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A NEW NONCONFORMING FINITE ELEMENT METHOD FOR THE
COMPUTATION OF ELECTROMAGNETIC GUIDED WAVES I:
MATHEMATICAL ANALYSIS*
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Abstract. We are concerned with the problem of computing electromagnetic guided waves in a closed, inho-
mogeneous, cylindrical wave guide. These waves correspond to solutions of an eigenvalue problem, and classical
methods produce, in addition to approximations to the solutions, spurious modes which are particularly troublesome
because they correspond to nonzero approximations of the O eigenvalue. A nonconforming finite element method for
the calculation of guided waves without spurious modes is introduced and analyzed.
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1. Introduction. This article is concerned with the numerical calculation of electromag-
netic guided waves in a closed, inhomogeneous, cylindrical wave guide. The wave guide
(see Fig. 1) will be identified with a right cylinder € in R* of cross section 2; Q = Q x R.
As the wave guide is closed, we assume that 2 is a bounded domain in R? with boundary
I' admitting a unit outward-pointing normal vector field n defined almost everywhere. The
boundary of {2 is then I' = I' x R, and i = (n, 0) is a unit outward-pointing normal vector
field on €. In general, we shall denote a point in R? by x = (x1, x2) and a point in R? by
X = (x1, X2, x3) = (¥, x3). _

Let E denote the electric field and H denote the magnetic field in 2. The conductive
properties of 2 are described by ¢, the dielectric permittivity, and ., the magnetic permeability.
These are real scalar fields on $2 that we assume to be independent of x3 and bounded above
and away from 0. By an electromagnetic wave in {2, we shall mean a solution of Maxwell’s
equations in second-order form

02U
1.1 v-—(,j—l;-i— + Curl(n CurlU) =0,

where either

1.2) U=E, v=eandn = 1/u,
or

(1.3) U=H, v=puandn = 1/e.
We have

(1.4) 0 < Vmin <V < Vmax < 00,

0 < Mmin £ N < Nmax < 00.
An electromagnetic guided wave is a solution U of (1.1) of the following form:
(1.5) U(xy, x2, X3) = (x1, x)e' @ ~P%),
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S

X1

FiG. 1. The wave guide.

where &, the amplitude function, is a function of finite energy in €2 in a sense to be made precise
below, and where w, the frequency, and B, the wave number, are positive, real constants. Thus
U is a harmonic plane wave propagating with no distortion in the positive x3-direction with
phase velocity w/B.

We impose the boundary condition

(1.6) Uxn=0 onTl.

Such a boundary condition is physically relevant since when U = E, for instance, this corre-
sponds to a perfectly conducting boundary.
By introducing the operator curig

- a -—
_l:t_z + lﬂuz
3.7C2
~ - 8u3
lgu = | — - — ],
curlgu 1Buy o1
duy ouq
L 8x1 8)62 .

we may write an equation on §2 and a boundary condition on I" that will be satisfied by the
amplitude function &# = (u,u3)ofa function U of the form (1.5) if and only if U is a solution
of the equation (1.1) on €2 and satisfies the boundary condition (1.6) on I":

1.7 curlp(n curlgil) = v,

(1.8) uxn=0, u3;=0 onl.

Thus the problem of finding a solution U of (1.1), (1.6) of the form (1.5) is reduced to that of
finding a solution é# = (u, u3) of (1.7), (1.8). In terms of the operator curlg, our finite energy
condition can be made precise:

(1.9) / lii(x)[*dx + f lcurlg ii(x)*dx < oo.
Q Q

However, for an arbitrary real pair (w, 8), there does not necessarily exist a solution of (1.7),
(1.8). For a given wave number B, (1.7), (1.8) defines a selfadjoint eigenvalue problem. It is
known, see §2, that an infinite number of solutions exists.
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Remark 1.1. An alternative approach, perhaps physically more relevant, is, for a given
frequency w, to find pairs (8, &) with # satisfying (1.7), (1.8) for the wave number 8. This
approach yields a more difficult mathematical problem—a nonselfadjoint eigenvalue problem
with a finite number of solutions. Other solutions corresponding to complex 8’s are called
evanescent modes. We hope to address this problem in a future work, but here we shall
constrain our attention to the selfadjoint problem.

Remark 1.2. One may also consider the propagation of guided waves in an open wave
guide, i.e., where one does not have a boundary condition on the boundary " of the wave
guide that allows one to ignore the exterior domain R? — . Again this is the physically more
interesting situation as it is indeed the case with optic fibers. Then, however, one obtains a
problem in all R?, instead of in €, or by the introduction of the operator curl g in all R?,
the coefficients v and n, i.e., € and u, considered to be constant outside Q. One must then
introduce artificial boundary conditions at a distance not too far from I" to obtain a tractable
problem. Work on this extension of the ideas in this article is underway, cf. [14], [21], but
shall not be further broached herein.

There have been several previous approaches to the eigenvalue problem (1.7), (1.8). First,
for the case of constant coefficients (a homogeneous wave guide) a solution U is divergence-
free, and a solution of (1.1), (1.6) must be a solution of

v\ 82U -
(1.11) Uxii=0 and divU=0 onT.

Thus a classical approach has been to solve the eigenvalue problem corresponding to (1.10),
(1.11) which is an eigenvalue problem for the Laplacian. However we note that solutions of
(1.10), (1.11) in the form (1.5) need not be divergence-free in 2 and thus need not satisfy
(1.1). Extraneous solutions are obtained.

For the nonhomogeneous wave guide, vU is still divergence-free and w = 0 is an eigen-
value with infinite-dimensional eigenspace. However, solutions in this eigenspace are not of
interest physically as they do not propagate. Ideally one would like to base a finite element
method on a variational formulation for which the trial functions are v-divergence-free in the
sense that divvéz = 0. But it is not obvious how to construct a conforming approximation to
the space of v-divergence-free trial functions.

Penalty methods have been introduced; cf. [4], [16], and [22]. These methods add a
penalty term, dependent on a parameter 8, to the bilinear form of the variational problem. One
no longer has 0 as an eigenvalue, but other nonphysical eigenvalues are introduced. Just where
in the spectrum these eigenvalues occur with respect to the smallest physical eigenvalues, those
of primary interest to the engineer, can be manipulated by choice of the parameter §. See [5]
for a nice explanation of this point.

If one simply ignores the v-divergence-free condition in the variational formulation and
uses classical Lagrange finite elements, one obtains solutions corresponding to small non-
physical real eigenvalues. These solutions, known in the literature as spurious solutions, may
be thought of as approximations of v-divergence-free solutions, but they can be difficult to
distinguish from solutions corresponding to small strictly positive, physical eigenvalues. Re-
cently Bermuidez and Pedreira [5] proposed the use of the Nedelec finite elements [19] instead
of Lagrange elements to approximate the amplitude function. They obtain a much better ap-
proximation in which spurious modes are eliminated. However, 0 is an eigenvalue of infinite
multiplicity for the discrete problem and this can lead to some computational difficulties (as
the Lanczos method can be very sensitive to the shift technique).
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The approach we develop here is to define a nonconforming approximation to the space
of v-divergence-free, trial functions. We are able to prove convergence results, and numerical
experiments confirm the efficiency of the method; cf. [15].

In the remainder of this section we introduce a change of unknown function that allows
us to work with real-valued functions instead of complex-valued functions. This represents a
significant advantage with respect to computational efficiency. In §2 we give a mathematically
rigorous formulation of the problem, and some results concerning the spectral theory for the
continuous problem are recalled. We construct in §3 an approximation space in which we shall
approximate the solution of the eigenvalue problem. The nonconforming method is defined
in §4 and theoretical results concerning the accuracy of the approximation are given. An
appendix detailing the demonstration of a generalization of a theorem of Kikuchi is included.
Numerical results will be reported in Part II of this paper [15].

Our computations are greatly simplified by making the change of unknown function
(uy, up, uz) — (uy, u2, —tuz), which we do with no change of notation, and by redefining the
operator curlg:

— 8143 —_
Fr Bus
- dus3
lgu = - —
curlgul Buy o,
ouy ouy
L 0x; doxy
If
1 0 0
7= 01 0|,
0 0 —:
then

curlg = chu~rlﬂ T.

