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Abstract. An alternating-direction iterative procedure is described for a class of
Helmholz-like problems. An algorithm for the selection of the iteration parameters is de-
rived; the parameters are complex with some having positive real part and some negative,
reflecting the noncoercivity and nonsymmetry of the finite element or finite difference
matrix. Examples are presented, with an application to wave propagation.

1. Introduction

The (complex–valued) Helmholz problem

− ∆u− ω2u = f(x, y), (x, y) ∈ Ω, (1a)

uν + iωu = 0, (x, y) ∈ ∂Ω (1b)

where Ω = [0, 1]2 is the unit square, ν the outer unit normal to ∂Ω, and ω > 0, arises
in the space–frequency treatment of the scalar wave problem

vtt − ∆v = g, x ∈ Ω, t > 0, (2a)

vt + vν = 0, x ∈ ∂Ω, t > 0, (2b)

v ≡ 0, x ∈ Ω, t ≤ 0. (2c)

The conditions (1b) and (2b) represent first–order absorbing boundary conditions that
allow normally incident waves to pass out of Ω transparently. It is implicitly assumed
that the support of f lies well inside the interior of Ω.

Consider a finite difference approximation to (1). Let h = N−1 and set (xj, yk) =
(jh, kh). Let δ2

x denote the centered second difference with respect to x and set
∆h = δ2

x + δ2
y. Let ∂ν denote the centered first difference in the direction of the outer

normal (here, an exterior bordering of the domain is assumed). Then, one proper
approximation to (1) is given by seeking a grid function uh such that

− ∆huh − ω2uh = fh, (xj, yk) ∈ Ωh, (3a)

∂νuh + i sin ξh uh = 0, (xj, yk) ∈ Γh, (3b)
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where Ωh = {(xj, yk)|j, k = 0, . . . , N} and Γh consists of the boundary grid points. The
parameter ξ is given by

ξ =
2

h
arcsin(ωh/2) (4)

and is found by asking that a normally incident grid wave be absorbed. It is a standard
argument to show the convergence of the solution of (3) to that of (1) as h→ 0.

The question to be treated in this paper is that of finding the solution of the algebraic
system defined by (3), after (3b) has been applied to eliminate from (3a) parameters
corresponding to points outside Ωh, in an effective and computationally efficient fashion.
In addition to having a complex–valued solution, (3) is neither Hermitian symmetric nor
coercive; as a consequence, most standard iterative methods either fail to converge or
converge so slowly as to be impractical. The purposes here are to define an alternating–
direction iteration procedure, indicate a method for choosing iteration parameters so
as to assure convergence, and to present briefly an application of the method to the
wave problem (2). See [1], [5], [6], [2], [4], [3], [8], and [9] for various discussions of
alternating-direction iteration methods for finite difference or finite element procedures
for elliptic problems with real solutions.

2. An Alternating–Direction Iteration Method

Alternating–direction iteration procedures are derived from time–stepping methods for
parabolic analogues of the elliptic problem being solved. Here, we shall consider a direct
extension of the classical method [1], [8] for the Dirichlet problem. Denote a cycle of
iteration parameters (i.e., (reciprocals of) pseudo–time–steps) by

ρm ∈ C, m = 1, . . . ,M, (5)

where M is the cycle length. Note that ρm can (and will) be complex; it will also be
the case that Re(ρm) will be negative for some of the parameters. Let u(0) be an initial

guess for the solution of (3) on Ωh, and define iterates u
(m)
h , m = 1, . . . ,M , through

first an x–sweep given by

ρm(u
m−1/2)
h − u

(m−1)
h ) −

(

δ2
x + 1

2
ω2

)

u
(m−1/2)
h (6a)

−
(

δ2
y + 1

2
ω2

)

u
(m−1)
h = fh on Ωh,

∂νu
(m−1/2)
h + i sin ξhu

(m−1/2)
h = 0 on Γ1

h, (6b)

∂νu
(m−1)
h + i sin ξh u

(m−1)
h = 0 on Γ2

h, (6c)

where Γ1
h consists of the boundary points along {x = 0} and {x = 1} and Γ2

h those
along {y = 0} and {y = 1}, followed by a y–sweep:

ρm(u
(m)
h − u

(m−1/2)
h ) −

(

δ2
x + 1

2
ω2

)

u
(m−1/2)
h (7a)

−
(

δ2
y + 1

2
ω2

)

u
(m)
h = fh on Ωh,
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∂νu
(m)
h + i sin ξh u

(m)
h = 0 on Γ2

h, (7b)

∂νu
(m−1/2)
h + i sin ξh u

(m−1/2)
h = 0 on Γ1

h. (7c)

In the computational algorithm, the boundary conditions are used to eliminate alge-
braically values associated with the external grid points, so that only values associated
with Ωh are computed.

