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1 Introduction

Finite volume methods and finite elements methods are generally opposed as competing ap-
proximation techniques. However there are ways to look at them which make these methods
closer than what is usually thought, and this leads to the construction of generalized finite
volume methods. Here we will restrict ourselves to cell-centered finite volumes.

On one hand, cell-centered finite volume methods are widely used by engineers and scien-
tists who have to perform numerical simulations. When building such methods, one discretizes
the domain, usually with rectangles, but not always, and equations are written inside each
cell of the discretization. Then relations between cells are written. To do so, the solution
of the problem is approximated by piecewise constants. Most often, before being eliminated,
flux unknowns are also introduced to write the intercell relations which describe conservation.
This procedure is very close to the physics and, in this fashion, even complicated physical
laws can be implemented easily.

On the other hand, finite element methods have their advantages: they are based on a rig-
orous mathematical analysis, higher order methods can be obtained by increasing the degrees
of the polynomials, and structured as well as unstructured meshes can be used depending on
the application that is under study.

In this paper we show how to combine the advantages of these two approximation tech-
niques into one numerical procedure. We retain the point of view of finite volume methods,
but we call them generalized since, to approximate the unknowns, we use general discon-
tinuous piecewise polynomial approximations instead of just piecewise constants. This will
be achieved using mixed-hybrid finite element and Godunov’s methods. This paper can be
viewed as a sequence to a paper by Chavent-Roberts [CR91] where the method was described
for linear elliptic and parabolic equations.

To illustrate our point we consider as an example a model for incompressible two-phase
flow in a porous medium which results in a nonlinear system of two equations. One equation,
the saturation equation, is parabolic and represents conservation of one of the phases which
implies continuity of the normal components of the Darcy velocity of this phase. The other
equation, the pressure equation, is elliptic and represents conservation of both phases which
implies continuity of the normal components of the total Darcy velocity. Our numerical
procedure will follow closely these physical requirements. Even in the homogeneous case the
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resulting schemes may be different from what has been already presented in [CJ86, CCJ+90,
Daw91]. However the power of our numerical procedure will be shown in the case of a porous
medium made of several subdomains with different rock properties.

Similar techniques have been used in nuclear engineering for the diffusion approximation
and are called nodal methods [HJR88, Hen92]. In such a problem equations represent the con-
servation of neutrons, so the normal components of the current must be continuous. Efficient
nodal methods achieve these physical constraints and can be obtained from mixed-hybrid
finite elements.

2 Two-phase flow in porous media

As an example let us consider the model for incompressible two-phase flow in a porous medium
which uses the global pressure formulation [CJ86].

The saturation equation expresses volume conservation for the wetting phase (which is
equivalent to mass conservation since the flow is assumed to be incompressible):

Φ
∂S

∂t
+ div ~ϕw = 0 (1)

where S = Sw is the saturation of the wetting phase (0 < S < 1 ). The Darcy velocity of the
wetting phase ~ϕw is given by the motion equation{

~ϕw = ~r + ~f,

~r = −K~∇α(S), ~f = K(bT (S)~ϕT + bG(S)~qG).
(2)

Here K denotes the tensor of absolute permeabilities, ~ϕT the total Darcy velocity which is
the sum of the Darcy velocities of the wetting and the nonwetting phase and ~qG denotes the
gravity field :

~ϕT = ~ϕw + ~ϕnw, ~qG = g~∇Z.

with g the gravity constant and Z the depth at the location.
Coefficients α, bT , bG depend on the mobilities kw, knw and the capillary pressure pc :

a =
kwknw

kw + knw

dpc

dS
, α =

∫ S

0
a(s)ds ,

bT =
kw

kw + knw
, bG =

kwknw

kw + knw
(ρw − ρnw).

The mobilities are positive monotone functions of the saturation S; kw is increasing with
kw(0) = 0 while knw is decreasing with knw(1) = 0. The capillary pressure pc = pnw − pw

is a positive decreasing function of S if pnw, pw denote the pressures in the nonwetting and
wetting phases.

