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Abstract, We are concerned with the problem of computing electromagnetic guided waves in a closed, inho-
mogeneous, cylindrical wave guide. These waves correspond to solutions of an eigenvalue problem, and classical
methods produce, in addition to approximations to the solutions, spurious modes which are particularly troublesome
because they correspond to nonzero approximations of the 0 eigenvalue. A nonconforming finite element method for
the calculation of guided waves without spurious modes is introduced and analyzed.
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1. Introduction, This article is concerned with the numerical calculation of electromag-
netic guided waves in a closed, inhomogeneous, c.ylindrical wave guide. The wave guide
(see Fig. 1) will be identified with a fight cylinder in ]t of cross section, fl; (2 = f2 x .
As the wave guide is closed, we assume that f2 is a bounded domain in ]2 with boundary
F admitting a unit outward-pointing normal vector field n defined almost everywhere. The
boundary of is then ’ F x N, and t/= (n, 0) is a unit outward-pointing normal vector
field on (2, in general, we shall denote a point in i2 by x (Xl, x.) and a point in N3 by

(X1, X2, X3) : (X, X3).
Let E denote the electric field and H denote the magnetic field in 2. The conductive

properties of (2 are described by e, the dielectric permittivity, and/z, the magnetic permeability.
These are real scalar fields on f2 that we assume to be independent of x3 and bounded above
and away from 0. By an electromagnetic wave in (2, we shall mean a solution of Maxwell’s
equations in second-order form

02U
(1.1) v-O- + Curl(rl CurlU) O,

where either

(1.2) U E, v e and = 1//z,

or

(1.3) U H, v =/z and 0 1/e,

We have

(1,4)
0 < Pmin --.< P < Pmax <

0 < r/min < r/ < r/max < .
An electromagnetic guided wave is a solution U of (1.1) of the following form:

(1.5) U(xl, x2, x3) l(Xl, x2)et(wt-x3),

*Received by the editors October 8, 1993; accepted for publication (in revised form) October 10, 1994.
tlnstitut National de Recherche en Informatique et en Automatique, Domaine de Voluceau, 78153 le Chesnay

Cedex, France (christine.poirier@inria,fr, jean.roberts @inria.fr).
THOMSON C.S.F./Laboratoire Central de Recherche, Domaine de Corbeville, 91401 Orsay Cedex, France.

1494



FINITE ELEMENT METHOD FOR ELECTROMAGNETIC GUIDED WAVES 1495

n

x2

F

x1

FIG. 1. The wave guide.

where ti, the amplitude function, is a function of finite energy in f2 in a sense to be made precise
below, and where w, the frequency, and/3, the wave number, are positive, real constants, Thus
U is a harmonic plane wave propagating with no distortion in the positive x3-direction with
phase velocity

We impose the boundary condition

(1.6) U x

Such a boundary condition is physically relevant since when U E, for instance, this corre-
sponds to a perfectly conducting bo.undary.

By introducing the operator curl/

ctr1

+ u2Ox2
Oil3

--lUl

Oil2 Obl

OXl OX2

we may write an equation on Q and a boundary condition on F that will be satisfied by the
amplitude function fi = (u, u3) of a function U of the form (1.5) if and only if U is a solution
of the equation (1.1) on (2 and satisfies the boundary condition (1.6) on

(1.7) cu’rl/(O ctrl#fi) =
(1.8) u x t/ 0, U3 = 0 on 1-’.

Thus the problem of finding a solution U of (1.1), (1.6) of the form (1.5) is reduced to that of
finding a solution ti (u, u3) of (1,7), (1.8). In terms of the operator curl, our finite energy
condition can be made precise:

(1.9) l(x)12dx + f ictrl (x)12dx <

However, for an arbitrary real pair (o,/3), there does not necessarily exist a solution of (1.7),
(1.8). For a given wave number/, (1.7), (1.8) defines a selfadjoint eigenvalue problem, it is
known, see 2, that an infinite number of solutions exists.
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Remark 1.1. An alternative approach, perhaps physically more relevant, is, for a given
frequency o9, to find pairs (/3, ti) with ti satisfying (1.7), (1.8) for the wave number/3. This
approach yields a more difficult mathematical problemma nonselfadjoint eigenvalue problem
with a finite number of solutions. Other solutions corresponding to complex/’s are called
evanescent modes. We hope to address this problem in a future work, but here we shall
constrain our attention to the selfadjoint problem.

Remark 1.2. One may also consider the propagation of guided waves in an open wave
guide, i.e., where one does not have a boundary condition on the boundary I" of the wave
guide that allows one to ignore the exterior domain R3 (2. Again this is the physically more
interesting situation as it is indeed the case with optic fibers. Then, however, one obtains a
problem in all R3, instead of in (2, or by the introduction of the operator crrl in all IR2,
the coefficients v and r/, i.e., e and/x, considered to be constant outside S2. One must then
introduce artificial boundary conditions at a distance not too far from f" to obtain a tractable
problem. Work on this extension of the ideas in this article is underway, cf. 14], [21], but
shall not be further broached herein.

There have been several previous approaches to the eigenvalue problem (1.7), (1.8). First,
for the case of constant coefficients (a homogeneous wave guide) a solution U is divergence-
free, and a solution of (1.1), (1.6) must be a solution of

(1.10) -- AU=0 inh,

(1.11) Uxti=0 and divU=0 onF.

Thus a classical approach has been to solve the eigenvalue problem corresponding to (1.10),
(1.11) which is an eigenvalue problem for the Laplacian. However we note that solutions of
(1.10), (1.11) in the form (1.5) need not be divergence-free in 2 and thus need not satisfy
(1.1). Extraneous solutions are obtained.

For the nonhomogeneous wave guide, vU is still divergence-free and o) 0 is an eigen-
value with infinite-dimensional eigenspace. However, solutions in this eigenspace are not of
interest physically as they do not propagate. Ideally one would like to base a finite element
method on a variational formulation for which the trial functions are v-divergence-free in the
sense that divvti 0. But it is not obvious how to construct a conforming approximation to
the space of v-divergence-free trial functions.

Penalty methods have been introduced; cf. [4], [16], and [22]. These methods add a
penalty term, dependent on a parameter 8, to the bilinear form of the variational problem. One
no longer has 0 as an eigenvalue, but other nonphysical eigenvalues are introduced. Just where
in the spectrum these eigenvalues occur with respect to the smallest physical eigenvalues, those
of primary interest to the engineer, can be manipulated by choice of the parameter 8. See [5]
for a nice explanation of this point.

If one simply ignores the v-divergence-free condition in the variational formulation and
uses classical Lagrange finite elements, one obtains solutions corresponding to small non-
physical real eigenvalues. These solutions, known in the literature as spurious solutions, may
be thought of as approximations of v-divergence-free solutions, but they can be difficult to
distinguish from solutions corresponding to small strictly positive, physical eigenvalues. Re-
cently Berm6dez and Pedreira [5] proposed the use of the Nedelec finite elements 19] instead
of Lagrange elements to approximate the amplitude function. They obtain a much better ap-
proximation in which spurious modes are eliminated. However, 0 is an eigenvalue of infinite
multiplicity for the discrete problem and this can lead to some computational difficulties (as
the Lanczos method can be very sensitive to the shift technique).
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The approach we develop here is to define a nonconforming approximation to the space
of v-divergence-free, trial functions. We are able to prove convergence results, and numerical
experiments confirm the efficiency of the method; cf. 15].

In the remainder of this section we introduce a change of unknown function that allows
us to work with real-valued functions instead of complex-valued functions. This represents a
significant advantage with respect to computational efficiency. In 2 we give a mathematically
rigorous formulation of the problem, and some results concerning the spectral theory for the
continuous problem are recalled. We construct in 3 an approximation space in which we shall
approximate the solution of the eigenvalue problem. The nonconforming method is defined
in 4 and theoretical results concerning the accuracy of the approximation are given. An
appendix detailing the demonstration of a generalization of a theorem of Kikuchi is included.
Numerical results will be reported in Part II of this paper 15].

Our computations are greatly simplified by making the change of unknown function
(Ul, U2, U3) - (Ul, U2, --lU3), which we do with no change of notation, and by redefining the
operator curl:

curl fi

Ou3
Ox2 flU2

Obt

OXl
OUl
Ox2

If

1 0 0 10 0

0 0 -t

then

curl tTcrl 7".

Equation (1.7) becomes

(1.12) curl*(rl curl fi) vo)2/’ in ,
where curl* curl_ -tT*crl 7-* is the formal adjoint of curl/. This formulation
permits us to work with real vector-valued functions ft.

