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Abstract. In this article, we construct new higher order finite element spaces for the approx-
imation of the two-dimensional (2D) wave equation. These elements lead to explicit methods after
time discretization through the use of appropriate quadrature formulas which permit mass lump-
ing. These formulas are constructed explicitly. Error estimates are provided for the corresponding
semidiscrete problem. Finally, higher order finite difference time discretizations are proposed and
various numerical results are shown.
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1. Introduction. Solving the wave equation in the time domain by numerical
methods is a delicate but fundamental problem for modeling numerous physical phe-
nomena such as acoustic, elastic, or electromagnetic waves. For such phenomena,
the wave equation serves as a model problem. The numerical approximation of this
equation is essential, in particular, for two cases for which analytical methods do not
apply:

• heterogeneous media,
• domains of arbitrary shape.

Finite difference methods (FDMs) [1], [7] are obviously less well adapted to handling
domains of complicated shape than are finite element methods (FEMs), even in ho-
mogeneous media. On the other hand, the use of FEMs presents a major drawback,
the presence of a mass matrix which must be inverted at each time step, and it is
absolutely fundamental for the efficiency of the method to overcome this problem.
For low order Lagrange elements, namely, P1 elements, a solution is given by the
so-called mass lumping procedure (see [6], [23]) which is closely related to the use
of quadrature rules for the numerical evaluation of integrals over a triangle in two
dimensions or a tetrahedron in three dimensions. The solution is much less obvious
in the case of higher order finite elements. Yet, it is now a commonly admitted fact
that, to obtain a good approximation to the solution of a realistic problem, higher
order elements are necessary (see, for instance, [1], [7], [8], [9]). The question posed is
thus: how can mass lumping be carried out for higher order elements? This question
has already been addressed in [21], [22], [9], [10], [11], and [33] for the case of Qk
elements, i.e., elements constructed on quadrilateral meshes in two dimensions. It is
shown that for k ≥ 3, one must modify the usual locations of the degrees of free-
dom in the elements (here we are referring to Lagrange-type finite elements), since
they must coincide with the Gauss–Lobatto quadrature points in order to lump the
mass matrix. This approach corresponds, in fact, to spectral finite elements which
are generally constructed for quadrilateral meshes; cf. [24], [31]. The purpose of this
article is to construct a class of H1-conforming P2 and P3 triangular finite elements
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for which mass lumping can be carried out and which will have the third or fourth
order accuracy of Q2 or Q3 quadrilateral finite elements [6]. How to extend this pro-
cedure to triangular meshes is, however, not evident: one must find a quadrature rule
equivalent to that of Gauss–Lobatto. Such a formula cannot be obtained by a simple
tensor product using the one-dimensional (1D) formula, as in the case of quadrilat-
erals. Moreover, as we shall see later, the quadrature rules that one would normally
apply to triangles [23] result in some negative (for P3) or zero (for P2) weights which
then lead to unstable schemes.

To overcome this difficulty, we construct finite element spaces, P̃k, k = 2, 3, and
propose new quadrature rules with positive weights, thereby ensuring the stability of
the resulting schemes. In the case k = 2, we have since learned, these finite elements
are a scalar version of finite elements that have been used for the Stokes problem;
cf. [14], [25], or [20]. In the case k = 3, the more interesting case which corresponds
in terms of accuracy to the fourth order schemes that are now more and more often
employed for wave propagation problems, these finite elements seem to be new.

This article is organized as follows: section 2 is devoted to preliminary material
about quadrature formulas in triangles. In section 3, the difficulties linked to the
use of classical P2 and P3 elements are discussed in more detail. In section 4, the
P̃k spaces for k = 2 and k = 3 are presented. In section 5, error estimates for
the semidiscretized problem are established, using a method based on the Laplace
transform in time. In section 6, the fully discretized methods are constructed with
particular attention being paid to higher order time discretization. The stability of the
schemes is analyzed. Finally, in section 7, numerical results illustrating the theoretical
part of the paper are given.

2. Preliminaries concerning symmetric quadrature formulas in a tri-
angle. For a better understanding of the next two sections, we briefly recall in this
section some notions related to quadrature formulas in several variables (see also [16],
[13]).

• In what follows, x = (x1, x2) will denote a variable in R
2 and K a triangle in

R
2 whose vertices are S1, S2, and S3. The barycentric coordinates of x with

respect to S1, S2, and S3 are (λ1(x), λ2(x), λ3(x)); cf. [28].
• To any function of three variables f(λ1, λ2, λ3) is associated a function f̃(x)

of two variables defined by f̃(x) = f (λ1(x), λ2(x), λ3(x)). We shall often use

the same notation both for f and for f̃ .
• The space of polynomials in two variables of degree less than or equal to k is

denoted by Pk, and the space of homogeneous polynomials in three variables
of degree k is denoted by P hom

k . The space Pk can be identified with the

space P hom
k via the mapping f → f̃ .

• Let S3 be the group of permutations on {1, 2, 3}. For x in K and σ in S3, let
xσ ∈ K be defined by

∀ i ∈ {1, 2, 3} λi(xσ) = λσ(i)(x),

and for a function f , let fσ be the function defined by

fσ(x) = f(xσ).

Note that, if f is an element of L1(K), one can write

IK(f) ≡
∫
K

f(x)dx =

∫
R

3
+

f(λ1, λ2, λ3) δ(1− λ1 − λ2 − λ3) dλ1dλ2dλ3,(2.1)
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where δ(1 − λ1 − λ2 − λ3) denotes the Dirac distribution supported by the plane
λ1 + λ2 + λ3 = 1. Formula (2.1) shows that the linear form f → IK(f) is symmetric
(simply use the change of variable µi = λσ(i)):

∀σ ∈ S3,

∫
K

f dx =

∫
K

fσ dx.(2.2)

In what follows, a quadrature formula onK will be defined by a finite set of quadrature
points Q = {xi}, belonging to K, and a corresponding set of weights {ωi} belonging
to R. Then, for any f ∈ C(K), an approximation Iapp

K (f) of IK(f) is defined by

Iapp
K (f) = mes(K)

∑
i

ωif(xi).(2.3)

In light of (2.2), it is natural to ask that the linear form Iapp
K (f) be symmetric:

∀σ ∈ S3 ∀ f ∈ C(K), Iapp
K(f) = Iapp

K (fσ).(2.4)

Thus we shall consider only symmetric quadrature formulas, constructed as follows:
(a) Let Q as a symmetric set of quadrature points:

x ∈ Q ⇒ xσ ∈ Q ∀σ ∈ S3(2.5)

and define an equivalence relation on Q by

xR y ⇔ ∃σ ∈ S3 / y = xσ.(2.6)

(b) Let {Cα, 1 ≤ α ≤ M} be the set of equivalence classes of R and define a
symmetric quadrature formula by

Iapp
K (f) = mes(K)

M∑
α=1

ωα

[ ∑
x∈Cα

f(x)

]
.(2.7)

Note that such a formula can be deduced from the equivalent formula for the reference
triangle K̂.

The following question arises: for a given set P of polynomials, what conditions
must a quadrature formula satisfy in order that it be exact in P?

In fact, we shall consider only symmetric finite dimensional spaces of polynomi-
als P :

∀ p ∈ P ∀σ ∈ S3, pσ ∈ P,

and for such a space P we choose a basis B(P ) having the same symmetry properties.
Note in particular that Pk is symmetric. Let us define an equivalence relation in
B(P ) by

r R̃ s⇔ ∃σ ∈ S3 / s = rσ,(2.8)

and let {C̃β , 1 ≤ β ≤ M̃} be the set of equivalence classes of R̃. The following result
is immediate.

Lemma 2.1. A symmetric quadrature formula Iapp
K (f) is exact for any element

of P if and only if it is exact for one representative of each equivalence class C̃β .
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This lemma indicates that M̃ is the number of degrees of freedom needed for the
quadrature formula in order that it be exact for any element of P . Note, however,
that this does not necessarily mean that M (the number of equivalence classes in Q)

must be equal to M̃ (the number of equivalence classes in B(P )) since the location of
the quadrature points as well as the weights are degrees of freedom for the quadrature
formula.