The choice of the iteration parameters is facilitated by considering the equations for
the error

e
(m)
h = uh − u

(m)
h , m = 0,

1

2
, 1, . . . ,M. (8)

First, e
(0)
h is arbitrary on Ωh, with the bordering values of u

(0)
h (3b). Then, for

m = 1, . . . ,M , e
(m)
h satisfies the homogeneous equations associated with (6) and (7)

obtained by setting fh = 0. As in the case of the Dirichlet problem, a tensor–product
eigenfunction expansion can be carried out for the error [3]. The argument below
pertains to the case in which the x–and y–discretizations are identical; different dis-
cretizations could be handled analogously.

Let A be the tridiagonal matrix

A =













b0 c0
a1 b1 c1
. . .

. . .

aN bN













, (9)

where

an =
{ −1, n = 1, . . . , N − 1,

−2, n = N,

bn =
{

2, n = 1, . . . , N − 1,
2(1 + ih sin ξh), n = 0 or N,

cn =
{ −2, n = 0,

−1, n = 1, . . . , N − 1.

A corresponds to the operator −h2δ2
x, subject to the absorbing boundary condition.

Now, solve the eigenvalue problem

Aϕ = µϕ; (10)

call the resulting eigenvalue–eigenfunction pairs (µn, ϕn) where the eigenvalues have
been ordered so that

Reµ0 ≤ Reµ1 ≤ . . . ≤ ReµN . (11)

For the Helmholz problem, in contrast to the Dirichlet problem [3], the actual eigen-
values must be found to carry out the calculations; the eigenfunctions are not required
in the calculations, though their existence will enter the analysis. The eigenvalues can
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be found with sufficient accuracy using public–domain codes, such as ones available in
EISPACK or LAPACK. It should be noted that it is easy to see that both Reµn and
Imµn are nonnegative. Moreover, µk 6= µ` for k 6= `, so that the eigenfunctions are
complete.

Set
ψpq = ϕp(x)ϕq(y), p, q = 0, . . . , N. (12)

Then, expand e
(m)
h in the form

e
(m)
h =

N
∑

p,q=0

α(m)
pq ψpq, m = 0,

1

2
, 1, . . . ,M. (13)

Then, if
ζm = ρmh

2 (14)

and

λp = µp −
1

2
ω2h2, (15)

it follows from (6) and (7) that

α(m)
pq = α(m−1)

pq

ζm − λp

ζm + λp
· ζm − λq

ζm + λq
. (16)

Let

R(ζ, λ) =
ζ − λ

ζ + λ
. (17)

Then,

α(M)
pq = α(0)

pq

M
∏

m=1

R(ζm, λp)R(ζm, λq), (18)

a relation that is completely analogous to the error reduction relation arising in the
treatment of the Dirichlet problem. However, the eigenvalues {λp} no longer lie on a
subinterval of (0,∞); in fact, for the more interesting values of ω, at least one λp has
negative real part and all have positive imaginary part. Assume that

Reλ0 < Reλ1 < . . . < Reλr ≤ 0 < Reλr+1 < . . . < ReλN . (19)

Taking a pseudo–time–step ζ with positive real part gives growth for p = 0, . . . , r; i.e.,

|R(ζ, λp)| =

∣

∣

∣

∣

ζ − λp

ζ + λp

∣

∣

∣

∣

≥ 1, p = 0, . . . , r, (20)

while taking Reζ < 0 gives growth for the remaining |R(ζ, λp)|. In general, there is no
choice of ζ that is stable for all modes, and it is necessary to use a cycle of different
pseudo–time–steps in order to obtain convergence.

Assume for the moment that exact arithmetic is used in a calculation; of course, this
is not actually feasible and it will be necessary to modify the parameter sequence in a
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small way to avoid excessive rounding problems. These modifications will be discussed
in the next section.