We shall also make use of the operators div and grad:

div fi
Oul OU2
OXl

+ flU3,

09 oo o)grad o Oxl’ Ox2

Further, in the remainder of this article, curl and div will denote operators on two-dimensional
vector fields to scalar fields, and curl* and grad will denote operators on scalar fields to



1498 R JOLY, C. POIRIER, J. E. ROBERTS, AND R TROUVE

two-dimensional vector fields:

curl u
OU2 OUl
OXl OX2

div u
OUl OU2
OXl OX2__

grado-
OXl Ox2

0o Oq) )curl* 99 Ox2’ OXl

Let us recall the definitions of the following function spaces:

(curl, f2) {u 6 /2("2)2 curl U 2(2)},
7-[o(curl, f2) {u 6 /22("2)2 curl U /2(,) and u x n 0 on F},

where u x n is defined as an element of ]-/-1/2(I-’) by Green’s formula

(u x n, V) fa (u curl* qge curl u o) dx for each ?, 6 ]-1/2(I"),

where qg is an element of1 (S2) having trace y on 1-" and where (., .) is the duality pairing
between 7-[-1/2(1-’) and 7-(1/2 (1-" Next, define

7-[(curl, S2) {ft ff2(’2)3 curl l

7-[.o(curl, f2) {ti /2()3 curl ft /2(,)3 and ti x ti 0 on F}.

Note that for ti (u, u3) (ul, U2, U3) to be in the domain of curl, more regularity is
required of u3 than of ul and u2; more precisely, u 7-{(curl, S2) and u3 6 l(f2). We have
the following equalities of vector spaces:

(curl, S2) (curl, S2) x

Thus we may identify ti x h with the vector (u3, u x n) 6 "/1/2(I") X "-1/2(1-’) and write

7-[o(curl, f2) o(curl, ) x (f2).

The relevant Green formula is

(u n, v3) (v n, u3)

(1.13) curl f curl ft. ) dx

for each

The following analogues of the corresponding relations for the classical operators curl,
div, and grad hold:

div curl} ti 0 for ti

curl grad q) 0 for 99 7-( (f2),
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and

div =-grad.

Finally, we point out that if ti 7-[(curl, f2) and curl ti 0, then there is an element
q) 7-t1() with fi gradcp, namely cp u3, and that p 7-(() if and only if

7-(o(curll,
2. Mathematical formulation of the problem. Our objective here is to give a more

mathematically precise formulation of the physical problem presented in 1 and to recall a
few results that we shall need in the construction of our numerical method.

We assume that the cross section g2 C R2 has the local cone property; see ]. We point
out that this assumption is not restrictive from the point of view of physical applications since
it does not exclude domains with corners, not even nonconvex ones.

To give a variational formulation of the problem we shall need to define some function
spaces. Let denote the Hilbert space ;2()3 equipped with the weighted inner product

(2.1) (ti. (vfi. f. v fi dx,

and let be the following l-dependent closed subspace:

(2.2) 7-[ {ti 6 7-/: div(vti) 0}.

Now as 7-( is closed in 7-( it has an orthogonal complement and the decomposition

(2.3) 7-/= 7-/ (9 7-/,
where

7-/; (, ti)v 0 for each 6

defines a Helmholtz-type decomposition of a three-dimensional vector field. In fact we have
the following lemma.

LEMMA 2.1. lf , then 7"( ifand only ifcurl 0 and h O.

Proof. Suppose that 6 7-t. To show that curll = 0 in the distributional sense, it is
sufficient to show that

(curl} , )zz2(a13 = 0 for each q3 6 D(g2)3.

curl 7-[, andSo let 5 6 D(f2) Then

i.e., curl 7-[. Thus

dive (v (curl @)) =0;

(curl} @, ) =0,

or, in other words,

(curl , )zz2(a)3 0.
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To show that fi ti 0 on F, we test curls f, against a function that does not necessarily
vanish on F. Let 93 6 7-l(curls, S2). By the density of D(f2) in 7-[(curls, 2) we have

and by (1.1 3) we have that

curls fi)c(a) + (v x n, qga) (q x n, va) O.

However, as we have just seen, curls 0 so

(vxn, 993)-(qoxn, v3)=0 for eachqb

Since the map 3 (qa x n, q)3) is surjective from 7-((curls, 2) to --1/2(1-’) ]"1/2(I"), we
can conclude that x h 0.

Now suppose that 6 and that curls 0 and x fi 0. Then there exists 0
with fi grads 0, and if ff 6 S, we have

(, ff)v (vgrads rp, if)

-(o, divs (v))
O,

and 7-/-. [

With this lemma and the definition of 7-(s, we obtain the following characterizations of
and -"

1
div(vu) }S ti (u, u3) 7-(’u (divv, f2) and u3

vfl

7-/ ti (u, u3) e 7-/" u3 e (a) and u = gradu3
where

7-/(divv, f2) {u 6/2()2 div(pu) G 2(2)}.

In other words, 7-(s is isomorphic to the space of two-dimensional vector fields 7-/(divv,
while 7-(- is isomorphic to the space of scalar fields 7-/01 (f2) under the following isomorphisms:

(2.4)

,7" (divv, 2) 7-ts

w--+ u, --div(vu)

and

(2.5)
grads

We shall also need the space

(2.6) )A; 7-to(curl, f2) x 7-l(f2) 7-to(curls, )
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endowed with the norm

(2.7)

One easily checks that an equivalent norm is given by

(2.8) Ill’lilly iI(a) + curlf IIc(a).=
The space that we shall approximate numerically is the following fl-dependent closed

subspace of

(2.9) kY V N 7/8,

with the norm inherited from V. Of course )/V also admits the decomposition

w= w,,w,
where again orthogonality is with respect to the inner product (., ")v. As 7-g- C kV, we have

IA2- -. Further, the isomorphism ff clearly restricts to an isomorphism

,.7" 7-go(curl,

where the space 7-/ (divv, f2) is defined as follows:

7-/(div,, ga) {u e/2(--)2 div(vu) e 7-/(fl)}.

The variational formulation of (1.7), (1.8) may be expressed in terms of the following
fl-dependent bilinear form defined on

(2.10) a (fl

Then (1.7), (1.8) may be expressed as

(2.11)
find co IR+, ti lA2 such that

a(fl, fi, ) wz(ti, )v for each 6 W.

The form a(fl,., .) is symmetric, but it is not V-elliptic as a(fl, ti, ti) 0, and thus
(0, ti) is a solution of (2.11), whenever curlfi 0. In fact it is clear that a(fl, ti, ti) 0
if and only if curlfi 0, Thus we have as an immediate consequence of Lemma 2.1 that
a(fl, ti, ti) > 0 for each nonzero ti 6 1/Vs. Furthermore, we are not interested in solutions of
(2.11) with w 0. Such solutions do not propagate, and their numerical approximation poses
considerable difficulty; cf. [5]. Physical solutions associated with co > 0 will thus belong to
1/Vs This leads us to consider the variational problem

(2.12)
find co IR+, ti 6 Y such that

a(fl, fi, ) co2(fi, fi) for each fi

(which is clearly equivalent to the problem

find co e IR+, ti 6 ]A] such that

a(fl, ti, ) co2(li, )v for each
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since a(fl, fi, fi) and (fi, )v both vanish when 6 W and fi 6 /V) and we can show the
following result.

LEMMA 2.2. The bilinearform a(fl, ., .) is W-elliptic.
Proof Let fi belong to WI. Then

a(fl, fi, fi) f r curl[ fi curl (t dx

fn r/(gradua flu). (grad u3 u)dx

+ fn curl u curl u dx

> lminllcurlul[ 2 ]min 2 min f12 2

Pmax Vmax

2 ?/mi..._n fl l p U grad u3 dx,
1)max

but we recall

(2.13)

min

Vmax
-/3 f v u grad u3 dx

frlmin div dx! u3 v u
1)max

0min 2 f V U dx
Vmax

l)max

and the lemma follows. [3

To describe the spectral properties of the problem we introduce the unbounded operator
defined on t to as follows:

D(A) {fi e W/ curl(curlfi) 7"(}
(2.14)

1
4(fi) -curl*(O curl fi) for eachfi 6 D(,4).

We clearly have the following relationship between the operator 4 and the bilinear form
a(fl, ., .):

(2.15) (4(fi), )v a(fl, fi, fi) for each (fi, fi) D(.A) W.