Consider, for instance, the equivalence classes C̃β for the case P = Pk. (We

denote by Nk the dimension of Pk and write M̃k for M̃ .) Since, in two dimensions,
each class is made up of one, three, or six elements, we have

M̃k ≤ Nk ≤ 6M̃k.(2.9)

For the first five values of k, one has

(i) k = 1, N1 = 3, M̃1 = 1, C1 = {λ1, λ2, λ3},

(ii) k = 2, N2 = 6, M̃2 = 2,
C1 = {λ2

1, λ
2
2, λ

2
3},

C2 = {λ1λ2, λ1λ3, λ2λ3},

(iii) k = 3, N2 = 10, M̃2 = 3,
C1 = {λ3

1, λ
3
2, λ

3
3},

C2 = {λ2
1λ2, λ

2
1λ3, λ

2
2λ1, λ

2
2λ3, λ

2
3λ1, λ

2
3λ2},

C3 = {λ1λ2λ3},

(iv) k = 4, N4 = 15, M̃4 = 4,

C1 = {λ4
1, λ

4
2, λ

4
3},

C2 = {λ3
1λ2, λ

3
1λ3, λ

3
2λ1, λ

3
2λ3, λ

3
3λ1, λ

3
3λ2},

C3 = {λ2
1λ

2
2, λ

2
1λ

2
3, λ

2
2λ

2
3},

C4 = {λ2
1λ2λ3, λ

2
2λ1λ3, λ

2
3λ1λ2},

(v) k = 5, N5 = 21, M̃5 = 5,

C1 = {λ5
1, λ

5
2, λ

5
3},

C2 = {λ4
1λ2, λ

4
1λ3, λ

4
2λ1, λ

4
2λ3, λ

4
3λ1, λ

4
3λ2},

C3 = {λ3
1λ

2
2, λ

3
1λ

2
3, λ

3
2λ

2
1, λ

3
2λ

2
3, λ

3
3λ

2
1, λ

3
3λ

2
2},

C4 = {λ3
1λ2λ3, λ

3
2λ1λ3, λ

3
3λ1λ2}.

Note that, in each case, M̃k is much less than Nk: the number of degrees of freedom
needed for the quadrature formula is much less than the dimension of the space of
polynomials one wishes to integrate exactly. Contrary to what one might think, it
is not true that M̃k = k: one can check that M̃7 = 8 and M̃8 = 9. One can obtain
an exact formula for M̃k by noticing that the numbers of triplets (p, q, r) of integers
satisfying 0 ≤ p ≤ q ≤ r and p + q + r = k is the same as the number of possible
decompositions of k as a sum of integers between 1 and 3. Using the theory of
generating functions (see [30]), one obtains

M̃k =
k2

12
+
k

2
+

47

72
+

(−1)n

8
+

2

9
cos

(
2kπ

3

)
.(2.10)

In particular, for large k, one has

M̃k ∼ k(k + 1)

12
=

Nk
6
,

a result suggested by the fact that in the set of polynomials of arbitrary degree each
equivalence class has “generically” six elements.
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3. Difficulties related to classical finite elements.

3.1. The mass lumping problem. We consider the following model problem:

Find u : Ω× R
+ → R so that

∂2u

∂t2
(x, t)−∆u(x, t) = 0, (x, t) ∈ Ω× R

+,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ Γ = ∂Ω× R
+,

(3.1)

where Ω denotes a bounded polygonal subset of R
2. Let Th be a triangulation of Ω

that satisfies the usual properties of finite element meshes, and let Vh ⊂ H1
0 (Ω) be an

approximation subspace of Lagrange finite elements subordinate to Th. The problem
to be solved can be written (omitting the initial conditions) as follows:

Find uh(t) : R
+ → Vh so that

d2

dt2

∫
Ω

uh(x, t)vh(x)dx+

∫
Ω

∇uh(x, t)∇vh(x)dx = 0 ∀ vh ∈ Vh.
(3.2)

Let {ai} be the set of the degrees of freedom associated with Vh and let {wi} be the
corresponding Lagrange basis. If Uh denotes the vector whose components are the
coordinates of uh in the basis {wi}, then (3.2) is equivalent to the ordinary differential
system

Mh
d2Uh
dt2

(t) +KhUh(t) = 0,(3.3)

where the mass matrix Mh and the stiffness matrix Kh are given, respectively, by
Mij =

∫
Ω

wi(x)wj(x) dx = (wi, wj),

Kij =

∫
Ω

∇wi(x)∇wj(x) dx.
(3.4)

The problem addressed in this article is the fact that the mass matrix Mh, although it
approximates the identity operator, is not diagonal, due to the fact that two different
basis functions are not necessarily orthogonal in L2:

i �= j �⇒ (wi, wj) = 0.

If now, instead of computing the integrals defining Mij exactly, we evaluate them
approximately using, in each triangle K of Th, a quadrature formula like those in
section 2, we in fact replace the continuous L2 inner product (wi, wj) by the discrete
inner product (wi, wj)h, defined by

∀ (u, v) ∈ C(Ω) (u, v)h =
∑
l

ωl,hu(âl)v(âl),(3.5)

where {âl} is the union over all the triangles of Th of all the quadrature points and
{ωl,h} is the set of all the appropriate weights. Mass lumping will be achieved if two
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Fig. 3.1. P2 finite element.

different basis functions are now orthogonal for the discrete inner product (., .)h or
equivalently if the new approximation to the mass matrix is diagonal. All the devel-
opments in the remainder of the paper are based on the following trivial observation.

Lemma 3.1. If the nodes of the finite element space Vh and the quadrature points
coincide, i.e., if

{ai} = {âl},(3.6)

then one has mass lumping.
Indeed, it suffices to remark that if i �= j, the product wiwj necessarily vanishes

at each point âl. For P1 Lagrange elements, with the trapezoidal quadrature rule,

Iapp
K (f) =

mes(K)

3
(f(S1) + f(S2) + f(S3)),(3.7)

Lemma 3.1 guarantees that the approximate mass matrix is diagonal. For higher
order elements, such as P2 or P3, the use of condition (3.6) is complicated by the fact
that one does not want to lose accuracy by applying numerical integration. In other
words, the quadrature formula must also be sufficiently accurate. This is, in fact, the
case for the trapezoidal rule coupled to P1 elements. The general conditions to be
met in order to ensure sufficient accuracy have been known for more than 20 years.
First derived for application to elliptic problems (see [6], [19]), these conditions were
then generalized to parabolic problems [27] and to hyperbolic problems (see [2], [3]).
For standard Pk elements the rule is

In each triangle K, the quadrature formula Iapp
K (f) must be exact for P2k−2.

In the next two sections it is shown that satisfying this condition (and thereby
preserving the accuracy of P2 and P3 Lagrange elements) poses an obstacle to mass
lumping.

3.2. The case of P2 elements. For P2 elements, we seek, in accordance with
the above condition, a symmetric quadrature formula exact for P2. The degrees of
freedom of the element form a symmetric set of quadrature points as illustrated in
Figure 3.1.

There are two equivalence classes of points, {S1, S2, S3} and {M1,M2,M3}, and
two equivalence classes of polynomials in P2(K). The two parameters for the adequate
quadrature formula will be the weights ωs (s for summit) corresponding to {S1, S2, S3}
and ωe (e for edge) corresponding to {M1,M2,M3}:
Iapp
K (f) = mes(K) {ωs (f(S1) + f(S2) + f(S3)) + ωe (f(M1) + f(M2) + f(M3))} .
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Fig. 3.2. P3 finite element.

The unique well-known solution is

ωs = 0 and ωe =
1

3
.

Unfortunately, as the weights corresponding to the vertices of the triangle are zero,
the corresponding basis functions have a “discrete norm” |wi|2h equal to 0! Thus, some
terms of the new diagonal mass matrix Mh are equal to zero, so that this matrix is
not invertible.

3.3. The case of P3 elements. In the case of P3 elements, we are looking
for a quadrature formula exact for P4 which is made up of four equivalence classes.
Therefore, we need a priori four degrees of freedom to define the quadrature formula.
We choose a set of degrees of freedom similar in its structure to that of the classical
P3 finite elements. In fact, we must consider the following symmetric set (Q) of
quadrature points which can be divided into three equivalence classes:

• the vertices {S1, S2, S3},
• the six edge points {M12(α), M21(α), M13(α), M31(α), M23(α), M32(α)},
• the center of the triangle {G},

where α denotes a real parameter between 0 and 1 and Mij(α) is the barycenter of
Si and Sj with respective weights α and (1− α) (see Figure 3.2). We recall that the
classical location of the degrees of freedom in R

3 corresponds to α = 1/3. It is easy
to see that (Q) is P3 unisolvent: if P belongs to P3 and P vanishes on (Q), then it is
zero at four distinct points of each edge. Therefore being a polynomial of degree 3, it
is necessarily proportional to the bubble function, but as p(G) = 0, we have p ≡ 0.

By allowing the interior edge nodes to move in a symmetric way along the bound-
ary, we get the desired fourth parameter. We thus look for a quadrature formula of
the form

Iapp
K (f) = mes(K)

ωs

3∑
j=1

f(Sj) + ωα

3∑
i�=j

i,j=1

f(Mij(α)) + ωGf(G)

(3.8)

with four parameters (ωs, ωα, ωG, and α). It can be shown (the details are omitted)
that there exists a unique choice that makes formula (3.8) exact in P4:

α =
3−√3

6
, ωs = − 1

60
, ωα =

1

10
, ωG =

9

20
.



