈ W, p ∈ M such that
α(u,v) − β(v, p) = 0 ∀v ∈ W

β(u, r) = L(r) ∀r ∈ M.

(3)
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Theorem 1 Assume that 0 < Kmin ≤ Ki,Kγ ≤ Kmax. Then problem (3) has a unique
solution.

Proof: Let us introduce the subspace W̃ = {v ∈ W : β(v, r) = 0 ∀r ∈ M}. To show
existence and uniqueness of the solution of (3), it is sufficient to show that α is W̃-elliptic
and that β satisfies the inf-sup condition (see [7, 2]), that is there exist constants Cα and Cβ

such that

inf
v∈W̃

α(v,v)

‖v‖2
W

≥ Cα, inf
r∈M

sup
v∈W

β(v, r)

‖r‖M ‖v‖W
≥ Cβ.

To check that α is W̃-elliptic, we notice that ‖u‖2
W =

2
∑

i=1

‖ui‖
2
0,Ωi

+ ‖uγ‖
2
0,γ for u ∈ W̃,

so

α(u,u) =
2
∑

i=1

∫

Ωi

K−1
i ui · ui +

∫

γ

(dK−1
γ )uγ · uγ

≥ K−1
max

(

2
∑

i=1

‖ui‖
2
0,Ωi

+ ‖uγ‖
2
0,γ

)

= K−1
max‖u‖

2
W .

To see that β satisfies the inf-sup condition, given r ∈ M , using the adjoint equation we
construct a v ∈ W such that β(v, r) = ‖r‖2

M and ‖v‖W ≤ C‖r‖M , where C is the constant
of elliptic regularity for the adjoint problem.

For r = (r1, r2, rγ) ∈ M , let (ϕ1, ϕ2, ϕγ) ∈ H2(Ω1)×H2(Ω2)×H2(γ) be the solution of

−4ϕ = r̃ on Ω
ϕ = 0 on Γ,

where r̃ ∈ L2(Ω) is given by r̃|Ωi
= ri and

−4γϕγ = rγ on γ

ϕγ = 0 on ∂γ.

Pose vi = −∇ϕ|Ωi
, i = 1, 2, and vγ = −∇γ ϕγ and note that divvi = ri ∈ L2(Ωi), i =

1, 2, divγ vγ = rγ ∈ L2(γ) and v1 · n− v2 · n = 0. Thus v = (v1,v2,vγ) ∈ W and it is easy
to check that v has the desired properties.

4 Formulation of the interface problem

In this section we formulate our problem as an interface problem where the unknowns are de-
fined on the interface between subdomains. Such a formulation is useful for defining a domain
decomposition method with nonoverlapping subdomains. Our formulation is an extension to
the case with fractures of the formulation given in [4] for a standard elliptic equation. To
approximate the problem we too use mixed finite element methods [7, 2].

Introduce a quasi regular triangulation Th (of triangles and/or rectangles) of Ω compatible
with the decomposition of Ω into the subdomains Ωi, i = 1, 2. Note that in this case a
triangulation is induced on the interface γ. We let Mh = Mh,1×Mh,2×Mh,γ and Wh = Wh,1×
Wh,2 ×Wh,γ be finite dimensional subspaces of L2(Ω1)× L2(Ω2)× L2(γ) and H(div; Ω1)×
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H(div; Ω2) × H(divγ ; γ) respectively, such that the pair (Mh,i, Wh,i) is a Raviart-Thomas
space of order k for Ωi, i = 1, 2, subordinate to the triangulation Th,i determined by Th,
and the pair (Mh,γ , Wh,γ) is a Raviart-Thomas space of order k for γ associated with the
triangulation Th,γ on γ induced by Th. Denote by TMh,i and TMh,γ the subspaces of traces
of functions of Mh,i and Mh,γ where the boundary data pdi and pdγ lie.

Introduce the bilinear forms

αi(u,v) =

∫

Ωi

Ki
−1

u · v, u,v ∈ Wh,i,

βi(v, r) =

∫

Ωi

divv r, v ∈ Wh,i, r ∈ Mh,i,

Lγi(r,v) =

∫

γ

r v · n, r ∈ Mh,γ , v ∈ Wh,i i = 1, 2,

αγ(u,v) =

∫

γ

(dKγ)−1
u · v, u,v ∈ Wh,γ ,

βγ(v, r) =

∫

γ

divγv r, v ∈ Wh,γ , r ∈ Mh,γ .