Equation (1.7) becomes

2

(1.12) curl;(n curlg i) = vl in €,

where curlf = curl_g = —1T *curlg T* is the formal adjoint of curls. This formulation
permits us to work with real vector-valued functions .
We shall also make use of the operators divg and gradg:

divgt = —+—— ,
et 0x1 +8x2 Pus

(ﬁﬂ 3 4 )
8x1’8x2’ ¢)

Further, in the remainder of this article, cur/ and div will denote operators on two-dimensional
vector fields to scalar fields, and curl* and grad will denote operators on scalar fields to

gradg ¢
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two-dimensional vector fields:

3142 3141
curlu = — — —
0x1 0xy
J
div = 2 | 9w
3)61 3.X2

Let us recall the definitions of the following function spaces:

H(curl, Q) = {u € L2(Q)? : curlu € L2(R)},
Holcurl, Q) = {u € L2(Q)? : curlu € L*(Q) and u xn =0 on T},

where u x n is defined as an element of % ~/2(I") by Green’s formula
(uxn,y) =/ (- curl* ¢, — curlu-¢,)dx foreach y € H'/*(I),
Q
where ¢, is an element of H!(Q2) having trace y on I' and where (-, -) is the duality pairing

between H~'/2(I") and H'/?(I"). Next, define

Hcurlg, Q) = {u € L2(Q)° : curlga € L£2(2)%},
Ho(curlg, Q) = {n € L2(Q) : curlgi € L2(Q)* and & x i = 0on T},

Note that for & = (u, u3) = (u1, u2, u3) to be in the domain of curlg, more regularity is
required of u3 than of u; and u,; more precisely, u € H(curl, 2) and u3 € H!(2). We have
the following equalities of vector spaces:

Hcurlg, Q) = H(curl, Q) x H(Q).
Thus we may identify @ x 7 with the vector (u3, u x n) € H'/?(T") x H~1/2(I") and write
Ho(curlg, Q) = Ho(curl, Q) x HA(Q).
The relevant Green formula is
(u xn, vy) — (v X n,us)
(1.13) = fg(liwurlgf’ — curlgdi - ¥) dx
for each y € H(curlg, Q).

The following analogues of the corresponding relations for the classical operators curl,
div, and grad hold:
divg curlg u=0 fori e H(curlg, Q),
curlggradgp =0 for ¢ € H'(),
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and
cx
divy = —gradg.

Finally, we point out that if # € H(curlg, 2) and curigie = 0, then there is an element
¢ € HY(Q) with & = gradg ¢, namelyp = %u3, and that ¢ € H(Q) if and only if
ue 'Ho(curl,g, Q).

2. Mathematical formulation of the problem. Our objective here is to give a more
mathematically precise formulation of the physical problem presented in §1 and to recall a
few results that we shall need in the construction of our numerical method.

We assume that the cross section € C R? has the local cone property; see [1]. We point
out that this assumption is not restrictive from the point of view of physical applications since
it does not exclude domains with corners, not even nonconvex ones.

To give a variational formulation of the problem we shall need to define some function
spaces. Let H denote the Hilbert space £2(2)* equipped with the weighted inner product

2.1) @, V), = (v, V) p2qp = ‘/Q vavdx,
and let Hg be the following B-dependent closed subspace:
(2.2) Hp = {ti € H : divg(vr) = 0}.
Now as Hg is closed in H it has an orthogonal complement Hg— and the decomposition
23) H="Hy &My,
where
Hy = {a € H; (7, &), = Ofor each ¥ € Hp}

defines a Helmholtz-type decomposition of a three-dimensional vector field. In fact we have
the following lemma.

LEMMA 2.1. Ifv € H, then v € ’Hj ifand only if curlgV =0andv x it =0.
Proof. Suppose that v € Hj. To show that curlg v= 0 in the distributional sense, it is

sufficient to show that

(curly @, %) 2 @p =0 foreach @ € D(Q).

Solet ¢ € D(Q)*. Then Lcurl} @ € H, and

1
di —curlz @) ) =0;
ivg (v (vcur K <p))

ie., %curlz @ € Hg. Thus

1 -~
(—curl; @, v) =0,
v v
or, in other words,

(curl; ¢, 9)52(9)3 = 0.
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To show that ¥ x # = O on I, we test curlg ¥ against a function that does not necessarily
vanish on I'. Let ¢ € H(curlg, 2). By the density of D(Q)3 in H(curlg, 2) we have

(curly @,9) 2y =0,
and by (1.13) we have that
(@, curlgV)2@p + (v xn, @3) — (p xn, v3) =0.
However, as we have just seen, curlg¥ = 0 so
(vxn, g3) —{(pxn, v3) =0 foreachp € H(curlg, Q).

Since the map @ > (¢ X 1, @3) is surjective from H(curlg, Q) to H™Y2(") x HY/2(T'), we
can conclude that v x 1 = 0.

Now suppose that # € H and that curlg ¥ = Oand ¥ x7i = 0. Then there exists ¢ € H ()
with ¥ = gradg ¢, and if w € Hg, we have

¥, w), = (vgradg ¢, w)
= —(p, divg (vW))
=0,

and v € Hj. 0

With this lemma and the definition of Hg, we obtain the following characterizations of
Hp and H:

1
Hpg = {ﬁ = (u,u3) € H:u e H(div,, Q) and u3 = ﬁdiv(vu)} ,

H/j {12 =W, u3) € H:uz € H)(Q) andu = %gradug;} ,
where
H(div,, Q) = (u € L2(Q)? : divive) € L2(Q))}.

In other words, Hg is isomorphic to the space of two-dimensional vector fields H(div,, €2)
while Hé is isomorphic to the space of scalar fields H} () under the following isomorphisms:

J : H(div,, Q) —> Hg,
24 u —> (u, idiv(vu))
v
and
lgrad,g:’)"((1)(9) — Hg,
2.5) B

1
@ — (—Bgradw, (p).
‘We shall also need the space

2.6) W = Ho(curl, ) x HY(Q) = Ho(curlg, )
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endowed with the norm
@7) 15 13y = 1V 122y + I curly 1220+ 1l 03 1200
One easily checks that an equivalent norm is given by
238) W2y = 1l 12 + Il curls? [2:0s-

The space that we shall approximate numerically is the following S-dependent closed
subspace of W:

2.9) Wp =W N Hg,
with the norm inherited from W. Of course VW also admits the decomposition
W=Ws @ Wé‘,

where again orthogonality is with respect to the inner product (-, -),. As ’Hﬁ C W, we have
Wé‘ = H'ﬂL. Further, the isomorphism J clearly restricts to an isomorphism

J : Ho(curl, Q) N HY(div,, Q) —> W,
where the space H(l, (div,, 2) is defined as follows:
Hi(divy, Q) = {u € L2(Q)? : div(vu) € HY(RQ)}.

The variational formulation of (1.7), (1.8) may be expressed in terms of the following
B-dependent bilinear form defined on W:

(2.10) a(B,u,v) = / ncurlgli curlgv dx, u,vew.
Q

Then (1.7), (1.8) may be expressed as

find w € R, & € W such that

2.11
@1 a(B, i, ¥) = w*(@, v), for eachv € W.

The form a(B, -, -) is symmetric, but it is not Wh-elliptic as a(B8,%,#) = 0, and thus
(0, @) is a solution of (2.11), whenever curigit = 0. In fact it is clear that a(B, @, &) = 0
if and only if curlgéé = 0. Thus we have as an immediate consequence of Lemma 2.1 that
a(B, 4, u) > 0 for each nonzero # € Wpg. Furthermore, we are not interested in solutions of
(2.11) with @ = 0. Such solutions do not propagate, and their numerical approximation poses
considerable difficulty; cf. [5]. Physical solutions associated with @ > 0 will thus belong to
Wg. This leads us to consider the variational problem

find @ € R*, & € Wj such that

(2.12) - 2 = ~
a(B, u,v) = w*(@, "), for eachv € Wy
(which is clearly equivalent to the problem

find w € R, & € Wp such that
a(B, &, v) = w*(@, ), foreach? € W,
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since a(B, &, ¥) and (&, ¥), both vanish when ¥ € Wj and # € WWpg) and we can show the
following result.

LEMMA 2.2. The bilinear form a(B, -, -) is Wg-elliptic.

Proof. Let @i belong to Wg. Then

a(ﬂ,ﬁ,ﬁ):/ necurlgti curlgii dx
Q
=/ n(gradus — Bu) - (gradus — Pu)dx
Q

+ f ncurlucurludx
Q

Nmin Nmin

2
> 77m1n||curlu”£2(g) + "gradu3” 2(9)2 + ﬁ ”u||£2(9)2

- nm'“ﬂ/vugradu3dx

Vmax

but we recall

— Tmin B / vugraduzdx = min — B f usdivvudx
Vmax Q Vmax
(2.13) = Tmin g2 / vl dx
Vmax Q
i
= == B U3l q),
max
and the lemma follows. 0

To describe the spectral properties of the problem we introduce the unbounded operator
Ap defined on Hy to H as follows:

D(Ap) = [ii € Wg; 1curl;§(n curlgt) € ’H} ,
(2.14) v
Ag(ii) = —curlﬂ (ncurlgu) for eachut € D(Ap).

We clearly have the following relationship between the operator .4g and the bilinear form
a(ﬁ sy '):
(2.15) (Ap(@), %), = a(B,u,v) foreach (@, ¥) € D(Ag) x W.