2054 G. COHEN, P. JOLY, J. E. ROBERTS, AND N. TORDJMAN

The corresponding quadrature formula, which can be found in [23], has the major
drawback that one of the weights, the one associated with the summits (ωs), is strictly
negative. As a consequence, the corresponding semidiscrete scheme is unstable and
any time discretization would lead to an unconditionally unstable scheme. Formula
(3.8) is therefore not applicable in our context.

Remark 3.1. A proof of the instability result can be found in [33]: some modes
of the discrete solution behave as does the solution of the differential equation

∂2u

∂t2
− ω2

hu = 0,

which admits exponentially growing solutions in eωht, where ωh > 0 grows like 1/h
when h goes to 0.

4. New finite element spaces. We have seen in the previous section that the
spaces P2 and P3 seem unsuited for mass lumping even if one plays on the choice of
the basis functions. The difficulty that we have encountered is due to our failure to
respect a new constraint which is a necessary condition for ensuring the stability of
the semidiscrete wave equation

(S) The modified mass operator must be positive definite.
Of course, this stability condition will be satisfied if and only if

(P) The weights in the quadrature formula are strictly positive.

The idea is to construct slightly larger finite element spaces, P̃2 and P̃3, for which one
can, with the additional degrees of freedom, find appropriate quadrature formulas with
strictly positive weights and sufficient accuracy to preserve the accuracy obtained,
respectively, with the P2 and P3 spaces. To preserve this accuracy, certain conditions
need to be imposed on the quadrature formula. Consider a polynomial finite element
space of the form

Vh = {vh ∈ H1(Ω̄)/ ∀K ∈ Th, vh|K ∈ P̃},(4.1)

where P̃ is a finite dimensional subspace of polynomials satisfying

Pk ⊂ P̃ ⊂ Pk′ , k ≤ k′.(4.2)

Then we get the same accuracy with P̃ as with standard Pk elements if (see [6], [19],
or section 5)

(A) The quadrature formula is exact in Pk+k′−2.

Thus we shall construct spaces P̃k, k = 2, 3, and the associated integration formulas
using the following guidelines:

(i) The space P̃k should be as small as possible with Pk ⊂ P̃k ⊂ Pk′ .

(ii) The set (Q) of quadrature points should be P̃k unisolvent.
(iii) The quadrature formula should satisfy the accuracy condition (A).
(iv) The quadrature formula should satisfy the positivity condition (P).
(v) The number of degrees of freedom on the boundary should be sufficiently

large to ensure the H1-conforming nature of Vh.
Conditions (iii), (iv), and (v) are purely mathematical criteria linked, respectively,
to accuracy, stability, and consistency considerations. Criterion (ii) is imposed by
condition (3.6) of Lemma 3.1. It implies some compatibility between the choice of
the finite element space and the quadrature nodes. Criterion (i) is more concerned
with efficiency and aims at minimizing the total number of degrees of freedom of the
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element. Both (i) and (ii) indicate that k′ should be chosen as small as possible. Note
that while (i), (ii), (iii), and (iv) are purely local criteria involving a single triangle,
criterion (v) takes into account the problem of joining distinct adjacent elements.
However, this criterion may have an influence on the others: if, by passing from Pk
to P̃k, one increases the degree of the traces of the polynomials on the edges of the
triangle, then one also increases the number of degrees of freedom on the boundary,
which goes, of course, against (i). Moreover, the fact that these nodes must remain
located on the boundary reduces the liberty of moving them for satisfying (iii) and
(iv). Thus it is useful, when enlarging the Pk spaces, to make use of “bubble-type”
functions, i.e., polynomials vanishing on the boundary of the triangle: the degrees of
the traces of elements of the new space P̃k thus remain less than or equal to k.

4.1. The case of P2 elements. The idea is to introduce a new space P̃2 sat-
isfying P2 ⊂ P̃2 ⊂ P3. To comply with (A), we need to integrate P3 exactly. Thus,
as seen in section 1, we need a priori three degrees of freedom for the quadrature
formula. Let us consider

P̃2 = P2 ⊕ [b],(4.3)

where b = λ1λ2λ3 is the “bubble” function and where [v1, v2, . . . , vm] denotes the
subspace generated by the vectors {v1, v2, . . . , vm}.

The dimension of P̃2 is 7 so that criterion (i) has been satisfied in an optimal
way. Thus we need seven Lagrange interpolation points and hence seven quadrature
points. These are chosen to be the three vertices {S1, S2, S3}, the midpoints of the
three edges {M1,M2,M3} and the center of gravity G; see Figure 4.1. These consti-
tute a symmetric set of quadrature points (Q), in the sense of section 2, with three

equivalence classes. It is immediate to check that this set of points is P̃2 unisolvent
(criterion (ii)), the bubble function b being, up to a multiplicative constant, the basis
function associated with G. Moreover, as b vanishes on the edges of K, the degree of
the trace of any element of P̃2 on any edge of K remains less than or equal to two.
The trace on any edge of such a function is thus entirely determined by its values
at the two vertices and at the midpoint (criterion (v)). It remains to determine the
symmetric quadrature formula satisfying criteria (iii) and (iv). We know that this
quadrature formula must be of the form

E(f) = mes(K){ωs(f(S1) + f(S2) + f(S3))

+ ωe(f(M1) + f(M2) + f(M3)) + ωGf(G)}.(4.4)

Lemma 4.1. There exists a unique quadrature formula of the form (4.4) satisfying
criteria (iii) and (iv). It is obtained by setting

ωs =
1

20
, ωe =

2

15
, ωG =

9

20
.(4.5)

Proof. Note that if such a formula exists the weights are necessarily given by

ωs =
3

mes(K)

∫
K

λ1(λ1 − 1

2
)

(
λ1 − 1

3

)
dx,

ωa =
12

mes(K)

∫
K

λ1(1− λ1)

(
λ1 − 1

3

)
dx,

ωG =
27

mes(K)

∫
K

λ1λ2λ3dx.

(4.6)
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Fig. 4.1. The degrees of freedom for P̃2.
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Fig. 4.2. The three types of basis functions in Vh.

Note also that the integrands in (4.6) are polynomials of degree 3 each of which
vanishes at the nodes of two of the three equivalence classes of (Q). The computation
of the integrals leads to (4.5). To conclude, it suffices to check that the formula is

exact for one representative of each of the three equivalence classes of P̃2.
Remark 4.1. In fact, formula (4.4), (4.5) is well known as Simpson’s rule (see,

for instance, [23], [34]).
We observe that all the quadrature weights are strictly positive as desired. We

can now consider the space

Vh = {v ∈ H1(Ω)/ ∀K ∈ Th, v/K ∈ P̃2}(4.7)

as an approximation space for H1(Ω). Vh clearly admits three types of basis functions
(see Figure 4.2) associated, respectively, with a vertex, an edge, or a triangle so that
dimVh = Ns+Ne+Nt, where Ns, Ne, and Nt are, respectively, the number of nodes,
edges, and triangles of Th.

4.2. The case of P3 elements. We wish here to construct a symmetric sub-
space P̃3 such that P3 ⊂ P̃3 ⊂ P4. We then need a quadrature formula which inte-
grates P5 exactly. This requires a priori a symmetric formula with five parameters.
The symmetric set (Q) of quadrature points that we shall use is made up of three
equivalence classes:

• three vertices {S1, S2, S3}.
• six boundary points {M12(α),M21(α),M13(α),M31(α),M23(α),M32(α)}.
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Fig. 4.3. The set of quadrature nodes.

• three interior points {G1(β), G2(β), G3(β)}.
Here, α and β denote two real parameters between 0 and 1, and (see Figure 4.3)

• Gi(β) has barycentric coordinates λi = β and λj = 1−β
2 for j �= i.

• Mij(α) is the barycenter of Si and Sj with weights α and (1−α), respectively.
We have five parameters to play with in order to define our quadrature formula; the
three weights associated with the three equivalence classes of (Q) and the two “loca-
tion” parameters α and β. Note that, in comparison with the classical P3 elements
(section 3.2), we have gained one parameter (namely, β) by splitting the center of
gravity G into three interior points G1(β), G2(β), and G3(β).

It remains to find the right space P̃3. We put

P̃3 = P3 ⊕ bP1.(4.8)

By construction, P̃3 satisfies criteria (i) and (v). Concerning criterion (ii), we have

the following lemma which in addition gives the Lagrange basis of P̃3.
Lemma 4.2. If 0 < α < 1/2, 0 < β < 1/2, and β �= 1/3, the set (Q) is P̃3

unisolvent. Moreover,
(i) the basis function associated with Gi is

wGi = b

(
λi − 1− β

2

)
.

(ii) The basis function associated with Mij is

wij = pij − 8b

β(1− β)2(3β − 1)

[
Aij

(
λi − 1− β

2

)
+Bij

(
λj − 1− β

2

)
+ Cij

(
λk − 1− β

2

)]
,

where we have set

pij =
λiλj

α(1− α)(2α− 1)
(αλi − (1− α)λj + (1− 2α)λk),

Aij = pij(Gi), Bij = pij(Gj), Cij = pij(Gk).