For Theorem 2.1 we shall need the following lemma.
LEMMA 2.3. The operator + I is an isomorphismfrom 79(4/) onto

Proof By Lemma 2.2, for f 6 7-/, the problem

find fi W such that
(2.16)

a(fl, fi, ) + (fi, ) (fi ) for each W
admits a unique solution fiT. We cannot immediately conclude, however, that fiT is the unique
solution of

fi 79(A),
(2.17)
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because 7)(Q)3 is not contained in B2. However, we have only to remark that if 6 B2-, by
Lemma 2.1

a(fl, fry, ) O,

(f, ) o

since f 6 7-/, and

(fly, ) = o

since fly 6 7-tt. Thus the equation in (2.16) holds also for f 6 A2 and since B2 = B2 @
does contain 79(f2)3, it now follows that b/f is the solution of (2.17).

THEOREM 2.1. With the given hypothesis concerning v, rl, and f2, the operator 4 is a
positive-definite, selfadjoint operator with compact resolvent.

Proof Positive definiteness is shown in Lemma 2.2. The symmetry of .A is implied by
that of a(/3,., .), so selfadjointness is a consequence of Lemma 2.3.

That AI has compact resolvent follows from the fundamental fact that the inclusion of
into 7-/ is compact. To see this we note that 7-/() is compactly included in 2(S2) and that
under the hypothesis that f2 satisfies the restricted cone property, 7-to(curl, g2) (q 7-/(divv,
is compactly embedded in E2(f2)2; cf. [26].

Remark 2.1. An important part of the proof of Theorem 2.1 is the compactness of the
imbedding of B2 in 7-/. If we require greater smoothness of v, for instance v 6 )421’ (f2),
we may replace the requirement that f2 satisfy the restricted cone condition by any of the
following conditions:

(i) 1-" is Lipschitz,

(ii) f2 is convex,

(iii) F is C1’1,

for then 7-to(curl, f2) N 7-t(divv, ) is continuously
embedded in 7-tl/2(f2)2; cf. [9].
for then 7-to(curl, f2) (q (divv, f2) is continuously
embedded in 7-/1 (f2)2; cf. 13].
for again 7"to(curl, f2) 7-/(divv, f2) is continuously
embedded in ,1.1 (")2; cf. [13].

THEOREM 2.2. With the given hypothesis concerning v, rl, and f2, the spectrum of .A,
(.A ), is a pure point spectrum

with

Z() > 0

and

lim Xn(j
n-oo

The set of eigenfunctions uj () associated with )j() is characterized as the set of nonzero
solutions of

(2.18)
a(, Ft, ) = Zj()(fi, )v for each
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Proof In light of Theorem 2.1, the results concerning the spectrum of4 are classical
results from the spectral theory of compact selfadjoint operators 11].

As for the characterization of the eigenfunctions, it is clear that any eigenfunction satisfies
(2.18). To see that any solution of (2.18) is an eigenfunction it is sufficient, as in the proof
of Lemma 2.3, to remark that the second equation of (2.18) holds for fi 6 V- for any

We conclude this section with the following theorem, a direct consequence ofTheorem 2.2.
THEOREM 2.3. For any electromagnetic wave guide whose cross section satisfies the

restricted cone property, there exists a countable family ofguided modes {Uj (x, t), < j <
+cxz}. Each mode exists for any value of the wave number fl and the jth mode obeys the
dispersion relation

(2.19) CO2 ,kj (fl), where )j(i) is the jth eigenvalue of.A.
3. The approximation space V,t. We have seen in the preceding section that looking

for a guided mode with wave number/3 is equivalent to seeking a solution to the following
problem:

find (co, fi) 6 + V such that
(3.1)

a(fl, fi, ,) ----co(fi, ) for each

The first step in the numerical approximation of the problem is thus to construct an approxi-
mation space W,h for W.

Recall that )/V is the subspace of 4; o(curl, 2) (2) consisting of those
elements fi of; for which div(v fi) 0. Thus it would be natural to try to define V,h to be
the subspace of ;h" 7h 7h consisting of those elements h of Wh for which div(v fih)
0, where 7h is a finite-dimensional subspace of 7o(curl, 2) and 7h is a finite-dimensional
subspace of (2). However we shall see below, in 3.5, that for classical spaces 7h and
7h, fih (7h 7h) f )A; implies that fih 0. This leads us to the idea of constructing an
external approximation ofW in which the divergence-free condition

div(vfi) 0

is enforced only in a weak form.
Let us recall that the divergence-free condition, div(vfi) 0, defines the subspace

of ; as the isomorphic image of the space o(curl, 2) 7(div, 2) of two-dimensional
vectors under the map ff which associates to a two-dimensional vector a third component in
such a way that the divergence-free condition is satisfied:

( (Ul, U2)) u,u2, divu()

where for notational convenience we have introduced the operator div defined by

1
div div v.

What we would like to do is to define a discrete analogue of that would map h into

h x 7h by defining its third component in such a way that a weak divergence-free condition
is satisfied. We could define h from h into "/h X "]’)h by

(3.2) h(h) Uh,1, Uh,a, --2diVv,h h
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where divv,h Uh E h is determined by

(3.3) f v diVu,h Uh q)h dx fa v uh grad oh dx for each q)h E g)h.

We would then define ]/V,h to be the image of Jh.
However, if 14;,h is to be a finite element space we need a basis of elements with small

support to preserve computational efficiency. If diVu,h is defined by (3.3), the support of
divu,h u could be all of even if the support of Uh is very small. We could not obtain a
suitable basis for ]/V,h as the image of a basis for Th. This leads us to the idea of defining
a discrete divergence operator DiVv,h using numerical integration. For Uh Tgh, DiVv,h uhis
determined by

(3.4) fs2vDivu,hUhg)hdx----favuhgradq)hdx for each g)h 7")h,

where is a numerical integration operator.
Our finite element space is thus the space

(3.5) )/,h h(J’h) (Uh, //h,3) "h X Dh //h3 -DiVv,hUh
But, of course, to complete our definition we need to define the spaces 7h and 79h and the
numerical integration operator in (3.4).

Remark 3.1. Those who are familiar with fluid dynamics will see a certain analogy with
the numerical approximation of Stokes or Navier-Stokes equations. For these problems, we
have a vector-valued function u (the velocity field) and a scalar one p (the pressure) as we have
here u (ul,//2) and u3. The difference is that for Stokes, the vector unknown (in 7-/1 ()) is
more regular than the scalar one (in 2(t2)). Here, we encounter the opposite situation.

Henceforth, to avoid the technical difficulties linked to the approximation of the domain,
we assume that 2 is a polygonal domain in R2. Let Th be a uniformly regular triangulation
of f2, f2 tJKeTh K by a finite number of rectangles and/or triangles of mesh size h; h

maxKeTh (diam K).

3.1. The space 79h and its approximation properties. We shall consider the Lagrangian
finite elements which are linear on each triangle of Th and bilinear on each rectangle of Th"

79h {(/9 ’/-(") O C();
(3.6) 99 I:E P1 (K) if K e Th is a triangle, and

99 IKG Q1 (K) if K 6 Th is a rectangle}.

An element of 79h is continuous, vanishes on the boundary, and is uniquely determined by
its values at the interior vertices of Th. Thus its dimension is the number of interior vertices of
Th. Further, if for each interior vertex M of Th, (PM denotes the element of 79h having value 1
at M and 0 at every other vertex of Th, then {oM M is an interior vertex of Th is a basis of 79h.

We denote by 1-IT) the/22(f2) orthogonal projection operator from 2(), onto ’)h"

(3.7) (rlPhq) 0, grh) 0 for each

We have the following well-known estimate [7, (17.12)]:

(3.8)
lifo rIollc(a>o _< c//Vmax hm Iqolm,a,

/1)min

Ilgrad(o rI0)llc=<a> _< C ,/1)ma’---’-x h 1o12,a
V l)min

whenever 99 has sufficient regularity for the above norms and seminorms to be defined.
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Remark 3.2. If 99 is not in _/2 (’) but we have a partition of f2, Ui i, ’i f") 2j
if 5 j, such that 99 7"/2 (g2i) for each i, and such that each T Th is contained in ’i for
some i, the seminorm Io1=< may be replaced by Yi I01<, in both equations of (3.8).

3.2. The space "Th and its approximation properties. We use the lowest-order mixed
elements of Nedelec [19] for the approximation of the space Ho(curl, 2). In the two-
dimensional case, these elements are easily deduced from those of Raviart-Thomas [23]
for the approximation of the space H(div, f2) (simply apply a rotation of angle ):

"h {’P - 7-[o(curl,

(3.9) v Ix- {or + ?’(-x:z, xl)t, a Po(K):z, F P0(K)} if K 6 Th is a triangle, and

v I/6 Q0,1(K) x Q1,o(K)if K 6 Th is a rectangle}.