For qi ∈ Mh,i, pdi ∈ TMh,i, qγ ∈ Mh,γ , pdγ ∈ TMh,γ , we define the linear forms

Lσi(qi; r) =

∫

Ωi

qi r, r ∈ Mh,i,

LΓi(pdi;v) =

∫

Γi

pdi v · ni, v ∈ Wh,i,

Lσγ(qγ ; r) =

∫

γ

qγ r, r ∈ Mh,γ ,

L∂γ(pdγ ;v) =

∫

∂γ

pdγv · nγ , v ∈ Wh,γ .

Then we may write the approximate weak formulation of equations (1),(2):

ui ∈ Wh,i, pi ∈ Mh,i, uγ ∈ Wh,γ , pγ ∈ Mh,γ,

αi(ui,v)− βi(v, pi) = (−1)iLγi(pγ ;v) + LΓi(pdi, v) ∀v ∈ Wh,i,

βi(ui, r) = Lσi(qi; r) ∀r ∈ Mh,i,

αγ(uγ ,v) − βγ(v, pγ) = L∂γ(pdγ ;v) ∀v ∈ Wh,γ ,

βγ(uγ , r) = Lσγ(qγ ; r) +
Lγ1(r,u1)− Lγ2(r,u2) ∀r ∈ Mh,γ .

(4)

Following [4, 3] we split ui, pi,uγ , pγ into two parts

ui = u
0
i + u

1
i , pi = p0

i + p1
i , uγ = u

0
γ + u

1
γ , pγ = p0

γ + p1
γ

so equations (4) can be rewritten as

u
0
i ∈ Wh,i, p0

i ∈ Mh,i, u
0
γ ∈ Wh,γ , p0

γ ∈ Mh,γ ,

αi(u
0
i ,v)− βi(v, p0

i ) = (−1)iLγi(p
0
γ ;v) ∀v ∈ Wh,i,

βi(u
0
i , r) = 0 ∀r ∈ Mh,i,

αγ(u0
γ ,v)− βγ(v, p0

γ) = 0 ∀v ∈ Wh,γ ,

βγ(u0
γ , r) = Lγ1(r,u

0
1)− Lγ2(r,u

0
2) +

Lγ1(r,u
1
1)− Lγ2(r,u

1
2) ∀r ∈ Mh,γ .

(5)
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u
1
i ∈ Wh,i, p1

i ∈ Mh,i,

αi(u
1
i ,v)− βi(v, p1

i ) = (−1)iLγi(p
1
γ ,v) + LΓi(pdi;v) ∀v ∈ Wh,i,

βi(u
1
i , r) = Lσi(qi; r) ∀r ∈ Mh,i,

(6)

u
1
γ ∈ Wh,γ , p1

γ ∈ Mh,γ ,

αγ(u1
γ ,v) − βγ(v, p1

γ) = L∂γ(pdγ ;v) ∀v ∈ Wh,γ ,

βγ(u1
γ , r) = Lσγ(qγ ; r) ∀r ∈ Mh,γ .

(7)

We remark that equations (6),(7) can be solved separately in the subdomains and in the
fracture, starting with that in the fracture (7), and that these equations can be solved prior
to equations (5) where u

1
i , p

1
i , u

1
γ , p1

γ can then be considered as data calculated beforehand. .
We denote by (u0

i (sγ), p0
i (sγ), (u0

γ(sγ), p0
γ(sγ)) the solution of (5) for a given p0

γ = sγ in
the righthand side of the first equation, and we define, for i = 1, 2, the following bilinear form
on Mh,γ :

Ai(sγ , rγ) = αi(u
0
i (sγ),u0

i (rγ)), sγ , rγ ∈ Mh,γ .

Using the symmetry of the forms αi, the first two equations (5), and the decomposition
of ui into u

0
i and u

1
i we have,

2
∑

i=1

Ai(p
0
γ , rγ) =

2
∑

i=1

αi(u
0
i (rγ),u0

i (p
0
γ))

=

2
∑

i=1

(−1)i Lγi(rγ ,u0
i (p

0
γ))

=
2
∑

i=1

(−1)i Lγi(rγ ,ui(p
0
γ)) −

2
∑

i=1

(−1)i Lγi(rγ ,u1
i ).