(iii) The basis function associated with Si is

wSi = pi − 8b

β(1− β)2(3β − 1)

Ai(λi − 1− β

2

)
+Bi

∑
l �=i

(
λl − 1− β

2

) ,
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where pi and Ai are given by

pi = λi

(∑
l

λ2
l −

1− 2α+ 2α2

α(1− α)
λjλk +

2− 7α+ 7α2

α(1− α)
λi(λj + λk)

)
,

Ai = pi(Gi), Bi = pi(Gl), l �= i.

Proof. For the unisolvence, we note that, as P3∩ bP1 = [b], the dimension of P̃3 is
12, which coincides with the number of degrees of freedom. Thus it suffices to remark
that any p̃ of P̃3 has a unique decomposition of the form

p̃ = p+ bq,

p ∈ P3, p(G) = 0,

q ∈ P1.

(4.9)

Then, if p̃ vanishes at all quadrature points, p vanishes at all boundary points of
(Q) and also at G. These points being P3 unisolvent whenever 0 < α < 1/2, we
deduce that p = 0. Now because p̃(Gj(β)) = 0, j = 1, . . . , 3, we have q(Gj(β)) = 0,
j = 1, . . . , 3. Since q ∈ P1 and the three points G1(β), G2(β), and G3(β) are not
collinear for 0 < β < 1/2 and β �= 1/3 we conclude that q = 0. The computation of
the basis functions using the decomposition (4.9) is straightforward but rather tedious
and will not be included here.

In order to satisfy criteria (iii) and (iv), it remains to construct an adequate
quadrature formula, which must have the form

IK(f) = mes(K)

ωs

3∑
j=1

f(Sj) + ωα

3∑
i �=j i,j=1

f(Mij(α)) + ωβ

3∑
j=1

f(Gj(β))

 .

(4.10)

Lemma 4.3. The unique quadrature formula of the form (4.10) which integrates
P5 exactly has quadrature points determined by

β =
1

3
+

2

21

√
7 � 0.5853,

α =
42 + 21

√
7−

√
21

(
35 + 16

√
7
)

84 + 42
√

7
� 0.2935

(4.11)

and strictly positive weights given by

ωs = 2
919
√

7 + 2471

124080
√

7 + 330960
� 0.0148,

ωα = 2

√
7
(
2 +

√
7
)4

25280 + 9520
√

7
� 0.0488,

ωβ = 2
147 + 42

√
7

400
√

7 + 1280
� 0.2208.

(4.12)

Proof. We give a rather constructive proof. First note that the polynomial

p1 = λ1λ2λ3(λ1 − β)

(
λ1 − 1− β

2

)
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has degree 5 and vanishes at all quadrature points. Therefore, if the formula exists,
β is necessarily a root of the quadratic equation

f1(β) =

∫
K

λ1λ2λ3(λ1 − β)

(
λ1 − 1− β

2

)
dx = 0.(4.13)

It is clear that this equation has one real solution between 1/3 and 1 since

f1(1/3) =

∫
K

λ1λ2λ3(λ1 − 1/3)2dx > 0

and

∀β ≥ 1 f1(β) < 0 (p1 < 0 in K).

Computing this solution one obtains the value given in (4.11). The weight ωβ is then
defined by

3ωββ
(1− β)2

4
(mes(K)) =

∫
K

λ1λ2λ3dx.(4.14)

In the same way, the polynomial

p2 = λ1(1− λ1)(λ1 − α)(λ1 − 1 + α)

has degree 4 and vanishes at all quadrature points except the Gj(β)’s. Therefore, α
is defined as the solution of the quadratic equation∫

K

λ1(1− λ1)(λ1 − α)(λ1 − 1 + α)dx

= ωβ(mes(K))

{
β(1− β)(β − α)(β + α− 1)

+ (1− β)

(
1 + β

2

)(
1− β

2
− α

)(
1− β

2
− 1 + α

)}
.

(4.15)

Selecting the unique solution of this equation which is smaller than 1/2 we obtain the
value of α. Once α and β are known, ωα and ωβ can be found by solving a 2 × 2
linear system whose equations are obtained by taking f constant and then f linear in
the equation

IK(f) =

∫
K

(f) ∀ f ∈ P5.

To complete the proof, it suffices to check a posteriori that the formula is exact for
one representative of each class of P5.

Remark 4.2. The computations of α, β, ωα, ωβ , and ωs have been carried out
with the help of MAPLE.

Of course, the most important result is that the weights ωs, ωα, ωβ are strictly
positive. We can now construct a finite element space for H1(Ω) as

Vh = {v ∈ C0(Ω̄)/ ∀K ∈ Th, v/K ∈ P̃3}.(4.16)

Once again there are three types of basis functions. The difference between P̃2 and
this case is that there is one basis function of type 1 per node (as for P̃2) but two
basis functions of type 2 per edge and three basis functions of type 3 by triangle.
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5. Convergence and error estimates. In this section, the problem of esti-
mating the error due to numerical integration is dealt with. The aim is to extend
the results obtained by Ciarlet and Raviart (cf. [6, section 4.4.1] and [28]) for elliptic
problems to the case of the wave equation (or more generally second order hyperbolic
equations). The case of parabolic evolution equations was studied by Raviart [27].
The error analysis for second order hyperbolic equations without numerical integra-
tion is due to Dupont [16]. He obtained results directly in the time domain using
an elliptic projection and energy estimates. The effect of numerical integration was
first studied by Baker and Dougalis [3] by essentially following the lines of the proof
of Dupont. The authors were not aware of this latter work when they performed
the analysis presented in this section. The method given here differs from that of
Baker and Dougalis in that it uses the Laplace transform in time and thus reduces
the study of a hyperbolic problem to that of an infinite family of elliptic type prob-
lems parametrized by the Laplace variable s (s ∈ C). The main difficulty is to control
the constants appearing in the “elliptic” error estimates, more precisely, if s = η+ iω
where η (η > 0) is fixed and ω varies in R, to control these constants when |ω| → +∞.
The advantages of this approach are that it leads to simpler proofs (at least from the
point of view of the authors) than those in [3], that it yields somewhat better esti-
mates in that less regularity is required of the solution to obtain the optimal order of
convergence, and that the dependence on time of the constants in the error estimates
is given explicitly. For the sake of clarity, the presentation is restricted to the case of
the wave equation with constant coefficients and with zero initial data:

Find u : Ω× R
+ → R so that

∂2u

∂t2
(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω× R

+,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ Ω,

∂u

∂n
(x, t) = 0, (x, t) ∈ Γ = ∂Ω× R

+.

(5.1)

The case of variable coefficients could be treated in much the same way modulo ap-
propriate regularity assumptions and the case of nonzero initial data could be treated
by using an adequate extension operator. Further, in the interest of simplicity and
conciseness, only H1-type estimates, estimates in the energy norm, will be given.
Standard duality arguments could be used to obtain L2-estimates.

As the demonstration for our error estimates does not depend on the fact that
the elements are P̃3, we shall use a slightly more general setting: suppose that k
and k′ are positive integers with 3 ≤ k ≤ k′, and that P̃k is a space of polynomials
with Pk ⊂ P̃k ⊂ Pk′ . (The case k ≤ 2 could be treated in a similar way but with
slightly different regularity assumptions.) Suppose that the regular affine family of

finite elements [6, pp. 87, 124] {Ṽ kh }h∈H is such that, for each h in H,

Ṽ kh = {v ∈ C0(Ω̄) : ∀K ∈ Th, v|K ∈ P̃k(K)}.

Suppose also that the quadrature formula∮
Ω

f dx =
∑
K∈Th

∮
K

f dx =
∑
K∈Th

mes(K)

∮
K̂

f ◦ FK dx̂,
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where FK : K̂ −→ K is the affine mapping of the reference element K̂ onto the
element K, has positive weights and is exact for piecewise polynomials of degree no
more than k + k′ − 2.