An element of h has tangential components which are continuous across the interior
edges of Th and 0 on the boundary edges. It is uniquely determined by the constant values
of its tangential components on the interior edges. Thus the dimension of Rh is equal to the
number of interior edges of Th, and if for each interior edge a, Wa denotes the element of Rh
having tangential component equal to 1 on a and equal to 0 on every other edge, then Wa a
an interior edge of Th is a basis of Rh.

We shall make use of the operator FlT-h o(curl, g2) 7P,h which is just the projec-
tion in the (curl, f2)-norm:

(FIT (V) 1, Wh) v -" (curl(I-IRh (V) V), curl(Wh))u 0
(3.10)

for each Wh Rh.

We have the estimate

(3.11)
Ilu I’l,ullc=( C l)maxl)min h lul,,

/Pmax h (lul, / Icurlul,)Ilcurl(u- rIu)llc() _< C V Pmin

whenever u has sufficient regularity for the above norms and seminorms to be defined. This
estimate follows from [24, Thm. 6,3].

Remark 3.3. Again, if u is not in 1(f2) or if curl u is not in 1(f2) but we have a
partition of (2 i ai such that u /1 (’i) and curl u 7"[, (S2i) for each i, the seminorms
lul, and [curlull,S2 may be replaced by -’-i lUll,; and ,i Icurlull,ai, respectively.

Here we point out one more property of the pair of spaces h and 79h which we shall
exploit later:

(3.12) if (/9h 7")h, then grad(qgh) 7h.

This appears as a fundamental compatibility relation between the spaces ]’h and 79h.

3.3. The numerical integration scheme and its approximation properties. The quad-
rature scheme used here is the trapezoidal rule; the integral of a function over a cell is ap-
proximated by the average of the function values at its vertices multiplied by the area of the
cell:

fa f dx , meas(K)

_
f(M),

:eTh nv(K) M a vertex of K
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Support of wa Support of W3,a Support of wa Support of W3,a

(1) A Rectangular Mesh (2) A Triangular Mesh

FIG. 2. Support of W3,a support ofDivv,h tO

where nv(K) denotes the number of vertices of K. This scheme is exact for functions in 79h,
and we have that if 99h and Ph are in 79h, and if ot is regular (kV1’) on each cell of Th, then,
[8, Chap. 4.1 ],

(3.13) f Ol q3h1[th dx f. qghl[rh dx < C hotmax

We also introduce here the numerical integration operator Th from 79h tO 79h defined by

(3.14) fa Th(Oh) Tth dx fa Ph h dx for each Ph 79h.

We point out that DiVv,h Th o divv,h.

3.4. Basis elements and dimension. Note that V,h is isomorphic to the space 7h and
has by construction the same degrees of freedom as 7"4,h. It is then easy to construct a basis
of /V,h by considering the set {ffa ;a an interior edge of Th}, where ffa (Wa, W3,a

D1Vv,hl Wa). The support of to3,a is simply the union of all the elements of Th which admit
at least one common vertex with one of the two elements of the support of Wa (see Fig. 2).

Remark 3.4. Let us again emphasize the importance of using a quadrature formula for
the evaluation of the integral f v ap 99 dx in (3.3) for the definition of the discrete divergence
operator. If we had evaluated this integral exactly, we would have lost the local character of
the discrete operator DiVv,h since its evaluation would have involved the inversion of the mass
matrix associated with the bilinear form (o, 7z) w- f vq97zdx on Ph Ph. Then, for a basis
function a (Wa, W3,a) (Wa dlVv,h Wa), the support of to3,a would have coincided
with all f2, leading to prohibitively expensive calculations.

It is interesting to compare the dimension of the space kVt,h (which is the same as the
dimension of TCh) with that of the space h 79h in which we would naturally work if we did
not take into account the divergence-free condition. We consider the case where f2 is a square
and examine the two following examples.

Example 1. We consider a mesh of squares. Denoting by N the number of small squares
in one direction, then Dim 7Zh 2N(N 1) and Dim 79h (N 1)2.

Example 2. We consider the previous mesh, and we split each small square into two
triangles. Then Dim 7h 3N2 2N and Dim 79h (N 1)2.

We see that we gain at least a factor 3/2 for Example 1 and 4/3 for Example 2, on the
dimension of the matrices we have to deal with, when N is large. However this benefit is
counterbalanced by the fact that the matrices are not as sparse.
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3.5. (’h X ’h) O "/9 {0}. We assume here that v 1. Suppose that h (Vh, Vh,3)
div Vh However, for eachbelongs to h x 79h and that divt(Vh 0. Then Vh,3.

element K 6 Th, whether K is a rectangle or a triangle, div Vh IK 0. Thus V3h is identically
0 since elements of 79h are continuous and vanish on the boundary. We now have imposed on

Vh an additional continuity requirement, namely continuity of the divergence, at each interior
edge of Th, and it is not difficult to check that this together with the boundary requirement for
elements ofh implies that Vh is also identically 0.

3.6. Approximation properties ofthe space W,h. Here we derive some approximation
properties of the space W,h. Indeed we shall see that because of the numerical integration
used in the definition of Wt,h; i.e., in the definition of the discrete divergence operator DiVv,h,
we have been able to obtain a useful approximation result only in the case that the family
of triagulations {Th;h 6 A} is asymptotically uniform. (See definition below.) The results
obtained are thus not used in the remainder of this article. We have nonetheless thought it of
some interest to include them and to point out an analogy with finite volume methods 12] or
cell-centered finite difference methods.

We would like to be able to show that any element ofWt can be approximated sufficiently
well by an element of the space l/V,h. That is we would like to be able to define an operator
(7 A; W,h such that we have at the very least that

(3.15) IIi-rIillw 0 ash 0 for eachti 6 W.
Given that any map l=I )A; W,h uniquely defines a map FI o(curl, f2) TZh
and conversely, we need a projection operator H from o(curl, ) onto Rh such that if
u o(curl, S2) N (div, S2) then Jh (1-Iu) is a good approximation of J(u); i.e., Hu is a
good approximation of u in the 7-[o(curl, f2)-norm and DiV,h(FIu) is a good approximation
of div u in the 1 (f2)-norm.

We take the map rI to be FITZh, the projection in the (curl, S2)-norm of 7-[o(curl, )
onto 7h, as defined by (3.10), and we obtain the following lemma.

LEMMA 3.1. Thefollowing diagram commutes:

o(curl, S2) C) (div,
divv

diVv,h

That is,

FITCh o divv diVu,h o I’I7

Proof. Let u e o(curl, ) N 7-/(dive, f2). It is sufficient to show that

(FITCh div u, 0h) (div,h 1-ITahU, q)h)v for each q)h 6 79h.
First note that for q)h 6 79h,

(l’ITh div u, q)h)v (divv u, qgh)v

(u, grad
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by definition of FIph, (3.7). For any h E h,

(divv,h 1-I Tzh U, gh)v (1-ITh U, grad qgh)v

by definition of divu,h. But (u H7Zh U, grad (/9h)v 0 by definition of 177zh since grad (/9h
and curl grad (/9h 0. [’]

LEMMA 3.2. Suppose that u 7-(o(curl, ) is such that divu u 01(f2) f 2(fl). Then

(3.16)

and

divv,h I’ITZh u --divv u c=( Ca/13max/
heldiv ul2,

/Pmin

(3.17) grad(diV,h I’ITZh u --divv u) c< C/pmax hldivv ul2,
/Pmin

where the positive constant C depends only on the open set

Proof Since by Lemma 3.1 we have div,,h 1-ITzhU l-I divu, (3.16) and (3.17) follow
from (3.8).

THEOREM 3.1. Let fi (u, u3) 6 42 be such that u 6 7" (S2)2, curlu 7-[ 1(f2), and
u3 6 7-(2(f2). Let

Then

(3.18)

-lh H’ U - I-I79hU3 H" U - divv,h H’ U

-/h 7"((curl,)7"[.1(2)

_< C(/3, v)h{I u I1 -t- curlu I1 + divu 12}.

Proof Theorem 3.1 follows immediately from (3.8), (3.11), and Lemmas 3.1 and
3.2. [3

Remark 3.5. As in Remarks 3.2 and 3.3, the estimate (3.1 8) can be extended to the case
where the function fi is only piecewise regular in the sense defined in these two remarks.

