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Abstract

A variety of models is considered: one-phase flow in a porous medium, two-phase flow in

a porous medium with two rock types, one-phase flow in a porous medium with fractures.

For each of these models the domain of calculation is divided into subdomains corresponding

to the physics of the problem. Then it is shown how to rewrite the problems as interface

problems in order to use nonoverlapping domain decomposition.
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1 Introduction

Domain decomposition methods have been studied for the most part as algebraic tools for solving

problems on parallel machines: see [10] for a review of these methods. However in many models

of flow in porous media arising from environmental problems in the subsurface as well as from

reservoir simulation, the domain of calculation is naturally divided into subdomains correspond-

ing to the physics of the problem. Therefore it is reasonable to construct nonoverlapping domain

decomposition methods which can take into account the coupling of the physical phenomena

taking place in the subdomains. In these methods one rewrites the global problem as a problem

with unknowns on the subdomain interfaces.

After presenting in Section 2 the method for a simple case, namely one-phase flow, we show

in Sections 3 and 4 how it applies to more complex problems: two-phase flow in a porous medium

with two rock types and one-phase flow in a porous medium with fractures.

2 Single phase Darcy flow

We consider first the simple case of an incompressible single phase flow in a porous medium. The

flow is governed by the following equations,

div ~ϕ = 0, in Ω

~ϕ = −K ~∇p, in Ω
(2.1)
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Ω1 Ω2Γ

Figure 2.1: The domain Ω divided into two subdomains Ω1 and Ω2.

where Ω is a polygonal domain. The unknowns ~ϕ and p are the Darcy velocity and the fluid

pressure and the coefficient K is the absolute permeability which may depend on x ∈ Ω. To

equations (2.1) we add the boundary conditions

p = pd on ∂ΩD, ~ϕ · ~n = qd on ∂ΩN , (2.2)

where ~n denotes the outward normal to Ω. ∂ΩD is the part of the boundary of Ω supporting

Dirichlet boundary conditions and ∂ΩN the part supporting Neumann boundary conditions, with

∂Ω = ∂ΩD ∪ ∂ΩN .

Now we divide the domain Ω into two polygonal subdomains Ω1 and Ω2 and we denote by Γ

the interface between the subdomains: Γ = Ω1∩Ω2 (see Fig. 2.1). If we denote by (~ϕi, pi), i = 1, 2,

the restriction of the solution of the system of equations (2.1),(2.2) to the subdomain Ωi, then

we have

div ~ϕi = 0 in Ωi,

~ϕi = −Ki
~∇pi in Ωi,

pi = pd on ∂Ωi ∩ ∂ΩD,
~ϕ · ~ni = qd on ∂Ωi ∩ ∂ΩN ,

(2.3)

with the transmission conditions

p1 = p2, ~ϕ1 · ~n1 = ~ϕ2 · ~n2 on Γ. (2.4)

Here ~ni is the outward normal to Ωi. These conditions express continuity of the pressure and

mass conservation.

Let us now discretize the subdomains Ωi with a mesh Ti of triangles or parallelograms. To

simplify we will assume that the two subdomain meshes are conforming in the sense that their

union forms a regular discretization of the whole domain Ω. We denote by Ei the set of edges

associated to Ti.

To approximate the problem we use the Raviart-Thomas mixed finite elements of lowest order
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[9, 1]. For this purpose we introduce the approximation spaces

~Xi(g) = {~v ∈ ~RT 0(Ωi) | ~v · ~ni = g on ∂Ωi ∩ ∂ΩN},

Mi = {q ∈ L2(Ωi) | q|C ∈ P0(C), C ∈ Ti},

N =
∏

E∈Γ

P0(E).

Here ~RT 0(Ωi) denotes the Raviart-Thomas space of lowest order [8]; functions in this space are

uniquely defined by their flux through the edges of Ei. The Darcy velocity ~ϕi is calculated in

this space. P0 denotes the space of constants and Mi and N are spaces of piecewise constant

functions defined on Ωi and on Γ respectively. The pressure pi inside Ωi is approximated in Mi

and the pressure on Γ denoted by λ is approximated in N . We will use the same notation for the

approximating functions as for the solution of the continuous problem and we assume now that

the boundary data functions pd and qd are constant on each interval of the discretized boundary

∂Ω.