For Theorem 2.1 we shall need the following lemma.
LEMMA 2.3. The operator Ag+ I is an isomorphism from D(Ag) onto Hg.
Proof. By Lemma 2.2, for f € Hg, the problem

find u € Wg such that

a(B, i, v)+ (@&, v), = (f,v), foreach ¥ € Wy

admits a unique solution #;. We cannot immediately conclude, however, that #; is the unique
solution of

(2.16)

i € D(Ap),

2.17
@17 Ag+Da=f
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because D(£2)? is not contained in Wp. However, we have only to remark that if ¥ € Wé‘, by
Lemma 2.1

a(B, g, v) =0,
(fi)y =0
since f € Hg, and
(@s,v), =0
since iy € Hg. Thus the equation in (2.16) holds also for # € Wy and since W = W @ Wy
does contain D(£2)3, it now follows that u; is the solution of (2.17). ]

THEOREM 2.1. With the given hypothesis concerning v, 1, and 2, the operator Ag is a
positive-definite, selfadjoint operator with compact resolvent.

Proof. Positive definiteness is shown in Lemma 2.2. The symmetry of Ag is implied by
that of a(8, -, -), so selfadjointness is a consequence of Lemma 2.3.

That Az has compact resolvent follows from the fundamental fact that the inclusion of Wy
into Hg is compact. To see this we note that H(l)(Q) is compactly included in £2(£2) and that
under the hypothesis that  satisfies the restricted cone property, Ho(curl, ) N H(div,, Q)
is compactly embedded in EZ(Q)?,; cf. [26]. 0

Remark 2.1. An important part of the proof of Theorem 2.1 is the compactness of the
imbedding of Wj in Hg. If we require greater smoothness of v, for instance v € Wh*(Q),
we may replace the requirement that Q2 satisfy the restricted cone condition by any of the
following conditions:

@) I" is Lipschitz, for then Ho(curl, 2) N H(div,, 2) is continuously
embedded in H/2(Q2)?; cf. [9).

(i) S is convex, for then Ho(curl, ) N H(div,, ) is continuously
embedded in H!(Q)?; cf. [13].

(i) TisChl, for again Ho(curl, Q) N H(div,, 2) is continuously
embedded in H!(Q)2; cf. [13].

THEOREM 2.2. With the given hypothesis concerning v, n, and Q, the spectrum of Ag,
o (Ap), is a pure point spectrum

o(Ap) = {M(B) = 2a(B) < S M(B) <--+ < +00)
with
A(B) >0
and
Jlim A, (8) = +oo.

The set of eigenfunctions u;(B) associated with A;(B) is characterized as the set of nonzero
solutions of

ﬁEWﬂ,

(2.18) - . Y~ ~
a(B,a,v) = xrj(B)(@,v), foreachv € Wpg.



1504 P. JOLY, C. POIRIER, J. E. ROBERTS, AND P. TROUVE

Proof. In light of Theorem 2.1, the results concerning the spectrum of 4z are classical
results from the spectral theory of compact selfadjoint operators [11].

As for the characterization of the eigenfunctions, it is clear that any eigenfunction satisfies
(2.18). To see that any solution of (2.18) is an eigenfunction it is sufficient, as in the proof
of Lemma 2.3, to remark that the second equation of (2.18) holds for ¥ € VVﬁL forany &1 €
We. O

We conclude this section with the following theorem, a direct consequence of Theorem 2.2.

THEOREM 2.3. For any electromagnetic wave guide whose cross section Q2 satisfies the
restricted cone property, there exists a countable family of guided modes {U;(x,t),1 < j <
+o00}. Each mode exists for any value of the wave number B and the jth mode obeys the
dispersion relation

(2.19) o = Aj(B), where Xj(B) is the jth eigenvalue of Ag.

3. The approximation space VWWs ;. We have seen in the preceding section that looking
for a guided mode with wave number 8 is equivalent to seeking a solution to the following
problem:

find (w, @) € R™ x Wy such that

(3.1 . - -
a(B, i, V) = w*(d, v), for each ¥ € W.

The first step in the numerical approximation of the problem is thus to construct an approxi-
mation space Wy ;, for Wg.

Recall that Wy is the subspace of W = Hy(curl, ) x H(l)(Q) consisting of those
elements & of VW for which divg(v &) = 0. Thus it would be natural to try to define Wy  to be
the subspace of W= R, x P, consisting of those elements &, of W, for which divg(v @) =
0, where R, is a finite-dimensional subspace of Hy(curl, ) and P, is a finite-dimensional
subspace of ’H})(Q). However we shall see below, in §3.5, that for classical spaces R, and
Pu,tin € (Ry x Py) N Wpg implies that @, = 0. This leads us to the idea of constructing an
external approximation of Wp in which the divergence-free condition

divg(vit) = 0

is enforced only in a weak form.

Let us recall that the divergence-free condition, divg(vit) = 0, defines the subspace Wg
of W as the isomorphic image of the space Ho(curl, 2) N H(div,, Q) of two-dimensional
vectors under the map J which associates to a two-dimensional vector a third component in
such a way that the divergence-free condition is satisfied:

1.
J @ = (uy,u2)) = <u1, uz, —ﬂ—dlvu(u)) ,
where for notational convenience we have introduced the operator div, defined by
. 1.
div,u = " div vu.
What we would like to do is to define a discrete analogue of 7 that would map R into

Ry x Py, by defining its third component in such a way that a weak divergence-free condition
is satisfied. We could define Jj, from R} into Ry x P, by

1.
3.2) Tn(uy) = <uh,1, Up2, 'B'dlvv,h uh) ,
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where div, , u, € Py, is determined by

3.3) / vdivy pupopdx = — / vuy grad o, dx  for each ¢;, € Py,
Q Q

We would then define Wg;, to be the image of 7.

However, if Wg ;, is to be a finite element space we need a basis of elements with small
support to preserve computational efficiency. If div, ; is defined by (3.3), the support of
div, » u could be all of Q even if the support of u; is very small. We could not obtain a
suitable basis for Wg ;, as the image of a basis for Rj. This leads us to the idea of defining
a discrete divergence operator Div, ; using numerical integration. For u;, € Ry, Div, j, upis
determined by

(3.4 % vDiv, pup ppdx = — f vuy, grad g, dx  for each ¢, € Py,
Q Q

where § is a numerical integration operator.
Our finite element space is thus the space

1_.
(3.5) Wen = Tn(Rp) = {(uh, Un3) € Ry X Py upz = BDIVv,huh} .

But, of course, to complete our definition we need to define the spaces R; and P, and the
numerical integration operator in (3.4).

Remark 3.1. Those who are familiar with fluid dynamics will see a certain analogy with
the numerical approximation of Stokes or Navier-Stokes equations. For these problems, we
have a vector-valued function # (the velocity field) and a scalar one p (the pressure) as we have
here u = (u1, u») and u3. The difference is that for Stokes, the vector unknown (in ' (2)) is
more regular than the scalar one (in £2(2)). Here, we encounter the opposite situation.

Henceforth, to avoid the technical difficulties linked to the approximation of the domain,
we assume that Q is a polygonal domain in R2. Let 7;, be a uniformly regular triangulation
of Q,Q=U keT,, K by a finite number of rectangles and/or triangles of mesh size h; h =

maxg 7, (diam K).

3.1. Thespace P, and its approximation properties. We shall consider the Lagrangian
finite elements which are linear on each triangle of 7, and bilinear on each rectangle of 7j:

P ={p € Hy(Q NC(EQ);
(3.6) ¢ |k€ Pi(K) if K € Ty is a triangle, and
¢ ke Q1(K) if K € 7, is arectangle}.

An element of P, is continuous, vanishes on the boundary, and is uniquely determined by
its values at the interior vertices of 7,. Thus its dimension is the number of interior vertices of
Ty,. Further, if for each interior vertex M of 7y, ¢y denotes the element of P, having value 1
at M and 0 at every other vertex of 7, then {¢y, ; M is an interior vertex of 7} is a basis of Pj,.

We denote by I1p, the L?(R2), orthogonal projection operator from £2(2), onto Py:

(3.7 (Mp,¢ — @, ¥u)y =0 foreachyy, € Ph.
We have the following well-known estimate [7, (17.12)]:

"(p - HP;,(””U(Q)., < c hm |‘P|m Q> m = 1’ 25
Vmin
3.8)

v
llgrad(e — Np,@)ll2@p < C e

hlolaq

min

whenever ¢ has sufficient regularity for the above norms and seminorms to be defined.
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Remark 3.2. If ¢ is not in H2?(£2) but we have a partitionof @, Q@ = |, @, 2:NQ; =0
ifi # j, such that ¢ € H?(;) for each i, and such that each T € 7}, is contained in ©; for
some i, the seminorm |¢|3:2(q) may be replaced by Y, |¢[#2(g,) in both equations of (3.8).