From the last two equations (5) we obtain

2
∑

i=1

(−1)i Lγi(rγ ,ui(p
0
γ)) = −βγ(u0

γ(p0
γ), rγ)

= − δγ(p0
γ , rγ),

where the bilinear form δγ(., .) is defined as

δγ(sγ , rγ) =< BγA−1
γ BT

γ sγ , rγ >, sγ , rγ ∈ Mh,γ

with Aγ and Bγ being the linear mappings respectively associated to the bilinear forms αγ(., .)
and βγ(., .).

Combining the last two equations we obtain our interface problem:

p0
γ ∈ Mh,γ
2
∑

i=1

Ai(p
0
γ , rγ) + δγ(p0

γ , rγ) =

2
∑

i=1

(−1)i+1Lγi(rγ ,u1
i ) ∀rγ ∈ Mh,γ .

(8)

The lefthand side of the above equation determines a symmetric, positive definite form on
Mh,γ . Thus there exists a unique solution p0

γ ∈ Mh,γ to which we need to add p1
γ given by

equations (7). We remark that in the absense of a fracture, i.e. when the flux is continuous
across the interface γ, u1 · n = u2 · n, the second term in the righthand side of (8) vanishes
(p1

γ is of course in this case equal to 0) and we obtain the standard interface problem given
in [4, 3] for the case of two subdomains.
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5 First numerical results

To illustrate the model we consider an ideal dimensionless problem. The domain is an hor-
izontal rectangular slice of porous medium, of dimensions 2 × 1, with a given pressure on
the left and right boundaries and no flow conditions on the top and bottom boundaries. In
the domain the permeability is equal to one. The domain is divided into two equally large
sub-domains by a linear fracture parallel to the x2 axis. The permeability in the fracture ×
the width of the fracture is equal to 2. For example the fracture could be of width 0.1 and
could have a permeability equal to 20. Flow in the fracture is driven by a pressure drop of 10
between the two extremities of the fracture for the first example and a pressure drop of 5 for
the second example.

Two cases are considered. A symmetric case where pressures on the left and on the
right boundaries of the domain are equal. So the flow is driven only by the fracture and is
symmetric. In the other case there is a pressure drop from the right boundary to the left
boundary. Then the flow is a combination of the flow in the fracture and that going from left
to right in the rest of the porous medium.

Numerical results are shown on figure 2. Arrows represent the flow field with length
proportional to the magnitude of the velocity. The gray scale represents also the magnitude
of the velocity with the lightest color corresponding to the largest velocity. We see that
there is actual flow interaction between the fracture and the rest of the porous medium. In
particular one can observe that some fluid is coming out of the fracture and then is coming
back into it. In the nonsymmetric case we notice also that even though most of the flow is
attracted into the fracture, there is still some flow on the left part of the domain pointing
toward the left.

Figure 2: Calculated Darcy’s velocity for a symmetric and a nonsymmetric flow pattern

6 Intersecting fractures

We know extend the previous formulation to the case of intersecting fractures as in Figure
3. We denote by γij the fracture separating the subdomains Ωi and Ωj, and by xijk the
intersection of the fractures γij, γjkand γik.
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Figure 3: Intersecting fractures

Equations in the subdomains and in the fractures are as in equations (1),(2). However we
need to add extra equations on σijk, one is conservation of mass, the other being continuity
of the pressure:

uγij + uγjk + uγik = 0, pγij = pγjk = pγik.

These equations are reasonable physically, continuity of pressure being justified when the
permeabilities in the fractures are higher than in the subdomains.

We present two academic numerical examples demonstrating flow interaction between
the subdomains and the intersecting fractures. A rectangular domain is divided into four
subdomains by four fractures intersecting at the center of the rectangle. The domain has the
same size as in Section 5 and its boundary supports the same boundary conditions: north
and south boundaries are closed, except for the vertical fracture for which a pressure drop of
1 is imposed from the bottom end to the top end. In the subdomains Ki = 1, i = 1, . . . , 4
while in the fractures dKγ = 2. Results are shown in Figure 4. The left picture corresponds
to the case where a pressure drop of 1 is imposed from left to right, while the right picture
corresponds to the case where a pressure drop of 10 is imposed from left to right. Notice that
in this case, due to this higher pressure drop, the direction of the flow in the lower vertical
fracture is opposite to that corresponding to a lower pressure drop.