Plugging equation (2) into (1) the saturation equations become a nonlinear parabolic
equation of diffusion-convection type. The vector ~r is the diffusion contribution to ~ϕw due to
capillary effects and ~f is the convection contribution to ~ϕw. The latter is itself the sum of
gravity effects and of the contribution of the total flow rate ~ϕT which is given by the pressure
equation that we now describe.
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The pressure equation models the conservation of the total volume of the two phases.
Since the flow is assumed to be incompressible this takes the form

div ~ϕT = 0. (3)

Using the global pressure formulation [CJ86] the total flow rate is given by the motion equation

~ϕT = −Kd(S)(~∇p− ρ(S)~qG) (4)

where the global pressure p is given by

p =
1
2
(pw + pnw) + γ(S). (5)

The coefficients γ, d, ρ are functions of the saturation S :

γ =
∫ S

0
(bT (s)− 1

2
)
dpc

dS
,

d = kw + knw, ρ =
kwρw + knwρnw

kw + knw
.

Continuity of the phase pressures pw, pnw imply that the capillary pressure pc, and con-
sequently the saturation S, is continuous, and that so is the global pressure p because of
its definition (5). Also, because of phase conservation, the normal components of the phase
Darcy velocities ~ϕw, ~ϕnw, and consequently of the total Darcy velocity ~ϕT , are continuous
across any hypersurface.

However, if there are several rock types, that is subdomains with different relative perme-
ability and capillary pressure curves, the same physical assumptions hold, that is continuity
of the phase pressures and phase conservation. But, across the interface between two rock
types, continuity of the capillary pressure

pl
c(S

l) = pr
c(S

r). (6)

implies now that the saturation is discontinuous. Here the superscripts l and r designate the
left and right sides of the interface. Furthermore, from (5) and the continuity of the phase
pressures, we obtain

1
2
(pw + pnw) = pl − γl(Sl) = pr − γr(Sr). (7)

which shows that the global pressure is also discontinuous across the interface between two
rock types. Phase conservation still implies that the normal components of the Darcy veloci-
ties ~ϕw, ~ϕT are continuous across the interface.

3 Approximation spaces

The domain Ω where the equations are defined is discretized with a structured or an unstruc-
tured mesh. Denote by C ∈ T the cells and by E ∈ E the faces (or edges in 2-D) of the
mesh.

In our framework, the scalar unknowns, pressure and saturation, as well as the vector
unknowns, Darcy velocities, are approximated locally, cell per cell, by polynomials. They
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are discontinuous from one cell to the other. Inside each cell, for both the scalar and vector
unknowns, there are cell degrees of freedom which are moments calculated over the cell,
and edge degrees of freedom which are moments of the scalar function and moments of the
normal components of the vector function over the faces. This is a generalization of standard
finite volumes where scalars are approximated as piecewise constants, and where the vector
unknowns have one degree of freedom per edge, the latter unknowns being usually eliminated.

However mathematical analysis as well as numerical experience show that the approxima-
tion spaces for the scalar and vector unknowns cannot be chosen arbitrarily. They must satisfy
certain compatibility conditions which were studied in the analysis of mixed and mixed-hybrid
finite elements. We need three approximation spaces.

1. The total Darcy velocity ~ϕT and the Darcy velocity of the phase wetting ~ϕw are calcu-
lated in an approximation space ~X such that

~X = {~v ∈ (L2(Ω))2 | ~v|C ∈ ~XC , C ∈ T }.

Note that functions of X are discontinuous from one cell to the other and that the
inclusion of XC into H(div, C) ensures that, inside the cell, components of the functions
normal to the faces (or edges) can be defined.

2. The pressure p and the saturation S are first approximated inside the cells in a space
M which is a subset of L2(Ω). Again functions of M are discontinuous from one cell to
the other.