3.2. The space R and its approximation properties. We use the lowest-order mixed
elements of Nedelec [19] for the approximation of the space Ho(curl, 2). In the two-
dimensional case, these elements are easily deduced from those of Raviart-Thomas [23]
for the approximation of the space H (div, 2) (simply apply a rotation of angle 7):

Ry = {v € Ho(curl, Q);
(3.9) v k€ {a+ y(—x2, x1)', o € Po(K)?, y € Py(K)}if K € T, is a triangle, and
v|k€ 001(K) x 010(K)if K € Ty is arectangle}.

An element of R;, has tangential components which are continuous across the interior
edges of 7;, and O on the boundary edges. It is uniquely determined by the constant values
of its tangential components on the interior edges. Thus the dimension of R, is equal to the
number of interior edges of 7}, and if for each interior edge a, w, denotes the element of R,
having tangential component equal to 1 on a and equal to 0 on every other edge, then {w,; a
an interior edge of 7} is a basis of Rj,.

We shall make use of the operator [T, : Ho(curl, Q) —> R, which is just the projec-
tion in the H(curl, 2)-norm:

(Mg, @) = v, wi)y + (curl(Tlg, () —v), curl(wp)), =0

3.10
( ) for eachw;, € R,.

We have the estimate

Vmax
C

IA

lw — Mg, ull c22 hluly@,

.
(3.11) o
Vmax

leurl@ — MWl < € [T —h (Ul + leurlulig)
min

A

whenever u has sufficient regularity for the above norms and seminorms to be defined. This
estimate follows from [24, Thm. 6.3].

Remark 3.3. Again, if u is not in H!(Q) or if curlu is not in H!(2) but we have a
partitionof @ = | J; a<2; suchthatu € H'(Q;) and curl u € H'(S;) for eachi, the seminorms
|ul1,o and |curlul, o may be replaced by >, |uli o, and Y, curluly q,, respectively.

Here we point out one more property of the pair of spaces R, and P, which we shall
exploit later:

(3.12) if o, € Py, then grad(gp) € Ry.

This appears as a fundamental compatibility relation between the spaces R, and Py.

3.3. The numerical integration scheme and its approximation properties. The quad-
rature scheme used here is the trapezoidal rule; the integral of a function over a cell is ap-
proximated by the average of the function values at its vertices multiplied by the area of the
cell:

_ meas(K)
$rax= LIRSS o,

keTy M a vertex of K
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Y,

7 G —_—

% /,

7
//[
/)

Y,

Support of w, Support of ws, Support of w, Support of ws,

(1) A Rectangular Mesh (2) A Triangular Mesh

Fic. 2. Support of wz , = support of Divy j wg.
where nv(K) denotes the number of vertices of K. This scheme is exact for functions in Py,

and we have that if ¢, and ¥, are in P}, and if « is regular (W) on each cell of 7}, then,
[8, Chap. 4.1],

(3.13)

f apndx — [ o @py dx
Q Q

< Champa lenllni@ 1Yl c2@)-

We also introduce here the numerical integration operator Y}, from Pj, to P, defined by

(3.14) f Yh(@n) ¥ dx = / ©n Y dx for each l//‘h € Py.
Q Q

We point out that Div, , = Y}, o divy,j.

3.4. Basis elements and dimension. Note that Wg ;, is isomorphic to the space R, and
has by construction the same degrees of freedom as R;,. It is then easy to construct a basis
of Wg,, by considering the set {W, ;a an interior edge of 7;}, where W, = (Wq, w3, =
-;;Div.,,h w,). The support of wj; 4 is simply the union of all the elements of 7, which admit
at least one common vertex with one of the two elements of the support of w, (see Fig. 2).

Remark 3.4. Let us again emphasize the importance of using a quadrature formula for
the evaluation of the integral fg v ¢ dx in (3.3) for the definition of the discrete divergence
operator. If we had evaluated this integral exactly, we would have lost the local character of
the discrete operator Div,, , since its evaluation would have involved the inversion of the mass
matrix associated with the bilinear form (¢, ¥) +> fﬂ voydx on P, x Py,. Then, for a basis
function w, = (Wg, W34) = (W, %divv,h w,), the support of w;, would have coincided
with all €, leading to prohibitively expensive calculations.

It is interesting to compare the dimension of the space Wg , (which is the same as the
dimension of R},) with that of the space R, X Py in which we would naturally work if we did
not take into account the divergence-free condition. We consider the case where  is a square
and examine the two following examples.

Example 1. We consider a mesh of squares. Denoting by N the number of small squares
in one direction, then Dim Ry, = 2N(N — 1) and Dim P, = (N — 1)2.

Example 2. We consider the previous mesh, and we split each small square into two
triangles. Then Dim R, = 3N? — 2N and Dim P}, = (N — 1)

We see that we gain at least a factor 3/2 for Example 1 and 4/3 for Example 2, on the
dimension of the matrices we have to deal with, when N is large. However this benefit is
counterbalanced by the fact that the matrices are not as sparse.
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3.5. (RypxPr) N Hp = {0}. We assume here that v = 1. Suppose that v, = (v4, vp3)
belongs to Ry x P, = and that divg(v¥,) = 0. Then Ldivy, = vp,3. However, for each
element K € 7y, whether K is a rectangle or a triangle, div vy, |x= 0. Thus v3, is identically
0 since elements of P, are continuous and vanish on the boundary. We now have imposed on
v, an additional continuity requirement, namely continuity of the divergence, at each interior
edge of 7y, and it is not difficult to check that this together with the boundary requirement for
elements of R, implies that v, is also identically O.

3.6. Approximation properties of the space Wg . Here we derive some approximation
properties of the space Wg ;. Indeed we shall see that because of the numerical integration
used in the definition of We p; i.e., in the definition of the discrete divergence operator Div, 5,
we have been able to obtain a useful approximation result only in the case that the family
of triagulations {7,;h € A} is asymptotically uniform. (See definition below.) The results
obtained are thus not used in the remainder of this article. We have nonetheless thought it of
some interest to include them and to point out an analogy with finite volume methods [12] or
cell-centered finite difference methods.

We would like to be able to show that any element of WWg can be approximated sufficiently
well by an element of the space Wg ;. That is we would like to be able to define an operator
I1 : W —> Wy, such that we have at the very least that

(3.15) |@ — Mally — 0 ash —> 0 foreachii € W.

Given that any map I : Wg —> Wy, uniquely defines a map IT : Ho(curl, Q) —> Ry
and conversely, we need a projection operator IT from Ho(curl, Q) onto R, such that if
u € Ho(curl, Q) NH(div,, Q) then J,(Iu) is a good approximation of 7 (u); i.e., [1u is a
good approximation of # in the Hy(curl, 2)-norm and Div, ,(ITw) is a good approximation
of div, u in the H!(2)-norm.

We take the map IT to be Ilg,, the projection in the H(curl, 2)-norm of Ho(curl, 2)
onto Ry, as defined by (3.10), and we obtain the following lemma.

LEMMA 3.1. The following diagram commutes:

div,
Ho(curl, 2) N H(div,, 2)

L2()

HR;, HPh

din,h
R - P

That is,

th o diV\, = div,,,h [¢) H'Rh-

Proof. Letu € Ho(curl, 2) N 'H(div,, 2). It is sufficient to show that
(TMip, divy u, gp)y = (div, , Mg,u, ¢u), foreach gy, € Py.
First note that for @), € Py,
(Mp, divyu, gp)y = (divy u, @)y
= — (u, grad ¢p)y
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by definition of I1p,, (3.7). For any ¢, € Py,

(div, » TIr,u, @p)y = — (I, u, grad gs),

by definition of div,, 5. But (u—TI1,u, grad ¢, ), = Oby definition of I, since grad ¢, € Ru
and curl grad ¢, = 0. 0

LEMMA 3.2. Suppose that u € Hy(curl, 2) is such that div, u € H(l)(SZ) NH2(Q). Then

(3.16) I divy Tir,u — divyu || p2qy < C :"‘“ h2|div, uls.q
'min
and
(3.17) | grad(div, » TIg,u — div, u) || c2p2 < C max pdiv, ulyq,
min

where the positive constant C depends only on the open set 2.

Proof. Since by Lemma 3.1 we have div,, , [1z,u = I1p, div,u, (3.16) and (3.17) follow
from (3.8). 0

THEOREM 3.1. Let ti = (u, u3) € Wg be such that u € HY(Q)?, curlu € H'(RQ), and
us € H*(Q). Let

1 1
u, = (HRhu R B H‘phu3> = (HRhu , E div, » thu) .

Then

| & —dn | Hecurt,)xH @

(3.18) .
<CB,vA{lul + |curluly + |divyu |2}

Proof. Theorem 3.1 follows immediately from (3.8), (3.11), and Lemmas 3.1 and
3.2. 0

Remark 3.5. As in Remarks 3.2 and 3.3, the estimate (3.18) can be extended to the case
where the function # is only piecewise regular in the sense defined in these two remarks.