We use the standard notation for Sobolov spaces, norms, and seminorms: if O
is an open subset of R

2 or of R
2 × (0, T ), then Hm(O) is the space of functions in

L2(O), all of whose derivatives of order up to and including m belong to L2(O). The
norm on Hm(O) is denoted ‖ · ‖m,O or simply ‖ · ‖m, and | · |m,O or simply | · |m is
the usual seminorm

‖v‖2m =
∑

|α|≤m

∫
O

∣∣∣∣∂αv∂yα

∣∣∣∣2 dy and |v|2m =
∑

|α|=m

∫
O

∣∣∣∣∂αv∂yα

∣∣∣∣2 dy.
5.1. A family of auxiliary problems. We begin by studying a family of ellip-

tic problems indexed by a complex parameter s and related to our original problem
via the Laplace transform. These auxiliary problems concern complex-valued func-
tions, which we shall denote by boldfaced characters. The space of square summable
complex-valued functions will be denoted by L2(Ω) and will be equipped with the
usual scalar product and norm

(u,v)0,Ω =

∫
Ω

uvdx, ‖u‖20,Ω = (u,u)0,Ω.(5.2)

Similarly, C0(Ω) will be the space of continuous, complex-valued functions in L2(Ω)
and Hm(Ω) the space of complex-valued functions in L2(Ω), all of whose derivatives of
order up to and including m are also in L2(Ω). For H1(Ω), in addition to the standard
seminorm, |v|21,Ω = (∇v,∇v)0,Ω; we shall make use of an s-dependent scalar product

on H1(Ω) and its associated norm

(u,v)1,s = (∇u,∇v)0,Ω + |s|2(u,v)0,Ω,

‖v‖21,s = (v,v)1,s = |v|21,Ω + |s|2 ‖v‖20,Ω,
(5.3)

where s is a complex parameter, in practice the Laplace variable, with a strictly
positive real part

s = η + iω, η > 0 (fixed), ω ∈ R.

For each s, we are interested in the solution u = us in H1(Ω) of the following
problem:

−∆u + s2u = f in Ω,

∂u

∂n
= 0 on Γ,

where f = fs belongs to L2(Ω). The corresponding variational problem is

u ∈ V = H1(Ω),

a(s;u v) = s̄ (f ,v)0,Ω ∀v ∈ V,
(5.4)

where a(s; ·, ·) : V2 −→ C is defined by

a(s;u,v) = s̄(∇u,∇v)0,Ω + |s|2s(u,v)0,Ω.
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One shows easily that a(s; ·, ·) has the following coercivity and continuity properties
(for s = η + iω):

η ‖v‖21,s ≤ |a(s;v,v)| ∀v ∈ H1(Ω),

|a(s;u,v)| ≤ |s| ‖u‖21,s ‖v‖21,s ∀u,v ∈ H1(Ω),

which guarantee the existence and uniqueness of the solution of (5.4). Note that
the coercivity constant does not depend on ω, whereas the continuity constant is
equivalent to |ω| when ω tends towards ∞: this is the source of difficulty for our
analysis as for the analysis of any hyperbolic problem.

To write the finite element problem

uh ∈ Ṽk
h,

ah(s;uh,vh) = s̄ (f ,vh)0,Ω ∀vh ∈ Ṽk
h,

(5.5)

we define the bilinear form ah(s; ·, ·) : Ṽk
h × Ṽk

h −→ C by

ah(s;uh,vh) = s̄(∇uh,∇vh)0,Ω + |s|2s(uh,vh)h,
where

(uh,vh)h =

∮
Ω

uh vh dx.

It is the positivity of the weights in the quadrature formula that guarantees the
continuity and coercivity of the forms ah(s; ·, ·). More precisely, because the weights

are positive, ‖ · ‖2h = (·, ·)h determines a norm on Ṽk
h, a norm equivalent to the norm

‖ · ‖20,Ω as Ṽk
h is finite dimensional. Thus, for each h, h > 0, (5.5) has a unique

solution. To obtain error estimates though, we need to know that the constants of
continuity and coercivity are independent of the parameter h:

C η ‖vh‖21,s ≤ |ah(s;vh,vh)| ∀vh ∈ Ṽk
h,

|ah(s,uh,vh)| ≤ C |s| ‖uh‖21,s ‖vh‖21,s ∀uh,vh ∈ Ṽk
h

with C independent of h as well as of s. This, however, is implied by the fact that
the constants in the norm equivalence

C1‖vh‖20,Ω ≤ ‖vh‖2h ≤ C2‖vh‖20,Ω
are independent of h, a fact that can be demonstrated in a straightforward manner
by using a reference element.

5.1.1. Estimates in the ‖ · ‖1,s-norm. To estimate the error in the ‖ · ‖1,s-
norm we proceed just as in the classical case for elliptic problems: we use Strang’s
lemma, which in the present context yields the following lemma.

Lemma 5.1 (Strang’s lemma). If u is the solution of (5.4) and uh the solution
of (5.5), then there is a constant C independent of h and of s such that

‖u− uh‖1,s ≤ C inf
vh∈Ṽk

h

(1 +
|s|
η

)
‖u− vh‖1,s +

1

η
sup

wh∈Ṽk
h

|(a− ah)(s;vh,wh)|
‖wh‖1,s

 .

(5.6)
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The proof is just the same as in the usual case [6], only particular attention must
be paid to the dependence of the constants on s and on η.

The infimum in (5.6) is now bounded from above by taking vh = Πhu, where Πh
is the interpolation operator from C0(Ω) (or any of its subspaces Hl(Ω), l ≥ 2) onto

Ṽk
h that interpolates a function v ∈ C0(Ω) at the quadrature points. Using the result

[6, Theorem 3.2.1]

∑
K∈Th

|v −Πhv|m,K ≤ Chl−m
∑
K∈Th

|v|l,K ∀v ∈ Hl(Ω), 2 ≤ l ≤ k + 1, m ≤ l,

(5.7)

first with l = λ and m = 0, then with l = λ+ 1 and m = 1, we obtain that

‖v −Πhv‖1,s ≤ Chλ (|s| |v|λ,Ω + |v|λ+1,Ω) ∀v ∈ Hλ+1(Ω), 2 ≤ λ ≤ k.(5.8)

In order to estimate |(a−ah)(s; Πhu,wh)|, we define the continuous bilinear form

Eh : Ṽk
h × Ṽk

h −→ R by

Eh(vh,wh) =
∑
K∈Th

(∫
K

vhwh −
∮
K

vhwh

)
,

so that (a − ah)(s;vh,wh) = s|s|2Eh(vh,wh). Note that Eh(vh,wh) = 0 if the sum
of the degrees of the polynomials vh and wh is less than or equal to k + k′ − 2.

Lemma 5.2. There is a constant C such that for vh,wh ∈ Ṽk
h and 1 ≤ p, q ≤ k−1,

|Eh(vh,wh)| ≤ C hp+q

( ∑
K∈Th

|vh|2p,K
) 1

2
( ∑
K∈Th

|wh|2q,K
) 1

2

.

Proof. The demonstration makes use of the reference element K̂ for the family of
triangulations {Th}h∈H: for each K in Th, let FK denote the affine map from K̂ onto

K, and, for vh ∈ Ṽh
k , let vK ∈ P̃k(K) denote the restriction of vh to K and let v̂K

denote the induced map vK ◦ FK in P̃k(K̂). Thus

Eh(vh,wh) =
∑
K∈Th

(∫
K

vhwh −
∮
K

vhwh

)
=

∑
K∈Th

EK(vK ,wK)

=
∑
K∈Th

mes(K) Ê(v̂K , ŵK),

(5.9)

where we have used the notation

EK(vK ,wK) =

∫
K

vKwK−
∮
K

vKwK and Ê(v̂K , ŵK) =

∫
K̂

v̂KŵK−
∮
K̂

v̂KŵK .

Now let Π̂j denote the L2-projection of L2(K̂) onto Pj(K̂). Since the quadrature
rule is exact for polynomials of degree less than or equal to k+k′−2 and since p−1+k′

and q − 1 + k′ as well as p− 1 + q − 1 are all less than or equal to k + k′ − 2 we have

|Ê(v̂K , ŵK)| = |Ê(v̂K − Π̂p−1v̂K , ŵK − Π̂q−1ŵK)|
≤ C |v̂K − Π̂p−1v̂K |0,K̂ |ŵK − Π̂q−1ŵK |0,K̂ ,

(5.10)
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where we have used the continuity of Ê (in the H0,∞(K̂)-norm) and the equivalence

of norms on the finite dimensional space P̃k(K̂) for the inequality. In combination
with [6, Theorem 3.1.4] this inequality becomes

|Ê(v̂K , ŵK)| ≤ C |v̂K |p,K̂ |ŵK |q,K̂
≤ C(mes(K))−

1
2hp|vK |p,K (mes(K))−

1
2hq|wK |q,K

≤ C (mes(K))−1 hp+q|vK |p,K |wK |q,K .
(5.11)

The desired result is obtained by combining (5.9) with (5.11) and using the Cauchy–
Schwartz inequality.

If we apply Lemma 5.2 with vh = Πhu, with p = k − 1, and with q = 1, and use
(5.7) with m = l = k − 1, we obtain

|(a− ah)(s; Πhu,wh)| ≤ C |s|3 hk
( ∑
K∈Th

|Πhu|2k−1,K

) 1
2
( ∑
K∈Th

|wh|21,K
) 1

2

≤ C |s|3 hk
( ∑
K∈Th

|u|2k−1,K

) 1
2

‖wh‖1,s.

(5.12)

Now combining (5.6) with (5.8) (with λ = k) and (5.12) we obtain the following result.