Theorem 3.1 would give us not only the desired pointwise convergence in W, but also
the stronger W-norm convergence of/h (177"h/ -diVu,hl-ITzhu) toward t. However/h is
not in W,h since we had to resort to the use of a quadrature rule to define W,h. Of course
we would like to be able to replace divv,h in Theorem 3.1 by Th o divv,h DiVv,h, and we
clearly have the analogue of Lemma 3.1:

(3.19) Th o 1-I79 o div Th o diVv,h o 1-IRh DiVv,h o l"IT-Zh.
But we would have the analogue of Lemma 3.2 only if we had the estimates for Th o I77h that
(3.8) gives for I-ITCh. These estimates we have been able to obtain only under the hypothesis
that the family {Th; h A of triangulations is asymptotically uniform.

DEFINITION 3.1. A family of triangulations {Th;h A} is said to be asymptotically
uniform if

max / pt(x)(x M)dx O(h4),
,Nh da

where Nh is the set of interior nodes ofTh and, for M N, Pt is the basisfunction of 79h
associated with the vertex M.



1510 E JOLY, C. POIRIER, J. E. ROBERTS, AND P. TROUVE

LEMMA 3.3. If the family of triangulations {’Th; h A} is asymptotically uniform, we
havefor each q9 2(f2) that

(3.20)
(Th o I’I)go-go =<
(grad(Th o FIZ)h)0- o) C2(2 _< C h o

Proof For a complete proof of Lemma 3.3, see [15]. [3

THEOREM 3.2. Assume that the family of triangulations {Th;h 6 A} is asymptotically
uniform. Letfi (u, u3) 6 ]/V besuchthatu 7-1(f2)2, curlu 7-[l(f2),andu3 7-/2(f2).
Let

lh = l"ITh u Th o I-IhU FITZh u DiVv,h l-ITzhU

TheFt

(3.21) - -gh 7"(curl,f2)xT"l(g2)

<_ C(I, v)h{I u l1 + curlu II + divvu 12}.

Proof Theorem 3.2 follows from (3.8), (3.11), (3,19), and Lemma 3.3. [3

Remark 3.6. The same comment concerning the regularity of u as in Remark 3.5 applies
to the estimate (3.21).

4. Analysis of the finite element method. The nonconforming finite element method is
as follows"

(4.1)
find (o9, h) ]q- )< "Vl,h such that

a(/3, fih, h) O)2(/h, h)v for each h "/3,h"

We point out that even though W,h is not contained in W, it is contained in W and a(fl,., .)
is defined on all of W. So (4.1) is meaningful. Further we can show the following lemma.

LEMMA 4.1. The bilinearform a(fl, ., .) is /V,h-elliptic, uniformly in h.
Proof With fi 6 /V replaced by fih 6 /V,h in the proof of the continuous analogue,

Lemma 2.2, the proof is the same up to (2.13) where we obtain instead

(4.2)

rlmi"-"-’n / f P/gh grad Uh,3 dx
1)max

/ f2 Uh’3 1) DiVv,h Igh dx

1)max0min’/2 ff2 p uh’32 dx
_>0,

which completes the proof since, by the Poincar6 lemma,

Iluh,3 II=(ao < C Ilgrad Uh,3
2
c2(a)2. [3

Just as solutions of (3.1) are eigenpairs for the operator tt, those of (4.1) are eigenpairs
of the operator 4,h, which is defined on /V as follows:

4t,h (t)

(e4/,h (fi), fi)v a(fl, t, ) for each /,h.
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Thus as the image of d[/3,h has finite dimension, we clearly have the following analogue of
Theorems 2.1 and 2.2,

THEOREM 4.1. With the given hypothesis concerning v, rl, and 2, the operator 4#,h is a
symmetric, positive-definite operator offinite rank.

THEOREM 4.2. With the given hypothesis concerning v, 7, and , the spectrum ofA#,h,
cr (A,h), is a pure point spectrum

O’(A/3,h) {)h,l() __.< h,2(/) __.< )h,nh()}

with

Xh, () > O.

The set ofeigenfunctions, gthj(t3), associated with Xh,j (), is the set ofnonzero solutions of

(4.3)
ghj E ]/fl h

a(, hj, h) Xh,j() (hj, h)v for each

To see that the eigenpairs (co, ti) ofA are well approximated by those of 4,h, we shall
recall some results from the theory of spectral approximation, First, however, as this theory
applies to compact operators, we define the operators 2r and T,h.

Let T be the operator from into 7-(, defined by

(4.4)
W,

a (fl, ’T fi, ) (fi, ),, for each

and T,h be the operator from 7-/ into 7-/ defined by

(4.5)
T,h ti e W,h,
a(/3, T,h ti, fib) (ti, h) for eachh

is an eigenvalue of A, and/Xh isWe have that/x is an eigenvalue of T if and only if 2,
is an eigenvalue for t,h The operators T andan eigenvalue for T,h if and only if u

T,h are compact, selfadjoint operators on 7-(. For each eigenvalue/x of T we let E(/x) be
the eigenspace associated with/z and let m(/x) denote its multiplicity. Similarly, let Eh(h)
denote the eigenspace associated with the eigenvalue/Zh of T,h.

4.1. Convergence analysis. Here we would like to make the hypothesis that the coeffi-
cient functions v and the triangulations Th that we consider are such that for each K 6 Th, v 6

WI,(K). (Thus v is piecewise Lipschitzian.)
For our convergence analysis we have not used the classical min-max approach described

by Babuka and Osborn [3] and by Strang and Fix [25] for variationally formulated eigenvalue
problems as our finite element method is nonconforming. Nor have we succeeded in adapting
this method to the nonconforming case, Indeed this theory would require the convergence in
the operator norm of () that we did not succeed in proving. (In fact, we conjecture that
this is not the case.)

Also in 18], the authors obtain convergence results for a mixed formulation of the eigen-
value problem, which we mention here since we shall indeed be led to use the equivalence of
our problem with its mixed formulation. But here also norm convergence is required.

We are thus led to return to the earlier works of Anselone [2, Chap. 4] and Osborn [20].
To use their results we must establish that for the compact operators T and {T,h; h E A},
the following two hypotheses are met:
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(H1) The uniform discrete compactness hypothesis. IfB C I,-JhEA }fl,h is bounded
in /V, then it is relatively compact in 7-/.

(H2) The consistency hypothesis. For each f 6 7-/, "T,h(f) converges to Tf in
the 7-/-norm, i.e.,

lim I1 f ’T,h f I1 0.
h--->0

Now from Anselone [2] we know that for/z - 0 an eigenvalue of T of multiplicity m,
and for > 0 but less than the distance from/z to any neighboring eigenvalue, the sphere of
radius around/z contains, for h sufficiently small, exactly rn eigenvalues, lZh,i, 1 rn
(counted with multiplicity) of T,h, and the dimension of E(/z) is equal to that of Eh (tz)
im= Eh (lgh,i ).

Before stating Osborn’s results estimating the distance between the eigenvalues ofT and
those of T,h and the distance between the eigenvectors of T and those of T,h, we recall
the classical notion of the distance between two subspaces M and N of a Hilbert space X:
3(M, N). The gap between M and N is defined by

3(M, N) max (M, N), (N, M),

where

(M, N) sup dist(x, N).
{xEM;llxllx--1}

Now Osborn has shown [20] (see his Theorem 4 together with the remarks following
Theorem 6) that if (HI) and (H2) are satisfied, then for/z 0 an eigenvalue of T of
multiplicity rn and ]Jbh, an eigenvalue of T,h approximating tt guaranteed by the theory of
Anselone, we have

(4.6) / m

z Ih C (’-1"fl "-fl h qj)l + I1( ,h) IE()
i,j=l

where {i}im=l is a basis for E(tt) and where (T T,h) ]E(/) denotes the restriction of

T T,h to E(tz).
Equation (4.6) gives us an estimate of the error in approximating the eigenvalues. The

error in approximating the eigenvectors is given by [20, Thm. 1]

(4.7) 6(E(lz), Eh()) CIl( ,h) IE()
for sufficiently small h.