Theorem 3.1 would give us not only the desired pointwise convergence in W, but also
the stronger WW-norm convergence of it, = (Ilg, &, %divv,h Mz,u) toward &. However &, is
not in Wg ;, since we had to resort to the use of a quadrature rule to define Wg . Of course
we would like to be able to replace div, , in Theorem 3.1 by T} o div, , = Div, ;, and we
clearly have the analogue of Lemma 3.1:

(319) Th @) th o] din = Th o] din,h (@) HRh = DiV,,,h o l'IRh.

But we would have the analogue of Lemma 3.2 only if we had the estimates for T}, o [1p, that
(3.8) gives for Ip,. These estimates we have been able to obtain only under the hypothesis
that the family {7),; h € A} of triangulations is asymptotically uniform.

DEFINITION 3.1. A family of triangulations {1, ; h € A} is said to be asymptotically
uniform if

max f ou(xX)(x — M)dx = O,
MeN}? Q

where N,? is the set of interior nodes of T, and, for M € N ,‘,’, @ is the basis function of Py
associated with the vertex M.
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LEMMA 3.3. If the family of triangulations {Ty; h € A} is asymptotically uniform, we
have for each ¢ € H*(Q) that

(3.20) I (Chollp)e —¢ |l 2o <Cr ¢l ww
Il (grad(Yp o p)e — @) || c22 < Ch | @ |l 72)-
Proof. For a complete proof of Lemma 3.3, see [15]. g

THEOREM 3.2. Assume that the family of triangulations {T,; h € A} is asymptotically
uniform. Letii = (u, u3) € Wg be such thatu € H'(Q)?, curlu € H'(Q), anduz € H*(Q).
Let

- 1 1
a, = (]'Inhu , E Ty 0 thu3> = (thu , -E Div, j thu) .

Then

| & —ay, | Hcurl, QxH ()

3.21
G20 sCBR{luly + |curluly + | divou |2}
Proof. Theorem 3.2 follows from (3.8), (3.11), (3.19), and Lemma 3.3. 0
Remark 3.6. The same comment concerning the regularity of # as in Remark 3.5 applies
to the estimate (3.21).

4. Analysis of the finite element method. The nonconforming finite element method is
as follows:

@ find (w, @p) € RT x We ), such that
' a(B, i, ¥n) = w?(iin, ¥4), for each ¥, € W

We point out that even though Wg j, is not contained in W, it is contained in W and a(B, -, -)
is defined on all of W. So (4.1) is meaningful. Further we can show the following lemma.
LEMMA 4.1. The bilinear form a(B, -, -) is W p-elliptic, uniformly in h.
Proof. With éi € Wy replaced by @, € Wpg;, in the proof of the continuous analogue,
Lemma 2.2, the proof is the same up to (2.13) where we obtain instead

min B / vuygradu, 3dx = Mmin B % up3 v Div, puydx
max Q Q

v Vmax

“4.2) - Mﬂz % vuh,32 dx
Q

Vmax

v

0,
which completes the proof since, by the Poincaré lemma,
"uh,3 ”2£2(Q)v = C "grad Un3 ”252(9)3 0

Just as solutions of (3.1) are eigenpairs for the operator Ag, those of (4.1) are eigenpairs
of the operator Ag ,, which is defined on VW as follows:

Ag n(@) € Wep,
(Ap,n (@), v), = a(B,@,v) foreach¥ € Wgy.
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Thus as the image of Ag has finite dimension, we clearly have the following analogue of
Theorems 2.1 and 2.2.

THEOREM 4.1. With the given hypothesis concerning v, , and S, the operator Ag, is a
symmetric, positive-definite operator of finite rank.

THEOREM 4.2. With the given hypothesis concerning v, 1, and , the spectrum of Ag j,
o (Ag,p), is a pure point spectrum

o (Apn) = {An,1(B) < Mn2(B) < -+ < M, (B)}
with
An1(B) > 0.
The set of eigenfunctions, @,;(B), associated with Ay j(B), is the set of nonzero solutions of
in € W,

4.3) - L. .
a(B, upj, V) = Ay, j(B) (@nj, Vr)y foreach vy, € We .

To see that the eigenpairs (w, &) of Az are well approximated by those of Ag ,, we shall
recall some results from the theory of spectral approximation. First, however, as this theory
applies to compact operators, we define the operators 7z and 7g 5.

Let 7 be the operator from H into , defined by

%ﬁGWp,

4.4) L o .
a(B,Tgu,v) = (u,v), foreachv e Wp

and 73, be the operator from H into H defined by

(4 5) 7731;, ic Wﬁ,h,
' a(B, Tg i, ) = (@, ¥,), foreach¥, € Wg.

We have that u is an eigenvalue of 73 if and only if % is an eigenvalue of Ag, and w; is

an eigenvalue for 75, if and only if —111; is an eigenvalue for Az ;. The operators 7g and
T, are compact, selfadjoint operators on H. For each eigenvalue u of 75 we let E(u) be
the eigenspace associated with u and let m(u) denote its multiplicity. Similarly, let Ep(gep)
denote the eigenspace associated with the eigenvalue p, of 7g 5.

4.1. Convergence analysis. Here we would like to make the hypothesis that the coeffi-
cient functions v and the triangulations 7;, that we consider are such that foreach K € 7, v €
WL(K). (Thus v is piecewise Lipschitzian.)

For our convergence analysis we have not used the classical min—max approach described
by Babuska and Osborn [3] and by Strang and Fix [25] for variationally formulated eigenvalue
problems as our finite element method is nonconforming. Nor have we succeeded in adapting
this method to the nonconforming case. Indeed this theory would require the convergence in
the operator norm of £L(H) that we did not succeed in proving. (In fact, we conjecture that
this is not the case.)

Also in [18], the authors obtain convergence results for a mixed formulation of the eigen-
value problem, which we mention here since we shall indeed be led to use the equivalence of
our problem with its mixed formulation. But here also norm convergence is required.

We are thus led to return to the earlier works of Anselone [2, Chap. 4] and Osborn [20].
To use their results we must establish that for the compact operators 7g and {Tgx; b € A},
the following two hypotheses are met:
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(H1) The uniform discrete compactness hypothesis. If B C Upep We, is bounded
in W, then it is relatively compact in H.

(H2) The consistency hypothesis. For each f € H, T ,(f) converges to T3 f in
the H-norm, i.e.,

lim 75 £ — Ty flin = 0.

Now from Anselone [2] we know that for ;1 # 0 an eigenvalue of 7g of multiplicity m,
and for € > 0 but less than the distance from u to any neighboring eigenvalue, the sphere of
radius € around u contains, for £ sufficiently small, exactly m eigenvalues, pp ;i = 1,...,m
(counted with multiplicity) of 73 5, and the dimension of E(u) is equal to that of E;(n) =
DL, En(in,).

Before stating Osborn’s results estimating the distance between the eigenvalues of 75 and
those of 75 and the distance between the eigenvectors of 7g and those of 73, we recall
the classical notion of the distance between two subspaces M and N of a Hilbert space X:
38(M, N). The gap between M and N is defined by

8(M,N) = max8(M, N), §(N, M),
where

S(M,Ny=  sup  dist(x, N).
{xeM;|x|lx=1}

Now Osborn has shown [20] (see his Theorem 4 together with the remarks following
Theorem 6) that if (H1) and (H2) are satisfied, then for u # O an eigenvalue of 75 of
multiplicity m and w;; an eigenvalue of 7, approximating p guaranteed by the theory of
Anselone, we have

4.6) = gl < C { DT = Tow) i @)1+ 1T = Tew) |E () ||2] :

ij=1

where {@; )72, is a basis for E(u) and where (T3 — Tgp) | E(n) denotes the restriction of
Tp — Tpn 0 E(n).

Equation (4.6) gives us an estimate of the error in approximating the eigenvalues. The
error in approximating the eigenvectors is given by [20, Thm. 1]

“.7n S(E(u), En(w)) = Cll(Tpg — Tgn) |E () |

for sufficiently small 4.

To obtain thus the desired estimates, we must show that in our case (H1) and (H2) are
satisfied, and we must estimate the two terms

m

1(Tp — Tp.n) IE(,LL) | and Z |((Tp — Tp.n) ‘ﬁi’éj)l‘

(=1

4.2. (H1): The uniform discrete compactness result. The compactness of the operator
Tg : H —> H is due to the compactness of the inclusion of Wg into Hg; cf. Remark 2.1.
The compactness of the operators 7g, : H —> H is guaranteed by the fact that they are
of finite rank; W5, is obviously compactly included in Hg. However, for the convergence
results that we wish to obtain, some uniformity in /# of the compactness of the operators
7p.» is needed. This uniformity is guaranteed by the fact that the spaces W ;, are uniformly
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compactly imbedded in H in the sense stated in Lemma 4.2 below. Lemma 4.2 is thus a
discrete analogue of the compactness of the embedding of Wy into H. This proof strongly
depends on an analogous discrete compactness result of Kikuchi [17, Thm. 1] for the spaces
Ry This theorem however has been proved only for the case in which the triangulation is a
triangulation by triangles (and only for the Nedelec spaces of lowest order). Thus we are able
to demonstrate (H1) only in this case. Further, for Kikuchi’s result, the coefficient v is constant.
Though his proof is easily extended to include the case with our hypotheses concerning v, we
have nevertheless included an appendix to show this.