3. Then the pressure p and the saturation S are also approximated on the faces (or edges).
We introduce TP and TS which approximate traces of the pressure and the saturation
on the faces (or edges) in the space N ⊂

∏
C∈T

∏
E⊂∂C L2(E). Note that there are two

traces per face (or edge) that we will denote by (TP )l, (TP )r and (TS)l, (TS)r.

As already mentionned spaces ~X,M and N cannot be chosen arbitrarily. Their choice
must be based on the theory of mixed-finite elements [BF91, RT91] and there is now a large
catalogue of spaces available in two or three dimensions, for structured or nonstructured
meshes [RT77, BDM85, BDDF87, BDFM87, Ned80, Ned86]. Figure 1 gives examples in two
dimensions.

4 Discretization of the pressure equation

Let us consider first the pressure equation that we have written as a system of two equations,
a conservation equation (3) and a motion equation (4). To follow closely the physics we are
going to write these two equations on each cell of the discretization and then equations on
the edges expressing the intercells relations.

To simplify the notations we use the same notations for the approximate functions as for
the continuous ones. So we like to find ~ϕT ∈ ~X, p ∈ M,TP ∈ N satisfying the following
equations.

Cell equations :

1. conservation equations∫
C

div~ϕT q = −
∫

C
~ϕT · ~∇q +

∫
∂C

(~ϕT · ~nC)q = 0, q ∈ M, C ∈ T . (8)
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Figure 1: Examples of mixed finite element spaces in two dimensions.
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This is equation (3), multiplied by test functions q and integrated over a cell C. It may
or may not be integrated by parts. When it is, the degrees of freedom associated with
the normal components appear explicitely in the approximation equation.

2. motion equations∫
C
(Kd)−1~ϕT · ~v −

∫
C
p div~v +

∑
E⊂∂C

∫
E

TP ~v · ~n =
∫

C
ρ ~qG · ~v,

~v ∈ ~XC , C ∈ T . (9)

This equation is obtained by multiplying equation (4) by (Kd)−1 and by test functions
~v, and by integrating over the cell C.

Edge equations, for edges within a given rock type:

3. pressure continuity

Since the pressure must be continuous across the edges, the two traces of the pressure
must be equal, so (TP )l = (TP )r on all interior edges. On the boundary, if we denote by
EPD the set of boundary edges where Dirichlet conditions are imposed on the pressure,
we have also

TP = pd onE ∈ EPD.

4. conservation equations

To preserve conservation the normal components of the total Darcy velocity must be
continuous across the interior edges. If we assume also that we have homogenous Neu-
mann conditions on the part of the boundary where we do not have Dirichlet conditions,
all these conditions can be written as∫

E
~ϕl

T · ~n τ =
∫

E
~ϕr

T · ~n τ, τ ∈ N, (10)

where ~n denotes one of the normals to E.

Edge equations, for edges between two rock types:

3bis. pressure discontinuity

Since traces on the edges are available in our approximation framework, equation (7)
can be approximated in a straightforward manner:

(TP )l − γl((TS)l) = (TP )r − γr((TS)r). (11)

4bis. conservation equations

Total conservation still implies equation (10).

We claim that the above method is a finite volume method for the following reasons.

– Equations have been written cell by cell and intercell relations are expressed by the edge
equations.
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– The scheme is cellwise conservative. Indeed since the approximation space M contains
piecewise constants we have∫

C
div~ϕT =

∑
E⊂∂C

∫
E

~ϕT · ~nC = 0, C ∈ T .

– Let us consider the case when the domain is discretized with rectangular meshes with
faces (or sides) parallel to the coordinate axes and when the Raviart-Thomas-Nedelec
elements of index 1 are used. If one uses the trapezoidal rule in all the coordinate
directions to calculate the integral

∫
C(Kd)−1~ϕT · ~v one can eliminate the total velocity

~ϕT and obtains the standard cell-centered finite volume method with a five-point stencil
in two dimensions or a seven-point stencil in three dimensions [Jaf84, WW88]. On
triangular meshes the relation between mixed finite elements and cell-centered finite
volumes is investigated in [ABMO95].