To obtain thus the desired estimates, we must show that in our case (H1) and (H2) are
satisfied, and we must estimate the two terms

rn

]](’T T,h)IE(/z) and E I((T --’T,h)i, j)l.
i,j=l

4.2. (H1): The uniform discrete compactness result. The compactness of the operator

T 7-/----+ 7-/is due to the compactness of the inclusion of /Yfi into 7-/t; cf. Remark 2.1.
The compactness of the operators T,h ----> 7-/is guaranteed by the fact that they are
of finite rank; YYZ,h is obviously compactly included in 7-/. However, for the convergence
results that we wish to obtain, some uniformity in h of the compactness of the operators
T,h is needed. This uniformity is guaranteed by the fact that the spaces /Y,h are uniformly
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compactly imbedded in 7-/ in the sense stated in Lemma 4.2 below. Lemma 4.2 is thus a
discrete analogue of the compactness of the embedding of ]/V into . This proof strongly
depends on an analogous discrete compactness result of Kikuchi 17, Thm. 1 for the spaces
h. This theorem however has been proved only for the case in which the triangulation is a
triangulation by triangles (and only for the Nedelec spaces of lowest order). Thus we are able
to demonstrate (H1) only in this case. Further, for Kikuchi’s result, the coefficient v is constant.
Though his proof is easily extended to include the case with our hypotheses concerning v, we
have nevertheless included an appendix to show this.

What we would like to show now is that (-JhA /fl,h, is compactly included in in the
following sense.

LEMMA 4.2. Assume that the boundary F off2 is Lipschitz continuous. If13 C t-JhA/V,h
is bounded in /V, then it is relatively compact in 7-[.

Proof The proof is an elaboration and slight generalization of one given in [5]. We
include a rather detailed argument here because in that of [5] the coefficient v is constant and
no numerical integration scheme is used. Let {n /,hn}n=l be a sequence in [’-Jh6A,h
which is bounded in V. We must show that there is a subsequence, convergent in =/22 (S2) 3.
(We may assume that the sequence h converges toward 0 for otherwise, given the regularity
assumption for the family {Th ;h A }, the dimension of the spaces V,hn is bounded and we
would show convergence in 7-( of a subsequence of a sequence in [..JnC=l ]/,hn bounded in lad
just as we would for the union of a finite number of spaces W,hn .)

Now ffn=(Wn,Wn,3), and the sequence {w.,3}n= is clearly bounded in 7-/(f2) so we
can extract a subsequence converging, weakly in o(f2), strongly in/2z(f2), to some w3 6

(f2). Similarly {w}n=l is bounded in 7-[o(curl, f2), but this is not enough to ensure strong
convergence of a subsequence in/2e(f2)2. The idea is to use a kind of discrete Helmholz
decomposition, writing Wn as follows:

(4.8) wn fl grad Pn nt- Un,

where pn is defined by

Pn E Qhn
(4.9) fa fav Wn,3 qh dx v grad Pn gradqh dx for each qh 79hn

The element p is well defined since 79h, C 0(f2) (and (p, q) fav gradp gradq dx is
elliptic on 0(g2)). Further fl grad Pn is in 7"hn as is Wn. We have thus written w as a sum
of a gradient of an element of 79h, and an element of 7h,. To see that this element u of 7"hn
is in fact DiVe,h-free, we need only to show that Divv,h, grad Pn DiVv,h, Wn. But this is
true because both sides of the equation are equal to Wn,3,--the left-hand side by definition of
DiVu,hn and the right-hand side because ff’n 1/V,hn.

We shall first show that the sequence {p}__ has a subsequence, still denoted {Pn }n=l
converging strongly in (fl). We then see that the corresponding subsequence {Un}n= is
bounded in 7-{(curl, ) as both {Wn}n=l and {grad P}n=l are (curl grad Pn 0). We now
have a bounded sequence in 7-((curl, f2) on which DiVv,h, vanishes. To obtain a subsequence
converging strongly in/22 (S2)2 and thereby completing the proof, we shall apply an extension
of a theorem of Kikuchi 17, Thm. 1] which is demonstrated in Appendix A.

Now to show that {grad Pn}nC=l is a bounded sequence in/22(fl)2, we calculate, using
(4.9), (3.13), and the Poincar6 inequality,

Pn II=(a) fa v Wn,3 PnIlgrad dx

<_ fa v w,,3 pn dx fa v w,3 pn dx -t- ](Wn,3, Pn)v
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<_ C {hnllWn,3llc2(a ]P. lT-t,(a + Ilwn,ll(a) IlPnllz(ao}

and since {w,3} is bounded in ()n=l

]]grad pnllc(a) C ]]Wn,3llz(a) C.

Thus {p.}. is bounded in () and we can extract a subsequence converging, weakly in
(), strongly in 2(), to p e (). Now we would like to show that {grad p.}n= in
Nct converges strongly in 2() to grad p in 2()2. We must show that

lim [[grad p

We have

and by (3.13)

grad Pn 2 fg2Z;2(f)2 v Wn,3 Pn dx,

lim f V Wn,3 Pn dX f v w3 p dx
n.-.+o

tO }oesince n,3}n=l and {Pn n=l are bounded in (f2) and (f2)2, respectively, and converge
strongly in/22(g2) and in 2()2, respectively, to w3 and to p, respectively. Thus to conclude
that {grad Pn}nl in fact converges strongly in 2()2 to grad p, we only have to show that

Ilgrad dx.

Toward this end we recall that grad Pn converges weakly to grad p in() and we let qn be a
sequence with qn h converging strongly to p in (). (For example let q hn (P)’)
Then grad qn converges strongly to grad p in Ea(), and

Ilgradp[I lim (gradpn, gradqn).
n

But,

and

(grad Pn gradqn)v fav ton, 3 qn dx

lim ff V Wn,3 qn dx = ff v w3 p dx.

To show the strong convergence of {Un }x in/2n=l (’)2 we use an extension of a theorem
of Kikuchi 17, Thm. 1 which is demonstrated in Appendix A. In our context, we state this
theorm as follows.

THEOREM A. 1. Suppose that
{u.} is a bounded sequence in 7"go(curl,n=l

Un 7-.h. for each n,

DiVv,hn U 0 for each n.
Then there is asubsequence of{un }c converging strongly in/2(,)2 andweakly in 7"[(curln=l
to an element u in (curl, ) provided that thefollowing hypothesis holds:

(HR) The regularity hypothesis. There is a constant r, 0 < <_ 1, and a positive
constant C such that ifu o(curl, S2) then we may write
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u w + gradq with w E ..ffr(’)2 and q

and with the estimate

Lemma 4.2 will have been demonstrated once we show the following lemma.
LEMMA 4.3. If f2 is Lipschitz, then the regularity hypothesis (HR) holds.
Proof. We suppose that u 7-[o(curl, f2). Let be the unique solution of

A curl u,

and let

w Curl*.

By regularity for Lipschitz domains, 7r 6 .1 () and

Further w Curl*Tt /22(2)2, divw 0, and curl w A
Also, w x n 0 0. Thus by a result of Costabel [9],,w 6 1/2(), and

C (llCurl*llcz + Ilcurlullc2)
2C Ilcurl

To conclude we need to show that the function u- w is the gradient of a function in
(). We clely have (u w) o(curl, ); i.e.,

curl(u w) 0 and (u w) / nlr O.

Thus, if is simply connected we are done. Otherwise we recall that o(curl, 2) is the
space of gradients of functions in 7-(c (f2), the space of functions in 1 (f2) which are constant
on each component Fi of F. Then if 1, has, say, N components, F, 1"2 1"N, (U W)
grad q + i /i grad ti where q E o(f2) and ti 7- (’2) is defined by

Ati 0,

)ilFj i,j.

In this case we modify w, putting ff w + i /i grad ti see [10] for details. By elliptic
regularity results for the Dirichlet problem, we know that 4i 6 3/2(2) for each i; see [9],
and the lemma follows. [3

4.3. (H2): The consistency result. The object of this section is to show the following
result.

LEMMA 4.4. For each f 7-[, 7",h f converges to 7" f in the l/V-norm, i.e.,

lim f "T,h f w 0.
h-+0

(The hypothesis (H2) merely requires convergence in the 7-/-norm but this is certainly implied
by convergence in the l/V-norm.) Before giving a proof of Lemma 4.4 showing pointwise
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convergence of ’T,h to ’T, we would like to make a comment concerning the difficulty for
showing this convergence.