What we would like to show now is that Upes Wg 1, is compactly included in H in the
following sense.

LEMMA 4.2. Assume that the boundary I of Q2 is Lipschitz continuous. If B C UpeaWg n
is bounded in WV, then it is relatively compact in 'H.

Proof. The proof is an elaboration and slight generalization of one given in [5]. We
include a rather detailed argument here because in that of [5] the coefficient v is constant and
no numerical integration scheme is used. Let {W, € Ws;, 152, be a sequence in Upepa W i
whichis bounded in W. We must show that there is a subsequence, convergentin H = L£2(£2)>.
(We may assume that the sequence &, converges toward O for otherwise, given the regularity
assumption for the family {7,;h € A}, the dimension of the spaces Wg 5, is bounded and we
would show convergence in H of a subsequence of a sequence in U° , Wg ;. bounded in W
just as we would for the union of a finite number of spaces Wg 5, .)

Now W, =(w,,w, 3), and the sequence {w,3}3>, is clearly bounded in ’H(l)(Q) SO we
can extract a subsequence converging, weakly in H},(Q), strongly in £2(2), to some w3 €
HE,(Q). Similarly {w,}2, is bounded in Ho(curl, §2), but this is not enough to ensure strong
convergence of a subsequence in £2(2)2. The idea is to use a kind of discrete Helmholz
decomposition, writing w,, as follows:

4.8) w, = B grad p, + u,,
where p, is defined by

pn e Phn’

4.9
@9 % VWp3qpdx = — f v grad p, gradg, dx  for each g5 € Py, .
2 Q

The element p, is well defined since Py, C Hy(RQ) (and (p, q) — [, v gradp gradg dx is
elliptic on ’H(I)(Q)). Further B grad p, is in R, as is w,. We have thus written w, as a sum
of a gradient of an element of P;,, and an element of R, . To see that this element u,, of Ry,
is in fact Div, ;-free, we need only to show that Div, ;, grad p, = 1 Div, 5, w,. But this is
true because both sides of the equation are equal to wj, 3,—the left-hand side by definition of
Div, j, and the right-hand side because w,, € Wg p,.

We shall first show that the sequence {p,}3; has a subsequence, still denoted {p,};2;,
converging strongly in H}(2). We then see that the corresponding subsequence {u,}%°, is
bounded in H(curl, Q) as both {w,}>°, and {grad p,}32, are (curl grad p, = 0). We now
have a bounded sequence in H(curl, 2) on which Div, ;, vanishes. To obtain a subsequence
converging strongly in £2(£2)?> and thereby completing the proof, we shall apply an extension
of a theorem of Kikuchi [17, Thm. 1] which is demonstrated in Appendix A.

Now to show that {grad p,}°°, is a bounded sequence in £*(2)?, we calculate, using
(4.9), (3.13), and the Poincaré inequality,

llgrad py "2£z(g)z = f V Wy 3 ppdx
v Q

fvwmp,,dx-—f VWp3 ppdx
Q Q

= + |(wn,3’ pn)v|
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< C{hnllwn sl 1Pelr@) + lwasll 2, 1Pallc2@),}
< Cllwnsll 2, 1PnlHe @)

and since {w, 3}, is bounded in £2(),
ligrad pullc2@p < Cllwnsllcz@, < C.

Thus {p,}32, is bounded in H(l)(Q) and we can extract a subsequence converging, weakly in
'H(l)(Q), strongly in £L2(Q), to p € 'H(l)(Q). Now we would like to show that {grad p,}32 , in
fact converges strongly in £2(2)? to grad p in £2(£2)%. We must show that

. 2 = 2
lim |igrad pu 7, gy = llgrad pli7, g0

We have

”grad pn “22(9)2 = % v wn,3 pn dx’
v Q

and by (3.13)

lim @ vw,3p,dx = f vws pdx
n—>o0 Q Q

since {wp,3}o2; and {p,};2, are bounded in ’H(I)(Q) and H(l)(Q)Z, respectively, and converge

strongly in £2(£2) and in £2(£2)?, respectively, to w3 and to p, respectively. Thus to conclude

that {grad p,}°2, in fact converges strongly in £2(2)? to grad p, we only have to show that

lerad pls gy = [ vus pa.
v Q

Toward this end we recall that grad p, converges weakly to grad p in £2(2) and we let g, be a
sequence with g, € Py, converging strongly to p in ’H(’)(Q). (For example let g, = I1p, (p).)
Then grad g, converges strongly to grad p in £2(2), and

ligrad p||* = Jim (grad p, , grad gy),.

But,

(grad p, , gradg,), = f V Wy 3 Gn dX
Q
and

lim VW, 3Ggpdx = f vws pdx.

n—>0o0 Q Q

To show the strong convergence of {u,}32, in L2(2)? we use an extension of a theorem
of Kikuchi [17, Thm. 1] which is demonstrated in Appendix A. In our context, we state this
theorm as follows.

THEOREM A.1. Suppose that

o {u,}32, is a bounded sequence in Ho(curl, Q),
e u, € Ry, foreachn,
e Div, ; u, =0 for each n.
Then there is a subsequence of {u, )., converging stronglyin L*(2)* andweakly in H(curl, Q)
to an element w in H(curl, Q) provided that the following hypothesis holds:
(HR) The regularity hypothesis. There is a constant o, 0 < o < 1, and a positive
constant C such that ifu € Ho(curl, Q) then we may write
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u=w+ gradg with weH(Q?> and qeH) Q)
and with the estimate
Wl @ + llgradqllcew) < C lullrcurt,o)-

Lemma 4.2 will have been demonstrated once we show the following lemma.
LEMMA 4.3. If Q is Lipschitz, then the regularity hypothesis (HR) holds.
Proof. We suppose that u € Ho(curl, ). Let ¢ be the unique solution of

Ay = curlu,
oy
- =0,
on
and let
w = Curl*y.

By regularity for Lipschitz domains, ¥ € H!(£2) and

IWllnie < llcurlull 2.

Further w = Curl*y € L2(Q)?, divw = 0, and curlw = Ay = curlu € L*(Q).
Also,w x n = %—f = 0. Thus by a result of Costabel [9], w € H'/%(), and

Wl < C (Wl + lldivwlli ey + llcurlwlcz@y + 1w X 1l c2ry2)
S CICurl* Yl 2y + llcurlullc2q))
< 2C |lcurlu| c2g).

To conclude we need to show that the function u —w is the gradient of a function in
H(l)(Q). We clearly have (u — w) € Ho(curl®, Q); ie.,

curlu —w) =0 and (u — w)Anr = 0.

Thus, if 2 is simply connected we are done. Otherwise we recall that Ho(curl®, ) is the
space of gradients of functions in H_(£2), the space of functions in ! () which are constant

on each component I'; of I'. Then if I' has, say, N components, I';, "y, ..., Ty, (u — w) =
gradg + Y ; o; grad¢;, where g € H(Q) and ¢; € H!(Q) is defined by

Ag; =0,

Gir, = 8i,j.

In this case we modify w, putting w = w + ), o; grad ¢;; see [10] for details. By elliptic
regularity results for the Dirichlet problem, we know that ¢; € H3/%(S2) for each i; see [9],
and the lemma follows. 0

4.3. (H2): The consistency result. The object of this section is to show the following
result.

LEMMA 4.4. For each f € H, Tg , f converges to Ig f in the W-norm, i.e.,
lim |75 f — Zgnfllw = 0.

(The hypothesis (H2) merely requires convergence in the 7{-norm but this is certainly implied
by convergence in the W-norm.) Before giving a proof of Lemma 4.4 showing pointwise
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convergence of 75 to Tg, we would like to make a comment concerning the difficulty for
showing this convergence.
Remark 4.1. The second lemma of Strang (see [8, Lem. 4.2.2] or [7, Thm. 31.1]) gives us

1 Zgf — To.n fllw
4.10 . o P D)
(4.10) < C( _inf || Zg f — wallw + sup la (B, Tp f, Wn) — (f; wh)"‘)’
W €W {WneWp n: |wnllw =1}

Thus the error is made up of two terms: the interpolation error,
Ep = _inf |Tgf — Wilw,
Wh EWp,h

and an error due to the fact that the method is nonconforming,

ENC = sup |a(ﬂ’ 773f’ Wh) - (f’ Wh)vl'

{wWheWp,n: lwnllw=1}

Let us first consider Eyc. We have seen in the proof of Lemma 2.2 that for f € Hpg, i.e.,
divg(vf) =0,

a(B,Taf,w) = (f,w), foreachw e W

sothat Eyc = 0. If f € Hg; e, if f = gradg p for some p € H;(S2), then one checks from
the definition of 7 that 7 f = 0 so that

Enc = sup [(f, Wh)wl-

{wh €Wp.n; Wi llw=1}

But

(f’ ’Wh)v = (gradﬂ Dh, Wh)v + (gradﬂ (P - Ph)» wh)

for any p, € Py,

(gradg pr, Wp)y <

f vDiv, , wp prdx — f v Div,, , W, prdx
Q Q

< ChDivy ,will 2 | Pr 3@
< Ch|wiliw lPrllx @),

and

(gradg (p — pu), Wr) < C llp = prllr Wrll 222

Taking py = I1p, p, we see that E y¢ tends to O with A. (Moreover, we have Exc < C h|pla
whenever p € H*(R2).)