One should also note that, for a given rock type, the above method is equivalent to the
mixed or mixed-hybrid finite element method in the sense that the numbers for p and ~ϕT

obtained from the machine are the same. The difference in the formulation lies in the fact
that in our finite volume method all continuity requirements are enforced explicitly.

Once the approximate formulation has been written, the resulting system of equations is
very large and the next step is to choose the most efficient way to implement it. However this
is beyond the scope of this paper.

5 Discretization of the saturation equation

We shall proceed for the saturation equation in a similar way to that for the pressure equa-
tion. However the saturation equation is of diffusion-convection type and convection is often
dominant. Therefore a special treatment of the convection terms will be introduced using
Godunov techniques. Since we are emphasizing space discretization we will not discretize
time and leave to the reader the choice of his favorite time discretization.

Again using for simplicity the same notations for continuous and approximate functions
we like to find ~r(t) ∈ ~X, S(t) ∈ M,TS(t) ∈ N satisfying the following equations.

Cell equations :

1. conservation equations∫
C

∂S

∂t
−

∫
C

~ϕw · ~∇q +
∫

∂C
Fwq = 0, q ∈ M, C ∈ T (12)

This equation is the discretized analogue of equation (1). We multiplied by test func-
tions, integrated over the cell and integrated by parts the divergence term. The quan-
tities ~ϕw and Fw are defined below.

2. motion equations

Inside each cell we write the discrete analogue of equation (2) :

~ϕw = ~r + ~f(S) (13)

7



Inside the cell all quantities in the definition (2) of ~f are well defined and so is ~f(S).
However for the capillary contribution ~r, which is a gradient, we introduce a weak
formulation. We multiply definition (2) of ~r by K−1 and by test functions, we integrate
over the cell and integrate by parts. We obtain :∫

C
K−1~r · ~v −

∫
C

α(S) div~v +
∑

E⊂∂C

∫
E

α(TS) ~v · ~nC = 0,

~v ∈ ~XC , C ∈ T . (14)

Edge equations for edges within a given rock type:

3. saturation continuity

As for the pressure, the saturation must be continuous across the edges, so the two
traces of the saturation must be equal: (TS)l = (TS)r on all interior edges. On the
boundary, if we denote by ESD the set of boundary edges where Dirichlet conditions are
imposed on the saturation, we have also TS = Sd onE ∈ ESD.

4. conservation equations

We need to define the flow rate of the wetting phase Fw on both sides of each interior edge
and we will write that these flow rates must be equal in order to preserve conservation
of the wetting phase. The flow rate Fw is the sum of the capillary and convective
contributions :

Fw = ~r · ~nC + F.

To approximate convection we use Godunov type methods, so F , which approximates
~f · ~nC is a numerical flux, calculated along the normal to the edge with an exact or
approximate Riemann solver [God59, BJ91]. However there are two ways to do so, de-
pending on whether one uses or not the traces TS on the saturation in order to calculate
F .

First variant to approximate convection: without using TS
This is the standard way: F = F (Sl, Sr) where Sl and Sr are the traces of the cell values
of the saturation in the cells having E in common. Since F is uniquely defined (modulo
the sign) on the edge, the necessary continuity of Fw to preserve conservation of the
wetting phase, implies that the normal components of ~r must be continuous across the
interior edges :

F l
w = F r

w ⇐⇒
∫

E
~r · ~n τ =

∫
E

~r · ~n τ, τ ∈ N, E ∈
◦
E

where
◦
E denotes the set of interior edges. Thus, in this variant, the numerical scheme

enforces separate conservation of the diffusion and convection contributions to the Darcy
velocity of the wetting phase, while the physics requires that only their sum should be
conservative. This will not be the case in the second variant for approximating convec-
tion that we present now.
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Second variant to approximate convection: using TS
Now we write F l = F (Sl, TSl), F r = F (TSr, Sr) where Sl, Sr and TSl, TSr are the cell
values and edge values of the saturation in the two neighbouring cells. Then we write
continuity of the water flow rates:

F l
w = F r

w, with F l
w = ~rl · ~n + F l, F r

w = ~rr · ~n + F r.