To solve the problem by nonoverlaping domain decomposition techniques we follow ideas from

[5] to reduce the problem in Ω to an interface problem on Γ. We introduce Dirichlet-to-Neumann

operators Si associated to each subdomain Ωi as follows. Given λi in N we solve the problem

Find ~ϕi ∈ ~Xi(qd), pi ∈ Mi such that∫

Ωi

div~ϕi = 0,
∫

Ωi

K−1~ϕi · ~v −

∫

Ωi

pi div~v +

∫

∂Ωi∩∂ΩD

pd ~v · ~ni

+

∫

Γ

λi ~v · ~ni = 0, ∀~v ∈ ~Xi(0).

(2.5)

Then we define Si by

Si(λi) = ~ϕi · ~ni |Γ . (2.6)

Our problem can now be rewritten as the following interface problem

Find λi ∈ N, i = 1, 2, such that

λ1 = λ2, S1(λ1) + S2(λ2) = 0.
(2.7)

The first equality corresponds to pressure continuity while the second corresponds to mass con-

servation (see equations (2.4)). The Dirichlet-to-Neumann operators Si are affine. Denote by S i

the linear part of Si and by Ŝi the constant part: Si(λi) = Si(λi) + Ŝi. With λ = λ1 = λ2, the

domain decomposition method is reduced to the linear problem

Find λ ∈ N such that

(S1 + S2)λ = F
(2.8)
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where F = Ŝ1 + Ŝ2. One can now apply a conjugate gradient method to calculate λ. Pre-

conditionners have been studied. For instance a Neumann-Neumann preconditionner has been

presented and analyzed in [6]. For the case of a decomposition with many subdomains where

some do not touch the boundary of Ω, the balancing domain preconditionner is robust with

respect to strong variations of the permeability K [7, 3].

In the following sections we show how these domain decomposition techniques apply to a

variety of situations.

3 Two-phase incompressible flow with two rock types

3.1 Formulation of the problem

We consider two-phase flow and we assume that the domain Ω is divided into two subdomains

Ωi, each subdomain corresponding to a rock type. This means that not only are the porosity and

the absolute permeability different in Ω1 and in Ω2 but the relative permeability and capillary

pressure curves are also.

Two-phase flow is formulated in terms of a saturation equation and a pressure equation using

the global pressure [2]. We assume the flow to be incompressible and we neglect gravity.

The saturation equation expresses volume conservation for the wetting phase (which is equiv-

alent to mass conservation since the flow is assumed to be incompressible), so inside each sub-

domain Ωi we have:

Φi

∂Si

∂t
+ div ~ϕwi = 0,

~ϕwi = ~ri + ~fi, ~ri = −Kiai(Si)~∇Si, ~fi = Kibi(Si)~ϕi,
(3.1)

where Si = Swi is the saturation of the wetting phase (0 < Si < 1 ). Here Φi and Ki denote the

porosity and the absolute permeability, and ~ϕi is the total Darcy velocity, the sum of the Darcy

velocities of the wetting and the nonwetting phases:

~ϕi = ~ϕwi + ~ϕnwi.

The coefficients ai and bi depend on the mobilities kwi and knwi and the capillary pressure pci

which are functions of the saturation:

ai =
kwi knwi

kwi + knwi

dpci

dS
, bi =

kwi

kwi + knwi

.

The capillary pressure is pci = pnwi − pwi where pnwi and pwi denote the pressures in the

nonwetting and wetting phases.

Plugging the first equation of (3.1) into the second, one obtains for saturation equation a

nonlinear parabolic equation of diffusion-advection type. The vector ~ri, the diffusive contribu-

tion to ~ϕwi, is due to capillary effects and ~fi, the advective contribution to ~ϕwi, depends on the
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total Darcy velocity ~ϕi which is given by the pressure equation that we now describe.

The pressure equation expresses the conservation of the total volume of the two phases. Since

the flow is assumed to be incompressible this takes the form

div ~ϕi = 0,

~ϕi = −Kidi(Si)~∇pi

(3.2)

where the global pressure pi is given by

pi =
1

2
(pwi + pnwi) + γi(S). (3.3)

The coefficients γi and di are functions of the saturation S:

γi =

∫ S

0

(bi(S)−
1

2
)
dpci

dS
, di = kwi + knwi.

Continuity of the phase pressures pwi and pnwi implies that the capillary pressure pci, and

consequently the saturation Si, is continuous, and that the global pressure pi is also continuous

(see definition 3.3). Also, because of phase conservation, the normal components of the phase

Darcy velocities ~ϕwi and ~ϕnwi, and consequently the normal components of the total Darcy ve-

locity ~ϕi, are continuous across any hypersurface.