Figure 4: Calculated Darcy’s velocity for intersecting fractures

7 The transport model

We now consider a solute which is transported by diffusion and by a flow calculated as in the
previous section. We denote by ci,ϕi, cγ ,ϕγ the concentrations and the transport velocities of
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the solute in the subdomains and in the fracture. Then the solute transport can be modelled
by the following set of equations, in the subdomains,

φi
∂ci

∂t
+ divϕi = qc,i on Ωi,

ϕi = −Di∇ ci + ui ci on Ωi,

ci = cdi on Γi,

ci = cγ on γ,

ci(x, 0) = c0i on Ωi, i = 1, 2,

(9)

and in the fracture

φγ
∂cγ

∂t
+ divγ ϕγ = qcγ + (ϕ1 · n−ϕ2 · n) on γ,

ϕγ = −dDγ∇γ cγ + uγ cγ on γ,

cγ = cdγ on ∂γ,

cγ(x, 0) = c0γ on γ,

(10)

The first equations (9),(10) represent volume conservation in the subdomains and in the
fracture. qci, i = 1, 2 and qcγ are given source terms in the subdomains and in the fracture,
and φi, i = 1, 2, φγ the porosity in the subdomains and in the fracture. In the righthand side
of the first equation (10) the extra source term ϕ1 · n−ϕ2 · n represents the contribution of
the subdomain to the solute transport in the fracture.

The second equations (9),(10) say that the solute is transported by diffusion and convec-
tion. Di, i = 1, 2, Dγ are diffusion coefficients in the subdomains and in the fracture and the
Darcy velocities ui, i = 1, 2,uγ are solution of equations (1),(2).

The third equations (9),(10) are Dirichlet boundary conditions on ∂Ω and on ∂γ, and
the fifth equation (9) and the fourth equation (10) are initial conditions with cdi, c0i, i =
1, 2, cdγ , c0γ being given concentrations. Finally the fourth equation (9) represents continuity
of the concentration across the fracture γ.

We illustrate this model by a calculation for a situation represented in Figure 5. A

Fracture Domain of
calculation

Contaminants

Rock with
low permeability

Aquifer

Figure 5: A contaminant storage crossed by a fracture

contaminant repository, located in a rock with low permeability, is leaking. The repository is
crossed by a fracture and transported mostly upward. The rock is covered by an aquifer and
the contaminant is assumed to be moved away instantly at the top boundary of the domain of
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calculation so the boundary condition there is a vanishing concentration. The actual physical
parameters are given in table 1. The diffusion coefficient is of the form

D = dmI + αLPL(u) + αT (I − PL)(u),

where dm is the molecular diffusion and αL, αT are the longitudinal and transversal coeffi-
cients, I being the identity matrix in R

n, and PL(u) being the projection onto the direction
of the velocity u.

Parameters Subdomains Fracture

Hydraulic conductivity (man−1) 3.15 10−8 10−7

Transversal dispersion (m) 1 -

Longitudinal dispersion (m) 0.1 10

Molecular diffusion (m2 an−1) 10−5 3.15 10−4

Porosity 0.05 0.1

Subdomains dimensions (m) 10 × 10 -

Fracture width (m) - 1

Table 1: Physical parameters for experience shown in Fig. 5

Boundary conditions are as follows. For velocity we assume that there is no horizontal
flow on the lateral sides of the domain while a presure drop constant in time is given between
the top and bottom boundaries. At the top the pressure is constant in space while at the
bottom it is increasing slightly from the fracture toward the lateral sides. For concentration,
it is given, constant, at the top and bottom boundaries, vanishing at the top. On the lateral
sides we assume that there is no exchange with the outside.

The calculated velocity is shown in Figure 6 and the calculated concentration at different
times is shown in Figure 7. In Figure 6 the grey shades represent pressure values while in
Figure 7 they represent concentration values.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

Figure 6: Calculated Darcy velocity

The contaminant are quickly transported upward by the fracture, but there is also a slow
spreading in the subdomains due to subdomain-fracture interaction. Remember also that the
concentration is always vanishing at the top because of the presence of the aquifer.
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Figure 7: Calculated concentration in the subdomains and in the fracture
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8 Conclusion

A model for flow interaction between a fracture and the rest of the porous medium has been
presented. In this model the fracture is an interface dividing the domain of calculation into
subdomains. Existence and uniqueness of the solution has been shown and the model has
been reformulated as an interface problem. Extensions to the case of intersecting fractures
and to solute transport have been presented. Simple numerical experiments illustrated actual
flow and transport interactions between the fracture and the rest of the porous medium.
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