We turn now to Ey,,. If f € ’H;, then E;,, = 0 since T3 f = 0. However, for f € Hg
we need an interpolation result. In §3.1 we were able to show that for the case where the
family of meshes {7j,; h € A} is asymptotically uniform we have the following interpolation
result:

lim _inf ||7gf —Wwpllw = 0.

h—0 Wi €Wg,h
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Thus E,, tends to O with 4 and from Theorem 3.2 we see thatitisbounded by Ch (| Ta f |1 +
| curlTgf |\ + | div,7g f |2) if T f is sufficiently regular.

Thus if the mesh is asymptotically uniform, we obtain pointwise convergence of 73 5, f
toward 7g f in W.

Remark 4.2. Note that even with an asymptotically uniform mesh, Strang’s lemma does
not give strong convergence since, if f € Hfg— for instance, we obtain (f = gradp)

I1Tsf —Tgnfll < Chlplae,

while we would like to have

175 f — Tgn fIl < o(h)|grad plczap.

Although Strang’s lemma provides the desired convergence only for asymptotically uni-
form meshes, our numerical results (cf. [15]) indicate that this restriction on the meshes is
not necessary. The difficulty in the case of the nonasymptotically uniform mesh is caused
by the approximate, divergence-free constraint on the approximation space Wg . We do not
encounter this difficulty in approximating YW by W,. One might hope to control this error
more easily by imposing the constraint via Lagrange multipliers.

This leads us to introduce a mixed formulation of the problem. Consider the problem

find (&, p) € W x ’H},(Q) such that
4.11) a(B,u,v)+ b, p) = (f,V), foreachv e W,

b(i, q) = 0for each g € H}(Q),
where b(-, -) is the bilinear form on W x ’H(‘)(Q) defined by
4.12) b(¥,q) = (5, gradg q), foreach (¥, q) € W x H{(Q).

Problem (4.11) has a unique solution [6] since a(B, -, -) is elliptic on Wy (Lemma 2.2), and
b(., -) satisfies the inf-sup condition

inf sup b, q) > 0.

(Simply take ¥ = gradg g/l|gradg gllw.)
If we denote by (iis, py) the solution (&, p) of (4.11), it is easy to check that

(4.13) iy = Tpf
and that py is the solution p of

find p € H} () such that

(4.14)
b(gradg ¢, p) = (f, gradg ¢), for each ¢ € HY ().

Note that (4.14) has a unique solution for f € H since b(gradg -, -) is elliptic on H ().
We point out here that if f € Hyg, i.e., if divg (vf) = 0, then p; = 0. So, with (4.11)
and (4.13) we obtain that if f € Hg then

4.15) a(B,Tg f, ) = (f,v), foreachv e W.
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We also introduce the mixed version of the discretized problem:
Find (&, pr) € W) x Py such that
(4.16) a(B, dn, ) + bu(Pu, pr) = (f, ¥n)y for each v, € W,
by (@, qn) = 0for each g;, € P,
where
Wi =Ry x Py
and by, (-, -) is the bilinear form on W, x P}, defined by

bu(Vn, qn) =/ vy, gradg, dx + ﬁf VUp3qndx
Q Q

for each (v;, qn) € Wy x Py.

(4.17)

We have seen that a(B, -, -) is elliptic on Wg ; with a constant of ellipticity independent of
h, and it is not difficult to check that the bilinear forms b, (-, -), h € A, satisfy the uniform
inf-sup condition

inf inf sup bV, qn) > 0.
heA {gn€Puillgnllzgt @=L} (5,eWi; I5nllw=1}

(Take ¥, = gradg q;/l|gradg gn|lw.) Thus we know that there is a unique solution (&, ¢, p, f)
of (4.16), and as before one easily checks that

(4.18) Upr="Tgnf
and py ¢ is the unique solution p;, of
find p, € P, such that
b (gradp ¢n, pr) = (f, gradg ¢n), for each ¢, € Pp.
Just as in the continuous case we see that if f € Hg, then p, r = 00
(4.20) a(B, Tenf, ) = (f, V), foreachv, € W,.

The following estimate is the simplification to our case of an analogue for mixed methods
of Strang’s second lemma (see [24, Thms. 11.1, 11.2)":

(4.19)

@y —an ¢ llw + llpr — Ph sl

< C(~inf {llﬁf = Wnllw + sup |(b"bh)(‘~’h»‘Zh)|}
vaWh

“4.21) {an€Pu;llgnll 41 =1}

{OreWns 10 llw=1}

+ inf {”Pf = qnllri@ + sup [(b — by)(¥p, (Ih)l]) ,
qn€Py

where C is independent of & because the uniform inf-sup condition is satisfied. Then in the
case where f € Hg, this estimate becomes

175 f = Tpn fllw
(4.22) . . ~
<C _inf 75 f —Wnllw + sup [(B — br)(Vh, gn)l
VieW, {gn€Pu;llgnlp, =1}
since in this case py =0.

I The first sup term in the right-hand side of (4.21) is missing in [24, Thm. 11.2]. To check this simply apply the
instructions in [24] for obtaining Theorem 11.2 from Theorem 11.1.
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Proof of Lemma 4.4. 1t follows from (3.11) and (3.8) that

lim inf |@r—7V =0
Jim inf @y — vullw

and
lim infh lpr — qnllvr) = 0.

B0 g,eP

Since, for ¥, = (vy, vp3) € Wy, and g, € Py,

b~ br)(n, qn) =ﬁ(f9 vup3gpdx — féz Vvh,3(Ihdx),

we have by (3.13) that

sup [(B —bp)(Fr, gn)l < Chlignll e
{Dh €W 1o llw=1}
and
sup [(b—bp)(Fp, gn)| < Chllvnsllcre-
{an€Pn; llgnll g1 (=1}
The lemma now follows. a

4.4. Error estimates. Now that (H1) and (H2) have been established we can use (4.6)
and (4.7) to obtain estimates of the error made in the approximation of the eigenvalues and the
eigenvectors of 7z by calculating those of 7g ;. Thus we need to estimate || (7g — Tg.1) £ |l
and 31" 1((Tp — Tp,n) @;» @;)|. First, we enounce our main result.

THEOREM 4.3. For j an eigenvalue of Tg of multiplicity m and [u,; an eigenvalue of
Tp,n approximating |1 guaranteed by the theory of Anselone, we have

(4.23) lim | = il = 0
and
4.24) ;1'1_1)1}) S(E(u), Ep(w)) =0

for sufficiently small h. Further whenever we also have E(u) contained in H!(curl, Q) x
H2(Q), then

(4.25) I — pnil < Ch?
and
(4.26) S(E(u), Ep(u)) < Ch.

Proof. First we note that since E (u) is of finite dimension, (H2), i.e., Lemma 4.4, implies
that

lim 11(Zs — Tp.1) lego I = 0.
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Then to estimate ||(7s — Zp,1)| £ I, We observe that @ € E(u) implies that ¢ € Wy C Hg,
and we have from (4.22) and the fact that 73 ¢ = u ¢ that

1T — To@lw < Cu inf 1Ig—Falw+  sup 16— b)Ghanl | -
TheW, an€Pn;llgnlle=1}

We suppose that @ € H!(curl, Q) x H?*(R2). Using (3.13), the estimation of the error due to
the numerical integration scheme, we obtain

1T = T)@lw < Cpuinf (16 =Falw + hvaslvslce).
h h

With ¥, = (TTg, ¢, I1p,¢3), the interpolation estimates (3.8) and (3.11) and the continuity of
the operator ITp, from £2(R2) to L2(R2) give

(4.27) I(7s = Tp)Pllw < Cuh (lpha + lcurlplie + lleslae).

Now since E (i) is finite dimensional, we have
(4.28) 1(Zs — Tp.n)Ellw < Cu h,

which gives the result (4.26).