Now we come to the transmission condition across Γ and we assume here for sake of simplicity

that the two capillary pressure curves have the same endpoints.

Across the interface Γ we still have phase conservation and continuity of the phase pressures.

This latter condition implies that the capillary pressure is continuous since it is the difference of

the phase pressures, and that the quantity p− γ is continuous (see equation (3.3)). Thus for the

pressure equation we have the following transmission conditions

p1 − γ1(S1) = p2 − γ2(S2), ~ϕ1 · ~n1 = ~ϕ2 · ~n2. (3.4)

This implies that in general the global pressure p is discontinuous across Γ. The second equation

of (3.4) enforces conservation of the global mass of the two phases.

For the saturation equation the transmission conditions are

pc1(S1) = pc2(S2), ~ϕw1 · ~n1 = ~ϕw2 · ~n2 on Γ. (3.5)

Thus the saturation is discontinuous in general; the second equation enforces conservation of the

mass of the wetting phase. One should note that the first equation is a nonlinear transmission

condition for the saturation.
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3.2 The pressure equation

To equations (3.2) we add boundary conditions (2.2). Equation (3.4) shows that the situation

differs now from that in Section 2 in that the pressure p is discontinuous across Γ with a given

jump.

We discretize with the same ideas as in Section 2, and we introduce the Dirichlet-to-Neumann

operator Si which associates to λi ∈ N the flow rate ~ϕi · ni where ~ϕi is the solution of

Find ~ϕi ∈ ~Xi(qd), pi ∈ Mi such that∫

Ωi

div~ϕi = 0,
∫

Ωi

(Kidi(Si))
−1~ϕi · ~v −

∫

Ωi

pi div~v +

∫

∂Ωi∩ΓD

pd ~v · ~ni

+

∫

Γ

(γi(Si) + λi) ~v · ~ni = 0, ~v ∈ ~Xi(0).

(3.6)

With this definition of the Dirichlet-to-Neumann operators the problem reduces again to prob-

lems (2.7) and (2.8). In this case λ represents p− γ(S).

3.3 The saturation equation

To equations (3.1) we add the boundary conditions

S = Sd on ∂ΩSD, ~ϕw · ~n = qwd on ∂ΩSN . (3.7)

Discretizing the saturation equation is more complex than discretizing the pressure equation.

Indeed it is a nonlinear parabolic equation, often advection dominated, with a diffusion term

which degenerates when the saturation is minimum or maximum. We propose the use of a semi-

implicit Euler discretization in time [4]. When calculating the saturation at the n + 1 time level

the advection term is lagging in time at the n time level and calculated with upstream values of

the saturation, while the diffusion term is calculated at the n + 1 time level with the nonlinear

coefficient a lagging also at the previous time level. Thus at each time step one has to solve only

a linear system to calculate the saturation.

We assume that the data Sd and qwd are constant on each interval of the boundary ∂ Ω and

the approximation spaces for Si and ~ϕwi are the same as in the previous sections. Actually since

the advective part of the flow ~fi is calculated at the previous time level, the main flow unknowm

is the diffusive part of the flow ~ri.

In order to simplify the presentation, we assume that the domain Ω is rectangular, discretized

with rectangles with sides parallel to the x1 and x2 coordinates axes so we can use a cell-centered

finite volume method. Also the interface Γ is supposed to be parallel to the x2 axis as in Fig.

2.1. We denote by ∂ ΩiB , ∂ ΩiT , ∂ ΩiL and ∂ ΩiR the bottom, top, left and right parts of the

boundary ∂ Ωi.
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With these assumptions the discretized saturation equation is:

Find ~ri ∈ ~Xi(r
n
d ), Si ∈ Mi such that

∫

C

Φi

Sn+1
i − Sn

i

∆t
+

∫

∂C

F n∗
wi = 0 ∀C ∈ Ti,

F n∗
wi = ~r n+1

i · ~nC + F n
i ,

F n
i = ~ϕn

i · ~nC bi(S
n
i−),

~r n+1
i · ~nE |E= −K

H

iEa(S
n

iE)
Sn+1

i CE1
− Sn+1

iCE2

hE

∀E ∈ Ei, E 6⊂ ∂ ΩSN ,

Sn+1

iCE1
= Sd when E ⊂ ∂ ΩSD ∩ (∂ ΩiB ∪ ∂ ΩiL),

Sn+1
iCE2

= Sd when E ⊂ ∂ ΩSD ∩ (∂ ΩiT ∪ ∂ ΩiR),

Sn+1

iCE2
= λ1 when E ⊂ Γ, i = 1,

Sn+1

iCE1
= λ2 when E ⊂ Γ, i = 2,

(3.8)

with the transmission conditions

pc1(λ1) = pc2(λ2), F n∗
w1 + F n∗

w2 = 0 on Γ. (3.9)

We used the following notation: ~nC is the outward normal to ∂C, ~nE is the normal to the edge E

pointing in the positive x1 direction if E is vertical or pointing in the positive x2 direction if E is

horizontal, Sn
i− is the saturation value which is upstream with respect to ~ϕ n

i , and rn
d = qn

wd−F n
i .

When E is an interior edge we denote by CE1 and CE2 the two cells adjacent to E, K
H

iE denotes

the harmonic average of K in these two cells, S
n

iE denotes the standard average of Sn+1

i CE1
and

Sn+1

i CE2
, and hE is equal to the space discretization step. When E is a boundary edge K

H

iE is just

the value of K in the neighbouring edge and hE is equal to half the space discretization step.

To rewrite problem (3.8),(3.9) as an interface problem we proceed as before and we introduce

for each subdomain Ωi the linear Dirichlet-to-Neumann operator Si defined as

Si(λi) = (~r n+1
i · ~ni + F n

i ) |Γ,

where ~r n+1
i is calculated by solving equations (3.8) inside each subdomain Ωi with a given λi on

Γ.

Our problem can now be rewritten as the following interface problem

Find λi ∈ N, i = 1, 2, such that

pc1(λ1) = pc2(λ2), S1(λ1) + S2(λ2) = 0.
(3.10)

One observes that the first equation is nonlinear and that the second equation implies that ~r ·n is

discontinuous across Γ. One way to solve problem (3.10) is to use incomplete Newton iterations
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with a preconditionned GMRES.

Remark: it is possible to make the diffusion term fully implicit. This would lead to use a

nonlinear Dirichlet-to-Neumann operator.

3.4 A numerical example

As an example we consider the displacement of a nonwetting fluid by a wetting fluid with a

mobility 10 times larger. The domain of calculation has two regions with different rock types,

that on the left having an absolute permeability 5 times larger than that on the right. The

injection is parallel to the interface Γ between the two rock types (see Fig. 3.1).

�����)

low
permeability

PPPPPq

high

permeability

6 6 6 6

injected fluid less viscous

Figure 3.1: An example of a displacement in a medium with two rock types.

The capillary functions are given by the standard formula

pc(S) = J(S)

√
Φ

K

and are shown in Fig. 3.2. Since K is larger in Ω1 than in Ω2, the capillary pressure is smaller in

Ω1 than in Ω2, so at the interface we can expect a discontinuous saturation smaller in Ω1. Figure

3.3 shows numerical results at a certain time. The picture on the right shows the total Darcy

velocity field ~ϕ at a certain time. Since the injection rate is constant along the bottom boundary

and the permeability is low on the right the Darcy velocity in Ω2 turns to the left in the vicinity

of the injection boundary. The picture on the left shows the saturation of the injected fluid at

the same time. One can observe the discontinuity at the interface. Note that along this interface,

where the saturation is not equal to zero, the saturation is smaller on the left than on the right

because the capillary pressure curve is smaller on the left than on the right. However further
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S

pc

0

Figure 3.2: Capillary pressure curves, pc1 lower and pc2 upper.

away from this interface it is the opposite: the saturation, as the absolute permeability, is larger

on the left than on the right.

Figure 3.3: Calculated total Darcy velocity (left) and saturation (right).

4 Domain decomposition for flow in porous media with

fractures

4.1 Formulation of the problem

In this section the domain Ω is divided into two subdomains Ωi, i = 1, 2, by a fracture Γ which

is also a porous medium but with higher permeability. This fracture is assumed to have a width

small compared to the size of the whole domain, so in the numerical model it is modelled as the

interface Γ between the subdomains.
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Here we are interested in understanding the interaction between the flow in the subdomains

and the flow in the fracture. We assume that the flow in the subdomains as well as in the fracture

is governed by Darcy’s law, is incompressible and we neglect gravity.