Lemma 5.3. Suppose that k ≥ 3 and that f ∈ L2(Ω) is sufficiently regular that
the solution u of (5.4) is in Hk+1(Ω). Then if uh is the solution of (5.5), the following
estimate holds:

‖u−uh‖1,s ≤ C hk
[
(|u|k+1,Ω + |s| |u|k,Ω) +

|s|
η

(|u|k+1,Ω + |s| |u|k,Ω + |s|2|u|k−1,Ω

)]
,

with a constant C independent of h and of s.

Remark 5.1. One could, by this same technique, obtain estimates of order k for
k = 2 but with greater regularity requirements: the requirement k ≥ 3 is necessary
because to obtain (5.12) we use m = l = k− 1 in (5.7). If we use m = k− 1 but l = k

we may still use (5.7) but we obtain a term |s|3
η |u|k in Lemma 5.3.

5.2. Error estimates in the time domain. Recall that the weak form of the
continuous problem (5.1) is

find u : [0, T ) −→ V = H1(Ω) such that

d2

dt2

∫
Ω

u(x, t) v(x) dx+

∫
Ω

∇u(x, t)∇v(x) dx =

∫
Ω

f(x, t) v(x) dx ∀ v ∈ V,∫
Ω

u(x, 0) v(x) dx = 0 ∀ v ∈ V,

(5.13)
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and the finite element problem is

find uh : [0, T ) −→ Ṽk
h such that

d2

dt2

∮
Ω

uh(x, t) vh(x) dx+

∫
Ω

∇uh(x, t)∇vh(x) dx =

∫
Ω

f(x, t) vh(x) dx ∀ vh ∈ Ṽk
h,∮

Ω

uh(x, t) vh(x) dx = 0 ∀ vh ∈ Ṽk
h.

(5.14)

Let QT = Ω× (0, T ) and denote Q∞ simply by Q. Introduce the space

VT,0 = {v ∈ H1(QT ) : v(x, 0) = 0 ∀x ∈ Ω}
and the following energy norm on VT,0:

|||v|||21,T =

∫ T

0

[∣∣∣∣∂v∂t
∣∣∣∣2
0,Ω

+ |∇v|20,Ω
]
dt.

To exploit the results of the preceding section, we will use the Laplace transform

v(x, y, s) =
1

2π

∫ ∞

0

v(x, y, t) exp(−st)dt with s = η + iω (η > 0)

and Plancherel’s theorem which guarantees that if w exp(−η t) is in L2(R) and w
vanishes on R

−, if w is the Laplace transform of w and η > 0, then∫ ∞

−∞
w2(η + iω)dω =

∫ ∞

0

w2(t) exp(−2ηt)dt.

This is of course immediately applicable when T =∞.

5.2.1. Weighted L2(0,∞; H1(Ω)) and H1(0,∞; L2(Ω)) estimates. We
introduce the weighted Sobolev spaces

H l
η(R

+;Hm(Ω)) =

{
v ∈ L2

loc(R
+;Hm(Ω)) :

∂pv

∂tp
exp(−ηt)

∈ L2(R+;Hm(Ω)), p = 0, . . . , l

}
.

If u and uh are the solutions of (5.13) and (5.14), respectively, and if u, uh, and f
are the Laplace transforms of u, uh, and f , respectively, then u(·, ·, s), respectively,
uh(·, ·, s), is the solution of (5.4), respectively, (5.5). If u ∈ H l

η(0,∞;Hk+2−l(Ω)),
l = 1, . . . , 3, then from Lemma 5.3 and Plancherel’s theorem we derive that∫ ∞

0

(
|u− uh|21,Ω +

∣∣∣∣∂(u− uh)

∂t

∣∣∣∣2
0,Ω

)
exp(−2ηt)dt

≤ C h2k

[∫ ∞

0

(
|u|2k+1,Ω +

∣∣∣∣∂u∂t
∣∣∣∣2
k,Ω

)
exp(−2ηt)dt

+
1

η2

∫ ∞

0

(∣∣∣∣∂u∂t
∣∣∣∣2
k+1,Ω

+

∣∣∣∣∂2u

∂t2

∣∣∣∣2
k,Ω

+

∣∣∣∣∂3u

∂t3

∣∣∣∣2
k−1,Ω

)
exp(−2ηt)dt

]
.

(5.15)
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5.2.2. Estimates in L2(0, T ; H1(Ω)) and H1(0, T ; L2(Ω)). In addition to
the norm ‖ · ‖m,l,T = ‖ · ‖Hl(0,T ;Hm(Ω)) we shall use the seminorm | · |m,l,T : for each

v ∈ H l(0, T ;Hm(Ω)), |v|2m,l,T =

∫ T

0

∣∣∣∣∂lv∂tl
∣∣∣∣2
m,Ω

dt.

Let T0 > 0. Suppose that u is in H l(0, T ;Hm(Ω)) for some T , T0 < T . We wish
to extend u to a function ũ in H l(0,∞;Hm(Ω)) in such a way that

|ũ|m,l,∞ ≤ C

l∑
j=0

|u|m,j,T

with a constant C depending only on Ω and T0. First let ψ be a cut-off function
in C∞(R) that vanishes on (−∞, 0] and is constantly 1 on [T0,∞). Then let ξ ∈
H l(−∞, T ;Hm(Ω)) be defined by

ξ(x, t) =

{
0 if t ≤ 0,

ψ(t)u(x, t) if 0 ≤ t ≤ T.

Now use the extension operator E : H l(−∞, T ;Hm(Ω)) −→ H l(−∞,∞;Hm(Ω)),
defined by

E(ξ)(x, t) =


ξ(x, t) for t ≤ T ,

l∑
j=1

ajξ(x, T − j(t− T )) for T ≤ t

for appropriate choice of the constants aj (see [32, p. 284]). Then

|E(ξ)|m,l,∞ ≤ C|ξ|m,l,T ≤ C‖ψ‖l,(0,T0)

l∑
j=0

|u|m,j,T

as ψ does not depend on x. Finally the extension ũ of u is obtained by piecing together
u and E(ξ) at t = T :

ũ(x, t) =

{
u(x, t) if 0 ≤ t ≤ T ,

E(ξ)(t) if T ≤ t.

Then ũ ∈ H l(0,∞;Hm(Ω)) and we have

|ũ|m,l,∞ ≤ |u|m,l,T + |E(ξ)|m,l,∞

≤ (1 + C ‖ψ‖l,(0,T0))

l∑
j=0

|u|m,j,T

≤ CT0

l∑
j=0

|u|m,j,T .

(5.16)

We obtain an extension f̃ of f by f̃ = ∂2ũ
∂t2 − ∇ũ on Q, and the extension ũh

of uh is the solution to the finite element problem on Q with f̃ as the right-hand
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side. We note that causality guarantees that ũ, ũh, and f̃ agree with u, uh, and f ,
respectively, on QT . Applying (5.15) to ũ, then noting, for the left-hand side, that

for β ∈ L2(0,∞),
∫ T
0

β 2 dt ≤ ∫∞
0

β 2 dt and that u and ũ as well as uh and ũh agree
on the interval (0, T ) and, for the right-hand side, that e−ηt ≤ 1 on (0, T ) and that

|ũ|2m,l,∞ ≤ C
∑l
j=0 |u|2m,j,T ((5.16) above) we obtain∫ T

0

(
|u− uh|21,Ω +

∣∣∣∣∂(u− uh)

∂t

∣∣∣∣2
1,Ω

)
e−2ηt dt

≤ C h2k

|u|2k+1,0,T +

1∑
j=0

|u|2k,j,T +
1

η2

 1∑
j=0

|u|2k+1,j,T +

2∑
j=0

|u|2k,j,T +

3∑
j=0

|u|2k−1,j,T

.
Now, since e−2ηt is bounded below on [0, T ] by e−2ηT we obtain

|||u− uh|||21,T ≤ C CT0 h
2k e2ηT

|u|2k+1,0,T +

1∑
j=0

|u|2k,j,T

+
1

η2

 1∑
j=0

|u|2k+1,j,T +

2∑
j=0

|u|2k,j,T +

3∑
j=0

|u|2k−1,j,T

.
Setting η = 1

T in order to minimize e2ηT 1
η2 , we obtain the following theorem.

Theorem 5.1. Suppose that k ≥ 3. Let T0 be positive and suppose that T0 ≤ T <
∞. Suppose that f ∈ L2(QT ) is sufficiently regular that the solution, u, of (5.13) is
in Hk+2(QT ). Then if uh is the solution of (5.14), we obtain the following estimate:

|||u− uh|||21,T ≤ C h2k

|u|2k+1,0,T +

1∑
j=0

|u|2k,j,T

+ T 2

 1∑
j=0

|u|2k+1,j,T +

2∑
j=0

|u|2k,j,T +

3∑
j=0

|u|2k−1,j,T


with the constant C depending only on Ω and T0.