As we see, the numerical scheme enforces only conservation of the wetting phase which
is the true physical assumption, and not separate continuity of the normal components
of the diffusion and convection contributions to the Darcy velocity ~ϕw. However such a
procedure collapses when there is no capillarity since edge values of the saturation are
not then calculated.

For boundary edges, if we are given a flow rate for the wetting phase, say equal to 0 for
a closed boundary, on the boundary edges which do not belong to ESD we simply plug

Fw = 0onE ∈ E \ ESD, E ⊂ ∂Ω

into equation (12) and the normal components of ~r must also vanish.

Remark : When S ∈ M is piecewise linear (or bilinear) the method must be stabilized with
limiters [CJ86, VJ93].

Edge equations for edges between two rock types:

3. saturation discontinuity

Using the saturation edge values it is easy to write the discrete analogue of equation
(6) for continuity of the capillary pressure:

pl
c(TSl) = pr

c(TSr).

4. conservation equations

We proceed in a similar way as we did for edges within a given rock type. The flow
rate of the wetting phase Fw is defined on both sides of each interior edge and we write
that these flow rates must be equal in order to preserve conservation of the wetting
phase. Again when calculating the convective part of the flow rate, two variants may
be proposed depending on whether one uses or not the edge values of the saturation.

In the first variant, when edge values are not used, the only difficulty lies in the Riemann
solver which is now associated with a Riemann problem with a flux function which
changes across the interface between the two rock types. Such Riemann solvers have
been studied in [GR91, Jaf96].

6 Conclusion

For structured as well as nonstructured meshes, we presented a general framework for finite
volume methods which allows for the use of nonconstant approximation inside the discretiza-
tion cells. These methods use the approximation spaces provided by mixed-hybrid finite
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element methods. Using incompressible two-phase flow as an example, it was shown that this
approximation technique is very convenient for problems with heterogeneities, and that even
in the homogeneous case, it may lead to new schemes.
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[BJ91] Brenier Y. and Jaffré J. (1991) Upstream differencing for multiphase flow in reser-
voir simulation. SIAM J. Num. Anal. 28: 685–696.
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[CJ86] Chavent G. and Jaffré J. (1986) Mathematical Models and Finite Elements for
Reservoir Simulation, volume 17 of Studies in Mathematics and its Applications.
North Holland, Amsterdam, Amsterdam.

[CR91] Chavent G. and Roberts J. (1991) A unified physical presentation of mixed,
mixed-hybrid finite elements and standard finite difference approximations for the
determination of velocities in waterflow problems. Advances in Water Ressources
14(6): 329–348.

[Daw91] Dawson C. (1991) Godunov-mixed methods for advective flow problems in one
space dimension. SINUM 28: 1282–1309.

[God59] Godunov S. (1959) Finite difference methods for numerical computation of discon-
tinuous solutions of the equations of fluid dynamics. Math. Sbornik 47: 271–306.

[GR91] Gimse T. and Risebro N. (1991) Riemann problems with a discontinuous flux func-
tion. In Proceedings of the Third International Conference on Hyperbolic problems,
Uppsala, Sweden, June 1990, pages 488–502. Studenlitteratur, Chartwell-Bratt,
Uppsala.

10



[Hen92] Hennart J.-P. (1992) A finite element approach to point- and mesh-centered finite
difference schemes over rectangular grids. Ann. Nucl. Energy 19: 663–678.

[HJR88] Hennart J.-P., Jaffre J., and Roberts J. (1988) A constructive method for deriving
finite elements of nodal types. Numerische Mathematik 53: 701–738.
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