To estimate Z;'fj:l |((Tp — T.n) P> p;)|, where {@; } ) is a basis for E(u), we remark
that for # € Wy and ¥ € W, the symmetry of the bilinear forms (-, -), and a(B, -, -) together
with (4.15) and (4.20) implies that

[(Tg — Tp,1)i, )| = la((Tg — Tp,n) i, Tg¥)|
= la((Tg — Tgp) 0, Tgv — )| for eachv, e W
< C\(Tg = Tgn) il _inf |[Tg¥ — ullw.
thWh

Combining once again (3.8) and (3.11) and using (4.27), we get

[((Tg — Tp.1) Pi> P
<Cu?n? (lpile + leurlgilie + loinlle) (I9ilue + lcurlgihe + llosle);

that is,
m
> (T~ T @i B < Cu b,
i,j=1

which concludes the proof of (4.25). o

Remark 4.3. Indeed E(u) is contained in H'(curl, Q) x H*(Q) if 75 maps L*(Q)
into H! (curl, ) x H?(K2) which corresponds to a regularity result for Maxwell’s equations;
cf. [26].

Remark 4.4. Of course the estimates (4.25) and (4.26) still hold if the eigenfunctions ¢;
are only piecewise regular in the sense made precise in Remarks 3.1 and 3.2. This remark
is not purely academic since p; will be only piecewise regular if € and p are only piecewise
regular.

Remark 4.5. Numerical results (cf. [15]) show that our estimates are optimal.
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Appendix A: An extension of a theorem of Kikuchi. In this appendix we give a proof
of the extension of the theorem of Kikuchi [17] used in the demonstration of the compactness
result in §3.2. The extension to the case of variable coefficients is actually straightforward,
but because of the conciseness of the proof in [17] we thought it useful to give some of the
details.

We recall that € is a bounded domain in R? and we suppose further that 2 satisfies the
following regularity hypothesis.

(HR) The regularity hypothesis. There is a constant 0, 0 < o < 1, and a positive
constant C such that if u € Hy(curl, 2) then we may write

u=w+ gradg with weH°(Q)? and g e H)(Q)
and with the estimate

IWllxe 2 + llgradqllz@er < C lullmeurso)-

THEOREM A.1. Suppose that Q2 satisfies the regularity hypothesis (HR). Suppose that
o {u,}>°, is a bounded sequence in Ho(curl, Q2),
e u, € Ry, foreachn,
e Div,, u, =0 for each n.
Thenthere is a subsequence of (u,};,> | converging stronglyin L2()? andweakly inH (curl, )
to an element u in H(curl, 2).
Proof. The classical Helmholtz decomposition theorem guarantees that u,, may be de-
composed as follows:

u, = v*' @ gradp",?
where v € H(div,0, ), p" € H) (), and
‘H(div,0, Q) = {w € H(div,, Q) : div(vw) = 0}.

We have immediately that

2 2 2
”un”£2(9)3 = ”vn”[g(ﬂ)g + ”gradp" ”[}(Qﬁ»
curlu, = curlv",

Vi Anip=0.

That {»"}°°  has a subsequence converging strongly in £2(£2) now follows from the compact-
ness result of Weber [26] used in §2. That the corresponding subsequence of {p”}3° | has a
further subsequence converging strongly in £2(2), weakly in H!(S2), follows from Rellich’s
lemma. The remainder of the demonstration is thus to show that this subsequence converges
strongly in H! ().

The first thing we show is that the limit p of {p"}7°, is in fact 0. We started with u,, of
0 discrete divergence v. We subtract the part v" of 0 divergence v. Since as n increases, i.e.,
as h, — 0, the discrete divergence v should approach the divergence v, the remaining part of
u,,i.e., grad p", should approach 0. Thus we claim that grad p, and hence of course p, is in
fact 0.

2Subscripts indicate that the element belongs to the corresponding finite-dimensional subspace; superscripts do
not.
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To show this we first remark that because Div,, j,, #, = 0and Div, ;, v = 0,3 we also have
Div, j, grad p" = 0. Then we take a sequence {£,}32,, with &, € P;,, converging strongly
in H1(2) to p. Now we have

(grad p", grad&,), — (grad p, grad p),

e 9]

since {&,}°° ; converges strongly in H(Q) to p. We also have

(grad p”, grad&,), = 0

since Div, 5, grad p"* = 0 for each n. Thus grad p = 0 and also p = 0 since p € H} ().
We still must show, and this is the most delicate part of the demonstration, that
lgrad p" || z2(q)2 converges to 0. This is where we shall make use of the regularity hypothesis
as well as the as-yet-unused hypothesis that u, € Ry, .
We have

lgrad p" |2 g = (grad p”,u, — v")y
= (gradp", un)y
= (gradp" — grad @y, un),
< Cllgrad p" — grad ¢,llc2(qp

for any ¢, € Pp,. We now must choose ¢,. (There is, of course, a sequence {p,};>; with
Pn € Py, converging strongly to p in H!(S2). But, we do not have that || p" — p,|| converges
to 0 since we do not know that p” converges strongly to p in ! (2). This is precisely what
we are trying to show.)

By the regularity hypothesis we may write

V' = 2" + gradgq”
withz" € H(Q)?, ¢" € H)(Q),
12"l @2 < C IV 1 Heeurt,) < C Nt ll1eurt, )
and
llgrad "l 22 < C IV 1wty < C ltnll#curt, )

which implies that z", up to extractions of subsequences, converges weakly in H° (€2) and
thus strongly in £2(2)? to some z € H’(S2) and thus ¢" converges weakly in H!(Q) and
thus strongly in £2(S2) to some g € H3(S2). But, as v" and z" converge strongly in £*(Q),
so does grad g". Thus g" converges strongly in H! ().

This permits us to write

grad p" = u, — 7" — gradg”
and to obtain
llgrad p" "20(9)3 < Cllu, — 2" — gradg" — grad ¢nl c2(qy-
What have we gained over the previous situation

grad p" = u, — v",
llgl‘adpnlizcz(g)g < Cllun —v* — gradnllc2p?

3Div,,,h,, is extended to an operator on £2(£2) in the obvious way; cf. (3.4).
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First, g" converges strongly to ¢ in !(2) and we can take a sequence {g,}°°, with
qn € Py,, converging strongly to g in H 1(Q). Then we have ||g" — g,|| converges to 0 since
q" and g, converge strongly to g in H!(S).

Second, to approach u, — z" we write it as the sum grad (p" + ¢") to which we apply
the following lemma of Kikukchi [17, Lem. 4].

LEMMA A.1. Suppose that p € H' () and that, for each K € Ty, pjx € H'*°(K). Then
p € C() and

1/2

lgrad(mup — P)llc2@e < Ch% 4 D ligrad pllo gy t
keTy
where 7, is the interpolation operator from C(S2) onto Pj, which assigns to a function in C(S2)
the function in P, which agrees with it on the vertices of the elements of Tj.

To seethat p = p" + ¢" satisfies the hypothesis of Lemma A.1 it is sufficient to check that
grad (p" + ¢") 1k € H° (K)?*foreach K € Ty since p" + q" € H'(Q).But, grad (p" + ¢") =
u, — 7", and, for each K, z* € H° (K)? by the regularity hypothesis (HR) and u,, € H° (K)?
because it is a polynomial.

We obtain

1/2
lu, — 2" — gradm, (p" + ¢")| < Ch° {leun - z”llﬁia(,g)z} .
K

Then taking

on = (P" + q") — qn,

we have

1/2
lgrad p"|I*> < C | h° [leun - z"II%.,(K)z} + llgrad (¢" — gn)ll
K

As noted above, ||grad(¢” — ¢,)|| converges to 0. Thus to conclude we need to show that
g

1/2
[Z "un - zn"%-[o(K)z}
K

remains bounded as » increases.
Foreach K € 7,

2 2 2
lw, — Zn”'Ha(K)z =< 2”un”Ha(K)2 + 2”zn”7—[a(K)2'

Moreover, using (HR) and an additivity property of the H°-norm (which can be proved by
interpolation), we obtain

172
2
'Z ”zn”'Ha(K)z} < |lz" ”’H"(Q)2 < C|p "'H(curl,Q) < Clu, ”’H(curl,fz)-
K

For the term in u,, we need another lemma of Kikuchi [17, Lem. 5].
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LEMMA A.2. Let x € Ry and let K € Ty,. Then xx belongs to HY(K)? C H°(K)?,
0 <o <1, aswell as to H(curl, K)and satisfies

-1
ligrad x & ll 2 = 27" *lleurl xix |l c2c)

Ixx e &y < Cllixillr -

Thus we have
”un”%.ta(K)z < llu, ”rz,.p(K)z
<C (”un”i;z([()z + llcurl un”%z(K))

and

12
[l B ee) < C Ul + Neurlunls )
<C ”un"%-((curl,g)-

Thus, since the sequence ({u,};2; is a bounded sequence in Ho(curl, ),
3 llu, — 212 C,(K)z}‘/2 remains bounded as n increases and ||grad p"||> — 0 as n — oo.
The proof is now complete. |
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