Remark 4.1. The second lemma of Strang (see [8, Lem. 4.2.2] or [7, Thm. 31.1 ]) gives us

(4.10)
f ’T,h f w

< C ( inf IIT f ffh IIw / sup
{Uh EW,h" IlUh lIW-’I

la(fl, f, if’h) (f, VYh)v ).
Thus the error is made up of two terms: the interpolation error,

Elnt inf IIf ffhllw,

and an error due to the fact that the method is nonconforming,

ENC = sup la(/, f, fib) (f, ffh)vl.
{VhW,h IlUh IIW=I

Let us first consider ENC. We have seen in the proof of Lemma 2.2 that for f 7-/, i.e.,

div(vf) 0,

a(fl, T f, if) (f, ff) for each ff e )4;

so that ENC O. If f 6 ; i.e., if f grad p for some p 6 01(fl), then one checks from
the definition of T that Tf 0 so that

ENC sup I(f, h)l.
UYh W UYh W

But

(f th) (grad Ph, lh)v + (grado (p Ph), h)

for any Ph 7"9h,

(grad# ph, ffh)v <_ f v Divv,h Wh Ph dX ff v Divv,h Wh Ph dx

<<. C h IlDiVv,hWh IIc) IlPh I1)
< C h Ilffh IIw ]lPh II’,

and

(grad (p Ph), lh) . C lip PhllT-t, IIhllc23.
Taking Ph I’Ih P, we see that ENC tends to 0 with h. (Moreover, we have Euc <_. C h IP12
whenever p 7-/2 (f2).)

We turn now to Elnt. If f 6 7-/-, then Elnt 0 since Tf 0. However, for f
we need an interpolation result. In 3.1 we were able to show that for the case where the
family of meshes {Th; h 6 A} is asymptotically uniform we have the following interpolation
result:

lim inf IIf ffhllW 0.
h--.),O lffh ’fl,
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Thus Ent tends to 0 with h and from Theorem 3.2 we see that it is bounded by C h (I Tf l1 +
curlTf [1 + divvT f [2) if T f is sufficiently regular.

Thus if the mesh is asymptotically uniform, we obtain pointwise convergence of T,hf
toward Tf in W.

Remark 4.2. Note that even with an asymptotically uniform mesh, Strang’s lemma does
not give strong convergence since, if f 7-/ for instance, we obtain (f gradp)

IIf "T,h f <_ C h IPl2,a,

while we would like to have

IIf ,hf <_ o(h) Igrad plc2(a2.

Although Strang’s lemma provides the desired convergence only for asymptotically uni-
form meshes, our numerical results (cf. [15]) indicate that this restriction on the meshes is
not necessary. The difficulty in the case of the nonasymptotically uniform mesh is caused
by the approximate, divergence-free constraint on the approximation space We,h. We do not
encounter this difficulty in approximating 14; by Wh. One might hope to control this error
more easily by imposing the constraint via Lagrange multipliers.

This leads us to introduce a mixed formulation of the problem. Consider .the problem

(4,11)

find (ti, p) W x 7-/(f2) such that

a(fl, ti, ) -t- b(, p) (f, )v for each

b(ti, q) 0for each q

where b(., .) is the bilinear form on t’V x 7-/01(f2) defined by

(4.12) b(, q) (, grade q) for each (, q) 6 V x 7-(o(f2).

Problem (4.1 1) has a unique solution [6] since a(fl,., .) is elliptic on 142e (Lemma 2.2), and
b(., .) satisfies the inf-sup condition

inf sup b(, q) > 0.
{q(f); Ilq II01(a)-l} {VV;llOllw=l}

(Simply take fi grade q/llgrade qllw.)
If we denote by (/if, pf) the solution (ti, p) of (4.1 1), it is easy to check that

(4.13) tif 2r f

and that pf is the solution p of

(4.14)
find p (fl) such that

b(grade o, p) (f, grade q)) for each q) 01(f2).

Note that (4.14) has a unique solution for f since b(grade ., .) is elliptic on 7-/(f2).
We point out here that if f e, i.e., if dive (vf) 0, then pf 0. So, with (4.11)

and (4.1 3) we obtain that if f 7-/e then

(4.15) a(fl, T f, ) (f, )u for each 6 W.
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(4.16)

We also introduce the mixed version of the discretized problem:

Find (fib, Ph) 6 ]/Vh 79h such that

a(fl, fib, fib) + bh(f’h, Ph) (f, h)v for each h 6

bh(fih, qh) 0for each qh 79h,

where

)/h --’]h "ph

and bh (’, ") is the bilinear form on ld2h x "P defined by

(4.17)
bh(f’h, qh)= vvhgradqhdx + fa VVh,3qhdx

for each (’h, qh)

We have seen that a(/,., .) is elliptic on Ve,h with a constant of ellipticity independent of
h, and it is not difficult to check that the bilinear forms bh (’, "), h 6 A, satisfy the uniform
inf-sup condition

inf inf sup bh(h, qh) > O.
hEA {qh ET)h llqh 7. (a) f)h )Ajh f)h w

(Take fih= grade qh/llgrade qh IIw,) Thus we know that there is a unique solution (lh,f,ph,f)
of (4.16), and as before one easily checks that

(4.18) fih,f T,h f
and Ph,f is the unique solution Ph of

find Ph 7")h such that
(4.19)

bh (grade q)h, Ph) (f, grade q)h)v for each

Just as in the continuous case we see that if f 6 7-/e, then Ph,f 0 SO

(4.20) a(i, T,hf h) (f h) for each fih 6 l/Vh.

The following estimate is the simplification to our case of an analogue for mixed methods
of Strang’s second lemma (see [24, Thms. 11.1, 11.2)1:

Iltif -fth,fllw + lips Ph,fllT-tl()

_< C ( inf [ Iltif h IIw + sup
(4.21) \h/h / {qh T)h" Ilqh IIla)=1}

/
I(b bh)(h, qh)l ]

+ inf {llPf--qhllT-t(a)+ sup [(b--bh)(h, qh)[]),qhh )h E’kh" h "VV

where C is independent of h because the uniform inf-sup condition is satisfied. Then in the
case where f 6 7-(e this estimate becomes

I1 f T,h f W

sup I(b bh)(h, qh)l }{qh T)h; llqh llTh =l}

(4.22)

since in this case pf O.

The first sup term in the right-hand side of (4.21) is missing in [24, Thm. 11.2]. To check this simply apply the
instructions in [24] for obtaining Theorem 11.2 from Theorem 11.1.
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ProofofLemma 4.4. It follows from (3.11) and (3.8) that

lim inf lily h IIw 0
h---O

and

lim inf IlPf qh 117,() O,
h--+O qh E’Ph

Since, for h (Vh, l)h,3) E ]/h and qh Jgh,

(b--bh)(h, qh)= (ff PVh,3qhdX f2 VVh,3qhdX),
we have by (3.13) that

sup I(b bh)(h, qh)l < C h Ilqh Ilcz(
{)h]/}h; II0n Ilw=l}

and

sup I(b bh)(h, qh)[ < C h Ilvh,3llzz2(a.
{qh 79h llqh II(a=l}

The lemma now follows.

4.4. Error estimates. Now that (H1) and (H2) have been established we can use (4.6)
and (4.7) to obtain estimates of the error made in the approximation of the eigenvalues and the
eigenvectors ofT by calculating those ofT,h. Thus we need to estimate (T T,h) IE(>
and im,j=l I((T "T,h) i, 93j)1. First, we enounce our main result.

THEOREM 4.3. For lz an eigenvalue of 7" of multiplicity m and [dh,i an eigenvalue of
7",h approximating lz guaranteed by the theory ofAnselone, we have

(4.23) lim I/z- L6h,il 0
h0

and

(4.24) lim 6(E(/z), Eh(k6)) 0
h0

for sufficiently small h. Further whenever we also have E(I) contained in .l(curl, f2)
2(f2), then

(4,25) I/z- Ih,il C h2

and

(4.26) 6(E(I), Eh(lZ)) < C h.

that
Proof. First we note that since E (/x) is of finite dimension, (H2), i.e., Lemma 4.4, implies

lim I1( h)IE(. 0,
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Then to estimate I1( T,h)IE() II, we observe that q 6 E(/z) implies that 9 6 14;8 C 7-/8,
and we have from (4.22) and the fact that T q /z 3 that

!
h)@llV "< C/Z inf 11193 hllW + sup

qh T)h;llqh 1,a 1}

We suppose that q ../1 (curl, fl) x 7-/2(f2). Using (3.13), the estimation of the error due to
the numerical integration scheme, we obtain

I1( h)@llW < C/z inf {llq- hllW -q- humaxlV3hlZ()}.
)h’l/h

With h (1-ITCh (/9, I-Ihq)3), the interpolation estimates (3.8) and (3.11) and the continuity of
the operator H79 from/22(S2) to/2e(S2) give

(4.27) II( ,h)@llw C/zh (lOll,a -+-IcurlOll,a -q-11o311e,a).