Let M > r, and choose

ζm = λm−1, m = 1, . . . , r + 1. (21)

Thus, after r + 1 double sweeps, the error associated with ψpq for min(p, q) ≤ r will
be totally eliminated, since at least one of the R(ζm, λp)’s or R(ζm, λq)’s vanishes, and
the remaining pseudo–time–steps can be chosen so as to reduce the error associated
with the collection of eigenfunctions ψpq with min(p, q) > r. It should be noted that
the number r is independent of h for sufficiently small h; thus, r/N tends to zero as
h → 0. When min(p, q) > r, ψpq is a stable mode for pseudo–time–steps with positive
real parts. For large p (i.e., p close to N), Reλp ≈ 4 and Imλp � Reλp. It is easy
to see, using an argument similar to the one employed for the Dirichlet problem, that,
given ε > 0, a set {ζm : m = r + 2, . . . ,M}, with

M − r = O
(

log
1

h
· log

1

ε

)

, (22)

can be constructed [8], [3] so that

max
p>r

M
∏

m=r+2

∣

∣

∣

∣

ζm − λp

ζm + λp

∣

∣

∣

∣

≤ ε. (23)

If the cycle {ζm : m = 1, . . . ,M} is employed, then

max
p,q>r

∣

∣

∣

∣

M
∏

m=1

R(ζm, λp)R(ζm, λq)
∣

∣

∣

∣

≤ ε2 max
p,q>r

∣

∣

∣

∣

r+1
∏

m=1

R(ζm, λp)R(ζm, λq)
∣

∣

∣

∣

(24)

= K1ε
2;

K1 is computable, since the eigenvalues {µp} were found as the first step in the iterative
procedure.

Theoretically, we can assure convergence by the argument that follows; the finite
word length that necessarily arises in any actual computation will force a modification
of the choice of iteration parameters.

Norm the vector e
(m)
h by

‖e(m)
h ‖ =

[ N
∑

p,q=0

|α(m)
pq |2

]
1

2

. (25)

Then, if the cycle {ζ1, . . . , ζM} above is used,

‖e(M)
h ‖2 =

∑

p,q

|α(0)
pq |2

∣

∣

∣

∣

M
∏

m=1

R(ζm, λp)R(ζm, λq)

∣

∣

∣

∣

2

≤ K2
1ε

4
∑

p,q>r

|α(0)
pq |2. (26)
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Take the iteration parameters for succeeding cycles to be {ζr+2, . . . , ζM}; then

‖e(M+j(M−r−1))
h ‖2 ≤ K2

1ε
4(j+1)

∑

p,q>r

|α(0)
pq |2, (27)

so that convergence takes place.

3. Some Experimental Observations

The inclusion of the values λm, m = 0, . . . , r, in the cycle of iteration parameters was
found to be necessary in the trial calculations, but simply taking all of them first,
as indicated in (21), was not found to be satisfactory. In fact, in some preliminary
experiments simply taking the first r + 1 parameters equal to the collection of λp

having negative real parts led to strong divergence. Our first attempt to control this
problem was to add the first r + 1 λ’s with least positive real parts to the iteration
parameter sequence; if r is small, then this works reasonably well. But, if r > 10,
say, this did not necessarily produce convergence when the word length was set at
“complex*16”, though it did in all our tests when we shifted to “complex*32”. Since
the extended arithmetic is very slow on any commonly available computer, this was
also unsatisfactory, but it did show that the problem was due to rounding. Since the
rounding problem was caused by the unstable growth of the coefficients of the modes
that are stable for advancing pseudo–time, we tried the procedure that follows.

Assume r + 1, the number of λp such that Reλp ≤ 0, to be positive. Then, include
in the cycle not only λp, 0 ≤ p ≤ r, but also λp, r + 1 ≤ p ≤ 2r + 2. Alternate these
parameters, one with negative real part and then one with positive real part. Then, add
a modest number, say six to twelve, real ζm distributed geometrically between Reλ2r+3

and 4. In the experiments, the entire cycle, not just those pseudo–time–steps with
positive real parts, was repeated. This somewhat arbitrary rule for selecting iteration
parameters has proved experimentally to be practical for obtaining rapid and effective
convergence.