Remark 5.2. To obtain estimates of order k for the error u− uh in the energy

norm
∫ T
0

(|u − uh|21,Ω + |∂u∂t − ∂uh

∂t |20,Ω) dt we have used only Hk+2(QT )-regularity.
In [3] estimates of order k in this same norm for the error u − wh, where wh is an
elliptic projection of u into the solution space, Hk+3(QT )-regularity is used. To obtain
estimates of order k for the full error u− uh in the L

∞-energy norm sup0≤t≤T (|u−
uh|1,Ω + |∂u∂t − ∂uh

∂t |0,Ω), Hk+5(QT )-regularity is required; cf. Theorem 5.2.

5.2.3. An L∞(0, T ; H1(Ω)) estimate. In this section we use interpolation to
obtain an estimate in the ‖ · ‖L∞(0,T ;H1(Ω))-norm. As, for each θ, 1

2 < θ < 1, there is

a continuous injection of Hθ(0, T ;H1(Ω)) into L∞(0, T ;H1(Ω)), it suffices to obtain
estimates in the Hθ(0, T ;H1(Ω)) norm. Recall that

Hθ(0, T ;H1(Ω)) = [L2(0, T ;H1(Ω)), H1(0, T ;H1(Ω))]θ.

If, for s > 1
2 and j a nonnegative integer with j < s− 1

2 , we introduce the notation

Hs
0,j(QT ) =

{
u ∈ Hs(QT ) :

∂iu

∂ti
= 0, i = 0, . . . , j

}
,
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we may write, for θ ∈ (0, 1) and for m an integer with m > 5
2 − θ,

Hm+θ
0,2 (QT ) = [Hm

0,1(QT ), Hm+1
0,2 (QT )]θ,

as Hm+1
0,2 (QT ) is dense in [Hm

0,1(QT ), Hm+1
0,2 (QT )]θ.

Now, for h > 0, let Lh denote the linear operator that associates with v ∈
Hm

0,1(QT ) the error v − vh ∈ L2(0, T ;H1(Ω)), where vh is the solution to (5.14) for

f = ∂2v
∂t2 −∆v. From Theorem 5.1 we have that this operator is continuous:

‖Lhv‖L2(0,T ;H1(Ω)) ≤ C0 T hk‖v‖Hk+2
0,1 (QT ).(5.17)

For an H1(0, T ;H1(Ω))-estimate, we note that the restriction of the operator Lh to
the subspace Hm+1

0,2 (QT ) commutes with the operator ∂
∂t :

Hm+1
0,2 (QT )

Lh−→ H1(0, T,H1(Ω))

∂
∂t ↓ ∂

∂t ↓

Hm
0,1(QT )

Lh−→ L2(0, T,H1(Ω)),

so that we have, for v ∈ Hk+3
0,2 (QT ),

‖Lhv‖H1(0,T,H1(Ω)) ≤ C1 T hk‖v‖Hk+3
0,2 (QT ).(5.18)

Now as the inclusionsHm+1
0,2 (QT ) ↪→ Hm

0,1(QT ) andH1(0, T,H1(Ω)) ↪→ L2(0, T,H1(Ω))
are dense and continuous, we can combine a standard interpolation result (see [29,
Theorem 5.6]) with (5.17) and (5.18) to obtain

‖Lhv‖Hθ(0,T,H1(Ω)) ≤ C1−θ
0 Cθ1 T hk‖v‖Hk+2+θ

0,2 (QT ).

Thus we have demonstrated the following theorem.
Theorem 5.2. Suppose k ≥ 3. Let T0 be positive and suppose that T0 ≤ T <∞.

Let θ be in the interval ( 1
2 , 1) and suppose that f ∈ L2(QT ) is sufficiently regular that

the solution, u, of (5.13) is in Hk+2+θ(QT ). Then if uh is the solution of (5.14), we
obtain the following estimate:

‖u− uh‖L∞(0,T,H1(Ω)) ≤ Cθ T hk‖u‖Hk+2+θ
0,2 (QT )

with the constant Cθ depending only on θ, Ω, and T0.

6. Time discretization.

6.1. Presentation of the schemes. The semidiscrete equation can be rewrit-
ten

d2uh
dt2

+ Ãhuh = 0,(6.1)

where Ãh denotes the bounded operator in Vh associated with the bilinear form
a(uh, vh) and the inner product (uh, vh)h:

∀ (uh, vh) ∈ Vh × Vh, (Ãhuh, vh)h = a(uh, vh).
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For the time discretization, the simplest scheme consists of using the classical leapfrog
scheme with three time steps:

un+1
h − 2unh + un−1

h

∆t2
+ Ãhu

n
h = 0,(6.2)

where unh is the approximate solution at time tn = n∆t and ∆t denotes the time step.
Such a scheme yields second order accuracy with respect to ∆t which is generally
not sufficient for a higher order finite element method. For instance, the dispersion
analysis (see [33]) on uniform meshes of the semidiscrete problem shows that one
obtains errors in space on the phase velocity of plane waves which areO(h4) andO(h6),

respectively, for the P̃2 and P̃3 elements. On the other hand, the stability analysis
allows us to take a time step ∆t which is proportional to the space step h. If one does
not want to lose the accuracy provided by the space discretization, one must then
also use higher order schemes with respect to time. It is the purpose of this section
to propose a strategy for reaching this goal. Of course, as we have to approximate
an ordinary differential equation we have at our disposal all the machinery of Runge–
Kutta or multistep methods. We shall restrict our investigation to schemes respecting
the following criteria:

(i) The scheme uses three time steps.
(ii) The scheme is explicit.
(iii) The scheme is centered.

Criterion (ii) is obvious in our context and motivated by efficiency considerations
only. Criterion (i) prevents a priori the use of any start-up procedure but, in fact,
also appears necessary to combine higher order accuracy, explicitness, and stability.
Criterion (iii) aims at preserving in the discrete model the reversible nature and
the conservative character of the continuous model. It ensures in particular that no
numerical dissipation is introduced by the time discretization. A convenient strategy
consists in applying the so-called modified equation technique to (6.1). Such schemes
can be seen as appropriate modifications of the leapfrog scheme (6.2) constructed by
looking at the truncation error associated with the leapfrog scheme. More precisely,
if Unh = uh(t

n), where uh(t) denotes the exact solution of (6.1), we have

Un+1
h − 2Unh + Un−1

h

∆t2
=

∂2uh
∂t2

(tn) + 2

k−1∑
l=1

(−1)l+1 ∆t2l

(2l + 2)!
Ãl+1
h Unh +O(∆t)2k.(6.3)

Therefore a 2kth order scheme in ∆t is given by

un+1
h − 2unh + un−1

h

∆t2
+ Ãhu

n
h − 2

k−1∑
l=1

(−1)l+1 ∆t2l

(2l + 2)!
Ãl+1
h unh = 0.(6.4)

From the computational point of view, note that the cost of one time step for (6.4) is
k times the cost of one time step for (6.2). To see that, one evaluates the polynomial

in Ãh appearing in (6.4) using Horner’s rule. For instance, for k = 2 (order 4), the
scheme is

un+1
h − 2unh + un−1

h

∆t2
+ Ãhu

n
h −

∆t2

12
Ã2
hu
n
h = 0(6.5)

and is implemented as

un+1
h − 2unh + un−1

h

∆t2
+ Ãh

[
unh −

∆t2

12
Ãhu

n
h

]
= 0,(6.6)
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where the quantity between brackets appears as the result of an intermediate time
step. For k = 3 (order 6), the scheme is

un+1
h − 2unh + un−1

h

∆t2
+ Ãhu

n
h −

∆t2

12
Ã2
hu
n
h +

∆t4

360
Ã3
hu
n
h = 0,(6.7)

and we use the expression

un+1
h − 2unh + un−1

h

∆t2
+ Ãh

[
unh −

∆t2

12
Ãh

[
unh −

∆t2

30
Ãhu

n
h

]]
= 0.(6.8)

6.2. Stability analysis. An important feature relative to the analysis and the
practical implementation of such schemes is their stability: explicit schemes are con-
strained by a CFL stability condition. For the leapfrog scheme (6.2), this condition
is (see [28])

∆t2‖Ãh‖
4

≤ 1,(6.9)

where the norm of operator ‖Ãh‖ is defined by

‖Ãh‖ = sup
vh∈Vh

a(uh, vh)

|vh|2h
.(6.10)

It is also possible to obtain a sufficient stability condition for the general 2kth order
scheme (6.4). More precisely, we have the following condition.

Lemma 6.1. Scheme (6.4) is stable if

∆t2‖Ãh‖
4

≤ αk,(6.11)

where the coefficient αk is characterized by

αk = sup{α > 0 / ∀x ∈ [0, α], 0 ≤ xQk(x) ≤ 4},(6.12)

where Qk is the polynomial defined by

Qk(x) = 1 + 2

k−1∑
l=1

(−1)lxl

(2l + 2)!
.