Now since E (/z) is finite dimensional, we have

(4.28)

which gives the result (4.26).
To estimate i,mj=l I((T3 T3,h) i, j)l, where {i}/m__.l is a basis for E(/z), we remark

that for fi 6 V and 6 FV, the symmetry of the bilinear forms (., ")v and a(3,., ") together
with (4.15) and (4.20) implies that

la((T3 3,h),T h)] for eachh ]/h

_< C II(T ’Z3,h)/llw inf IIT hllW.
) ’h

Combining once again (3.8) and (3.11) and using (4.27), we get

C/ze he (199i[1,a + [curl gvill,a + [[99i3[le,)(19Ojll,a + Icurlqojl, + II0j311,)

that is,

m

Z I((’T ’T,h)i, j)[ -< Cz he,
i,j=l

which concludes the proof of (4.25).
Remark 4.3. Indeed E(/x) is contained in (curl, f2) x 2(f2) if T maps

into 7-( (curl, f2) x 7-/e(f2) which corresponds to a regularity result for Maxwell’s equations;
cf. [26].

Remark 4.4. Of course the estimates (4.25) and (4.26) still hold if the eigenfunctions
are only piecewise regular in the sense made precise in Remarks 3.1 and 3.2. This remark
is not purely academic since @i will be only piecewise regular if e and/x are only piecewise
regular.

Remark 4.5. Numerical results (cf. [15]) show that our estimates are optimal.
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Appendix A: An extension of a theorem of Kikuchi. In this appendix we give a proof
of the extension of the theorem of Kikuchi 17] used in the demonstration of the compactness
result in 3.2. The extension to the case of variable coefficients is actually straightforward,
but because of the conciseness of the proof in 17] we thought it useful to give some of the
details.

We recall that f2 is a bounded domain in N2 and we suppose further that f2 satisfies the
following regularity hypothesis.

(HR) The regularity hypothesis. There is a constant or, 0 < cr _< 1, and a positive
constant C such that if u E o(curl, f2) then we may write

u w + grad q with w E .a (-’2)2 and q 6 (fl)

and with the estimate

THEOREM A. 1. Suppose that f2 satisfies the regularity hypothesis (HR). Suppose that
{Un}n=l is a bounded sequence in 7-[o(curl, 2),
Un TLh, for each n,
DiVv,hn Un 0 for each n.

Then there is a subsequence of{Un n% converging strongly in2(f2)2 andweakly in 7-{ (curl, f2)
to an element u in (curl, f2).

Proof The classical Helmholtz decomposition theorem guarantees that un may be de-
composed as follows:

un v" @ grad pn, 2

where v 6 7-/(dive0, f2), p 6 (f2), and

(divuO, 2) {w e 7-/(dive, f2) div (vw) 0}.

We have immediately that

Ilull=(a> v112 P
curl un =curlvn,
v /x n It= O.

That {v }nC=lhaS a subsequence converging strongly in E2 ("2) now follows from the compact-
ness result of Weber [26] used in 2. That the corresponding subsequence of {p}=1 has a
further subsequence converging strongly in E2(f2), weakly in 1 (f2), follows from Rellich’s
lemma. The remainder of the demonstration is thus to show that this subsequence converges
strongly in ,1

The first thing we show is that the limit p of {pn}n=l is in fact 0. We started with Un of
0 discrete divergence v. We subtract the part v of 0 divergence v. Since as n increases, i.e.,
as hn --+ O, the discrete divergence v should approach the divergence v, the remaining part of
Un, i.e., grad pn, should approach 0. Thus we claim that grad p, and hence of course p, is in
fact O.

2Subscripts indicate that the element belongs to the corresponding finite-dimensional subspace; superscripts do
not.



1522 P. JOLY, C. POIRIER, J. E. ROBERTS, AND E TROUVE

To show this we first remark that because DiVv,h. Un = 0 and DiVv,hn Vn 0, we also have
DiVv,hn grad pn 0. Then we take a sequence {n}nl, with ,, E 79h., converging strongly
in 7-/1 (f) to p. Now we have

(grad pn, grad n)v -+ (grad p, grad p)

since {:n}n=lConverges strongly in 7-(1(f2) to p. We also have

(grad pn, gradn) 0

since Div,h, grad pn 0 for each n. Thus grad p 0 and also p = 0 since p E 7-/().
We still must show, and this is the most delicate part of the demonstration, that

Ilgradp 2 converges to 0. This is where we shall make use of the regularity hypothesis
as well as the as-yet-unused hypothesis that Un 7h,,.

grad pn 2

We have

(gradpn, Un in)v

(gradpn, Un),

(gradpn gradtPn, Un)v

_< C Ilgrad p" grad 4, Ilc2(a)
{Pn}n=l withfor any Pn 7")hn We now must choose qSn (There is, of course, a sequence

Pn rfh converging strongly to p in 7- (). But, we do not have that lip p,, converges
to 0 since we do not know that p" converges strongly to p in 7-( (f2). This is precisely what
we are trying to show.)

By the regularity hypothesis we may write

vn zn + grad qn

with zn 7--(" (fl)2, qn 7"((f2),
IIzn I1()= <5_ C Ilv [l(c,rl,a) <_ C Ilu

and

Ilgradqllc2) __< C IIvll(curt, C Ilu,ll(curl,,

which implies that zn, up to extractions of subsequences, converges weakly in 7-U (f2) and
thus strongly in/22(S2)2 to some z " (f2) and thus qn converges weakly in 1(f2) and
thus strongly in/32(fl) to some q E 7-(0(f2). But, as vn and zn converge strongly in
so does grad qn. Thus qn converges strongly in 7-/1 (f2).

This permits us to write

and to obtain

grad pn Un 7,n grad qn

grad pn = zn q’c2(a)a C ]]Un grad grad bn

What have we gained over the previous situation

gradpn Un Vn,
Ilgradpll(a) <- C IlUn ln grad<Pllc(a>?

3DiVv,hn is extended to an operator on 2([2) in the obvious way; cf. (3.4).
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First, qn converges strongly to q in 7-/a(f2) and we can take a sequence {qn}n=l with
qn E 79h,,, converging strongly to q in 1 (f2). Then we have IIq qn converges to 0 since
qn and qn converge strongly to q in 7- (f2).

Second, to approach u,, zn we write it as the sum grad (pn + qn) tO which we apply
the following lemma of Kikukchi [17, Lem. 4].

LEMMA A.1. Suppose that p 7-[ (f2) and that, for each K Th, PlK 7"(1+ (K). Then
p C((2) and

Ilgrad(rchp P)llz() < C h { K6h Ilgradpll(K) /
1/2

where 7rh is the interpolation operatorfrom C((2) onto 79h which assigns to afunction in C((2)
thefunction in 79h which agrees with it on the vertices ofthe elements ofTh.

To see that p pn + qn satisfies the hypothesis ofLemma A. it is sufficient to check that
grad (pn + qn)lK 7-U (K)2 for each K E T since pn + qn 6 7./1 (S2). But, grad (pn + qn)
u z, and, for each K, Zn 7-[ (K)2 by the regularity hypothesis (HR) and Un 7-[ (K)2

because it is a polynomial.
We obtain

]
1/2

ilu z grad rCh (pn
K

Then taking

n h (pn q.. qn) qn,

we have

1/2

+ Ilgrad (qn qn)ll ]
As noted above, Ilgrad(qn qn)ll converges to 0. Thus to conclude we need to show that

]
1/2

_
IlUn gn IIO(K

K

remains bounded as n increases.
For each K 6 Th,

Zn II(K= < 2llUn II(KZ + 211zn I!IlUn (K)2"

Moreover, using (HR) and an additivity property of the 7-U-norm (which can be proved by
interpolation), we obtain

}
1/2

Z Ilzn I1<=
K

For the term in Un, we need another lemma of Kikuchi [17, Lem. 5].
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LEMMA A.2. Let X 7h and let K Th. Then Xltc belongs to 7ql(K)2 C 7-/r (K)2,
0 <_ cr <_ 1, as well as to 7-[(curl, K)and satisfies

Thus we have

and

Ilgrad Xlgllc2(z)4 2-1/2[Icurl xlllc=(),
IIZlKII(K= --< C IIZlKII’(K=.

Ilun I1 < Ilu 2
(K)2 7-( (K)2

_< C (llu 112(/2 / Ilcurl Un 112</>)

c Ilu llT(curZ,.
Thus, since the sequence n}n=l is a bounded sequence in o(curl, 2),
{ZK un znll 2 1/2

(/(2 remains bounded as n increases and [Igrad pn 2

The proof is now complete.
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