Interaction between the fracture and the subdomains is assumed to satisfy mass conservation

and pressure continuity. Thus we consider the following set of equations.

In the subdomains:

div(~ϕi) = 0 in Ωi,

~ϕi = −Ki
~∇pi in Ωi,

pi = pf on ∂Ωi ∩ Γ,
pi = pd on ∂Ωi ∩ ∂ΩD,

~ϕi · ~ni = qd on ∂Ωi ∩ ∂ΩN .

(4.1)

In the fracture:
∂ ϕf

∂ xf

= ~ϕ1 · ~n1 + ~ϕ2 · ~n2, on Γ,

ϕf = −σf Kf

∂ pf

∂ xf

on Γ,

pf = pf,d on ∂ ΓD ,
ϕf = qfd on ∂ ΓN .

(4.2)

Here Kf , σf , pf and ϕf denote the permeability, the width, the pressure and the flow rate in

the fracture, and ∂/∂ xf denotes the derivative along the fracture.

At the extremities of the fracture there are Dirichlet (on ∂ ΓD) or Neumann (on ∂ ΓN ) bound-

ary conditions. If ∂ ΓD touches ∂Ωi ∩ ∂ΩD then pressure continuity implies that the pressure

data must satisfy pd = pfd.

The first equation (4.2) expresses mass conservation for the flow in the fracture. The right-

hand side in this equation is the contribution of the subdomain flow to the fracture flow.

We proceed now as in Section 2, defining the same Dirichlet-to-Neumann operators (2.5),(2.6)

and using the same notation. Moreover on Γ the pressure pf is approximated in a space Mf of

functions constant on each interval, while the flow rate ϕf is approximated in Xf (qfd) a space

of continuous piecewise linear functions which are equal to qfd on ∂ ΓN .

This results in the following interface problem

Find ϕf ∈ Xf (qfd), pf ∈ N such that∫

Γ

S1(pf ) + S2(pf ) +
∂ ϕf

∂ xf

= 0,
∫

Γ

(σf Kf )−1ϕf v −

∫

Γ

pf

∂ v

∂ xf

+ (pfd v) |∂ ΓD
= 0 ∀ v ∈ Xf (q0).

Comparing with problem (2.8) we observe that the problem to be solved here is a global equation

on the interface Γ.
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Figure 4.1: Calculated Darcy’s velocity for a symmetric and a nonsymmetric flow pattern

4.2 A numerical experiment

To illustrate the model we consider an ideal dimensionless problem. The domain is an horizontal

rectangular slice of porous medium, of dimensions 2 × 1, with a given pressure on the left and

right boundaries and no flow conditions on the top and bottom boundaries. In the domain the

permeability is equal to one. The domain is divided into two equally large sub-domains by a

linear fracture parallel to the x2 axis. In the fracture we chose σf Kf = 2. For example the

fracture could be of width 0.1 and could have a permeability equal to 20.

Two cases are considered. A symmetric case where pressures on the left and on the right

boundaries of the domain are equal. So the flow is driven only by the fracture and is symmetric.

In the other case there is a pressure drop from the right boundary to the left one. Then the

flow is a combination of the flow in the fracture and that going from left to right in the rest of

the porous medium. Flow in the fracture is driven by a pressure drop of 10 between the two

extremities of the fracture for the first case and a pressure drop of 5 for the second case.

Numerical results are shown on Fig. 4.1. Arrows represent the flow field with length propor-

tional to the magnitude of the velocity. The gray scale represents the magnitude of the velocity

with the lightest color corresponding to the largest velocity. We see that there is actual flow in-

teraction between the fracture and the rest of the porous medium. In particular one can observe

that some fluid is coming out of the fracture and then is coming back into it. In the nonsym-

metric case we notice also that even though most of the flow is attracted into the fracture, there

is still some flow on the left part of the domain pointing toward the left.

5 Conclusion

Studying a few examples of flow in porous media, we met a variety of transmission conditions

which are nonstandard: discontinuity of the scalar variable (pressure or saturation), discontinuity

of the flow rate variable (capillary flow), nonlinear transmission condition (saturation), nonlocal
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transmission condition (porous medium with fractures). In spite of this variety of situations

we showed that domain decomposition techniques based on Dirichlet-to-Neumann operators can

be used to set these problems as interface problems to be solved using domain decomposition

algorithms.
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