4. Modifications to Include Attenuation

Attenuation leads to a modification in both the differential equation (1a) and the
first-order absorbing boundary condition (1b), which change under the addition of a
generalized friction to

− ∆u−
(

ω2 + ib(ω)ω
)

u = f on Ω, (28a)

uν + iα(ω) = 0 on ∂Ω, (28b)

where

α(ω) =
ω√
2

(

1 +
(

1 + ω−2b(ω)2
)

1

2

)

1

2

− i
b(ω)√

2

(

1 +
(

1 + ω−2b(ω)2
)

1

2

)− 1

2

. (29)
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If the function b(ω) is independent of ω, then by inverse Fourier transformation (28a)
corresponds to the differential equation

vtt + bvt − ∆v = g. (30)

However, the boundary condition (28b) fails to reduce to the Fourier transform of
a differential condition; thus, it is not a local-in-time condition, so that a pseudo-
differential problem is generated even in this special case if an absorbing boundary
condition is imposed to limit the computational domain. If b(ω) is not a polynomial
in ω, then the problem is inherently pseudo-differential in nature.

The discrete problem is given by

− ∆huh −
(

ω2 + ib(ω)ω
)

uh = fh, (xj, yk) ∈ Ωh, (31a)

∂νuh + iαhuh = 0, (xj, yk) ∈ Γh, (31b)

where

αh = αh(ω) = sin γh, sin2

(

γh

2

)

=
h2

4
(ω2 − iωb(ω)). (32)

Alternating-direction iteration takes the same form (6)-(7) for (29) as for the unatten-
uated equations (3), with the obvious substitutions of 1

2
(ω2 + ib(ω)ω) for 1

2
ω2 and αh

for sin ξh. A choice of iteration parameters can be made in a fashion analogous to the
procedure outlined in the simpler case. Let the matrix A, defined by (9), be changed
only by replacing sin ξh by αh in the evaluation of two of its elements, and use the
same notation {µp} for its eigenvalues, again ordered as in (11). Shift the definition of
λp to be

λp = µp −
1

2
h2
(

ω2 + iαhω
)

. (33)

Then, the coefficients of the error remain propagated by (18). The same method for
selecting iteration parameters for exact arithmetic discussed above leads to the same
convergence estimate (27). Again, the rounding problem forces the choice of a cycle
of parameters of the same type as was taken in the unattenuated case; note that the
convergence proof remains applicable for the modified cycle. Experimental calculations
confirmed the effectiveness of the practical algorithm; some results for approximating
an attenuated wave will be presented in the next section.

5. An Application to Wave Approximation

The problem described by (2) and its generalization (28) to include attenuation were
treated as examples of the applicability of the techniques introduced above. The do-
main Ω was the square [−3.22, 3.22]2, and the source function was given by

g(x, t) = g1(x)g2(t),

where
g1(x) ∼ δx + δy,
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and
g2(t) = Cte−αt sinω0t, t ≥ 0.

The principal frequency ω0 was taken to be 2π and α was taken equal to 1.5792. The
spatial grid was rectangular, with 161 equal intervals on each side, so that the number
of nodes per wave length for the principal frequency was 25. The Fourier transform of
the source was truncated linearly between 15 and 20, and the Helmholz problems were
solved at the midpoints of 120 equal intervals on [0, 20]; note that conjugate symmetry
holds, so that this is equivalent to using 240 intervals on [−20, 20]. A maximum cycle
length of 60 parameters was imposed; shorter cycles were used except at the high end
of the spectrum, where the spectral density was quite small.

Figure 1 presents a snapshot of the unattenuated wave at time 3.175. The effect of
an attenuation equivalent to the addition of vt to (2a) can be seen by comparing Figure
2 to Figure 1. Figure 3 shows a wave at the same time, but with a source consisting of
two dipole terms, one at the origin as in the previous two figures and the other along
a diagonal. Interference between the two elementary waves can be observed.

Figures 4 and 5 present traces of displacements. Four receiver positions are indicated
in Figure 4; note that the maximum amplitude of the trace at (2.8, 2.8) is greater than
those at the points (1.8, 0) and (2.7, 0), even though the latter points are closer to the
source, reflecting the directed movement of the wave from a dipole source. Figure 5
shows the effect of attenuation on the trace at a given receiver.

More extensive experimental results are discussed for a single space variable problem
treated by essentially the same approximation technique in [7].
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Figure 1: 3D plot of wave when t = 3.175. No attenuation.

Figure 2: 3D plot of wave when t = 3.175. Attenuation is b(ω) = 1.0.
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Figure 3: 3D plot at t = 3.175 with two sources and no attenuation.
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Figure 4: Traces at four different receivers in the domain. The source is at the center
of the domain and there is no attenuation.
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Figure 5: Traces at two different receivers for the two cases where b(ω) = 0 and
b(ω) = 1.
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