In particular, one has

α1 = 1, α2 = 3, α3 = −52/3

2
+

3
√

5

2
+ 5/2 � 1.8930,

α4 =

(
3
√

272/3
(
109 + 27

√
41
√

5
)2/3 − 238 + 14 22/3 3

√
7

3
√

109 + 27
√

41
√

5
)

3
√

272/3

42
3
√

109 + 27
√

41
√

5

� 5.3703.

Proof. Let us denote by σ(Ãh) the spectrum of Ãh, made up of positive real
eigenvalues. Let us remark that scheme (6.4) can be rewritten

un+1
h − 2unh + un−1

h

∆t2
+ Ãh(∆t)unh = 0,(6.13)
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where Ãh(∆t) is defined by

Ãh(∆t) = ÃhQk(∆t2Ãh).

The von Neuman analysis shows that the scheme is stable if and only if the eigenvalues
of the symmetric operator Ãh(∆t) are positive and smaller than 4/∆t2. This leads to
the requirement

∀λ ∈ σ(Ãh), 0 ≤ λ∆t2 Qk(λ∆t2) ≤ 4.

Let us introduce the set

Ek = {x ≥ 0 / 0 ≤ xQk(x) ≤ 4}.
Looking at the behavior of Qk at infinity, it is easy to see that Ek is a compact set
whose first connected component is the segment [0, αk]. As we also have the inclusion

σ(Ãh) ⊂ [0, ‖Ãh‖],
it is very easy to conclude.

Note that, for instance, the time step allowed for the fourth order scheme is
√

3
(1.732) times greater than that for the second order scheme, which compensates in
large part for the fact that the computational time per time step is twice as large.
Also note that ‖Ãh‖ is of the order 1/h2 for small h. An explicit expression for ‖Ãh‖
can be obtained in the case of a regular mesh using a Fourier method (see [33]).

7. Numerical results. We conclude with a presentation of two types of numer-
ical experiments, the first to show the accuracy and the efficiency of the method, the
second one to show that it can be used with unstructured meshes.

7.1. A test in a homogeneous medium. We first consider the very simple
test case: the propagation of a wave in a homogeneous two-dimensional (2D) medium
of velocity 1, with a Dirichlet boundary condition. The source is quasi-punctual and
located at point xS .

∂2u

∂t2
(x, t)−∆u(x, t) = g(x)f(t), x ∈ Ω, t ∈ ]0, T [,

u(x, 0) =
∂u

∂t
(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ∈ ]0, T [,

(7.1)

where 

f(t) =

{
2a(2a(t− b)2 − 1) exp(−a(t− b)2) ∀ t ∈ [0, 3.5],

0 otherwise,

a =
( π

1.31

)2

, b = 1.35,

g(x) = exp(−7|x− xS |).

(7.2)

We consider the case in which Ω is a square and the source is located at its center, i.e.,{
Ω = ]0, 12[× ]0, 12[,

xS = (6, 6).
(7.3)
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Fig. 7.1. Snapshot of the solution on a regular mesh after five seconds.

The source (7.2) generates a wave whose central wavelength is about 0.5. We take
T = 50 so that the wave propagates along more than 100 wavelengths (a hard test
case for second order methods). For the computation, we use a uniform mesh. A
snapshot of the solution after a short time (before any reflexion on the boundary) is
presented in Figure 7.1.

This gives an idea of the variation in space of the solution that has to be compared
with the choice of the space step ∆x. Our goal is to compare the accuracy of our new
P̃2 and P̃3 elements with respect to the usual P1 method. For this comparison, we
adapt, in each case, the step ∆x of the mesh in order that the number of degrees of
freedom should be approximately the same in each experiment:

• For P1, ∆x =
2

15
.

• For P̃2, ∆x =
4

15
.

• For P̃3, ∆x =
2

5
.

The ratio α = ∆t/∆x is taken so that time step ∆t is equal to 0.04 for second order
methods in time and to 0.08 for fourth order in time (we recall that the stability
condition is roughly twice as large for schemes, fourth order in time, which balances
the cost of the corrective term).

In Figures 7.2–7.6, we represent the computed solution at point (9,3) as a function
of time. The top pictures correspond to short times (0 ≤ t ≤ 25) while the bottom
pictures correspond to later times (25 ≤ t ≤ 50). In fact, in each picture, we have two
curves: the dotted line corresponds to the exact solution, which can be computed,
for instance, using the principle of images and the continuous line corresponds to the
approximate solution.

In Figure 7.2, we represent the P1 solution, computed with a centered scheme
second order in time. We see clearly that an unacceptable error appears quite early
on. This points out the dispersive nature of the waves as well as the importance of
using higher order schemes.
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Fig. 7.2. Seismogram P1, second order in time and space, 3.75 elements per wavelength, α =
0.3, t ∈ [0, 25] (top), t ∈ [25, 50] (bottom).
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Fig. 7.3. Seismogram P2, fourth order in space and second order in time and α = 0.15, 1.875
elements per wavelength, t ∈ [0, 25] (top), t ∈ [25, 50] (bottom).
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Fig. 7.4. Seismogram P2, fourth order in space and time and α = 0.3, 1.875 elements per
wavelength, t ∈ [0, 25] (top), t ∈ [25, 50] (bottom).
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Fig. 7.5. Seismogram P3, fourth order in space and second order in time and α = 0.1, 1.25
elements per wavelength, t ∈ [0, 25] (top), t ∈ [25, 50] (bottom).
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Fig. 7.6. Seismogram P3, fourth order in space and time and α = 0.2, 1.25 elements per
wavelength, t ∈ [0, 25] (top), t ∈ [25, 50] (bottom).

In Figure 7.3, we represent the solution computed with the P̃2 space, still using a
second order scheme in time. In comparison with Figure 7.2, we observe a major im-
provement of the quality of the solution due to the gain in spatial accuracy. However,
a small phase-shift appears at later times. The result shown in Figure 7.4, for which
we have used here a scheme fourth order in time, then clearly shows the advantage of
increasing the time accuracy: the phase-shift observed in Figure 7.3 has disappeared.

The results seen in Figures 7.5 and 7.6 have been computed with the space P̃3.
The comparison of these results seems to indicate that it is of no use to continue to
increase the time accuracy: with the P̃3 element and a fourth order scheme in time
(Figure 7.6), we get a quasi-perfect solution, despite the fact that the mesh is rather
coarse in this experiment. Moreover, it can be shown that the method sixth order in
time, which requires a significant increase in computation time, is less stable than the
method fourth order in time.

7.2. An example of a computation in a complex geometry. As an il-
lustration of the ability of our code to handle complex geometries, we treat here a
problem of wave propagation in an exterior domain. The domain, the complement
of a “cone-sphere”-shaped obstacle, can be seen in Figure 7.7, where we also show
the computational mesh, which is in fact nonregular only in a neighborhood of the
obstacle. We observe the diffraction of an incident wave of the same nature as that
considered in section 7.1. This incident wave is emitted by a point source located
at point (7.5,12). We show, in Figure 7.7, a snapshot of the total field. We see in
particular the diffraction phenomenon due to the summit of the cone.
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Fig. 7.7. Mesh for a cone-sphere (top) and the solution after 5.3s (bottom).

8. Conclusion. In this paper, we have constructed triangular finite elements of
degrees 2 and 3 which lead to stable, explicit, third, and fourth order accurate methods
for the approximation of the 2D wave equation on arbitrary meshes. These methods
are obtained by using quadrature rules permitting mass lumping together with higher
order finite difference time stepping. The present work might be generalized in several
directions. We conclude here by presenting the actual state of our research in these
directions:

• Generalization to higher order elements in two dimensions. We have
been able to construct the P̃4 space, which gives fifth order accuracy, along
the same lines as those of section 4. However, it would be nice to have a
general strategy for constructing the P̃k spaces for any k. This does not seem
to be at all easy. The work is in progress.
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• Generalization to dimension 3. This work is underway; we have already
constructed the P̃2 space. This example shows that extension to the three-
dimensional case is not as straightforward as one might think. (See also the
work by Mulder [26]).

• Generalization to other models. The methodology presented here can
be extended to edge elements for Maxwell’s equations [12], [17], [18] and
also to mixed formulations of elastodynamics equations [4], [5]. The essential
additional difficulty lies in the fact that the quantities to be approximated
are no longer scalar, so that obtaining mass lumping is more difficult even in
the case of lower order elements.
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[4] E. Bécache, P. Joly, and C. Tsogka, Eléments finis mixtes et condensation de masse en
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dérivées partielles, Masson, Paris, 1983.

[29] A. Schechter, Spectra of Partial Differential Operators, North-Holland, Amsterdam, 1971.
[30] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison–

Wesley, Reading, MA, 1996.
[31] G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in hetero-

geneous media, in Proceedings of ICOSAHOM’92, Montpellier, France, 1992.
[32] M. Taylor, Partial Differential Equations, Basic Theory, Springer-Verlag, New York, 1996.
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