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subdomains. Applications to time-dependent problems are indicated. 

Mathematics Subject Classification (1991): 65N30 

1. Introduction 

Our objective is to discuss an iterative procedure related to domain decomposition 
techniques based on the use of subdomains as small as individual elements for 
mixed finite element approximations to second order partial differential equations 
in two or three space variables. Analogous techniques apply in an almost unaltered 
fashion when larger subdomains are employed; however, the discussion below will 
be concentrated on the case in which the subdomains are elements. The iterative 
technique applies directly to coercive elliptic problems and provides a time- 
stepping procedure for implicit methods for parabolic or hyperbolic equations. The 
motivation for the procedure is that it can be very naturally and easily imple- 
mented on a massively parallel computer by assigning each subdomain (i.e., each 
element) to its own processor. 

Our iterative procedure is very closely related to and based on one introduced 
by Despr6s [9] for a Helmholz problem and extended to another Helmholz-like 
problem related to Maxwell's equations by Despr6s et al. [10, t t]. As in these 
references, we shall make very strong use of the hybridization of mixed finite 
element methods introduced by Fraeijs de Veubeke [19, 20] more than twenty-five 
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years ago and analyzed very carefully by Arnold and Brezzi [1]; see also [3, 5, 6]. 
The convergence proofs in [9, 10, 11] are given for the differential problems in 
strong form; only numerical results are presented to validate the iterative proced- 
ures for the discrete case in these papers. Another related procedure, applicable 
to a Helmholz-like problem in elasticity, has been introduced by Feng and 
Bennethum [18]. 

The elliptic case will be treated in detail first, since the time-stepping applica- 
tions are essentially corollaries of the results in the elliptic case. While the practical 
goal is the treatment of mixed finite element methods for the elliptic problem, the 
domain decomposition procedure can be considered at the differential level and the 
iteration applied to a mixed formulation of the differential problem. The conver- 
gence proof for the iteration covers the discrete case rigorously; but, since there is 
a technical difficulty arising from the nonlocal nature of the Sobolev space of order 
- �89 on the boundary of a subdomain, the proof would be only heuristic for the 

mixed differential case. Our proof of convergence would also be valid for the strong 
form of our coercive differential case; however, Despr6s [9] has already indicated 
this argument. The analysis would also cover a collection of cell-centered finite 
difference methods and finite volume methods. 

Parabolic and hyperbolic problems will be treated after the elliptic problems. 
Different domain decomposition procedures for mixed finite element approx- 

imations have been considered by Cowser, Ewing, Glowinski, Kinton, Wang, and 
Wheeler (see [8, 16, 17, 21, 22]). 

An outline of the paper is as follows. In Sects. 2 and 3 the domain decomposi- 
tion is defined and a mixed formulation of the differential problem is recalled; 
then, the iterative procedure is illustrated for the differential problem. In Sect. 4 
the mixed finite element procedure is introduced, the corresponding iteration 
defined, and a convergence argument given under minimal hypotheses on the 
partition into subdomains. In Sect. 5 it is shown that the spectral radius of the 
iterator for the mixed finite element procedure is less than one; in the next section, 
we show that this spectral radius has a bound of the form 1 - ch for quasiregular 
partitions. If, instead, the decomposition of the domain is fixed and the partition 
for the finite element procedure is compatible with the decomposition, then this 
bound is improved to 1 - cx/h. The final section contains a brief treatment of 
the very effective application of this iterative procedure to time-dependent 
problems. 

2. The domain decomposition 

Let f2 c IR a, d = 2 or 3, be a bounded domain with a Lipschitz boundary c3f2. Let 
{f2 i, j = 1 . . . . .  M} be a partition of f2: 

(2.1) ~=~JJ~=l~j: ~ j n ~ =  ~ ,  j , k .  

Assume that OOi, j = 1 , . . . ,  M, is also Lipschitz and that g?j is star-shaped. In 
practice, with the exception of perhaps a few f2Ss along 0f2, each f2j would be 
convex with a piecewise-smooth boundary. Let 

(2.2) F = c~f2, Fj = F ~ ~ 2 ,  Fik = F~j -- c~f~j n c~f2~. 
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3. The mixed formulation of the differential problem 

Consider the Dirichlet problem 

(3.1.i) - V . ( a V u )  + cu = f ,  x~f2 , 

(3.1.ii) u = g, x~gf2 , 

and assume that the coefficients a(x) and c(x) satisfy the bounds 

O < a o  < a ( x )  <__al < o r ,  

O < c ( x )  < c l  < oo , 

and are sufficiently regular that the existence and uniqueness of a solution of (3.1) 
lying in HS(f2) for some s > 1 for reasonable f and 9 are assured. Let the flux be 
denoted by 

(3.2) q = - aVu , 

and set e(x)  = a(x) - 1. Under  reasonable hypotheses, the Dirichlet problem (3.1) is 
equivalent to its following (global) mixed formulation: 

(3.3.i) c~q + Vu = 0, x e f 2 ,  

(3.3.ii) divq + cu = f ,  x~f2 , 

(3.3.iii) u = g, x~Of2.  

The weak formulation of (3.3) is given by seeking {q, u}~H(div, ~)  x L2(f2) = 
V x W such that 

(3.4.i) (~q, v)~ - (u, divv)~ = - (9, v . V ) r ,  w V ,  

(3.4.ii) (divq, w)o + (cu, w)e -- ( f  w)a, we  W .  

Let us consider decomposing (3.3) or (3.4) over {f2j}. In addit ion to requiring 
{qj, u j } , j  = 1 , . . . ,  M, to satisfy 

(3.5.i) ~q~ + Vu~ = O, x ~ f 2 j ,  

(3.5.ii) divq~ + cui = f  xEf2~ , 

(3.5.iii) u~ = g, x ~ F  j , 

it is necessary to impose the consistency conditions 

(3.6.i) u~ = Uk, xeF~k , 

(3.650 q~ ' v i  + qk'Vk = O, XSFjk ,  

where v i is the unit outer  normal  to O~. It is more  convenient  [9, 10] to replace (3.6) 
by the Robin boundary  condit ion 

(3.7.i) - f l q j  . v j + u j  = f l q k  " V k  + U k ,  x ~ l ' j k  ~ 63Q j , 

(3.7.ii) --flqk" Ilk "~ IAk = flqj" vj + u j ,  x6l-jk ~ 0~'-~ k , 
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where fl is a positive (normally chosen to be a constant) function on U_Fjk. Now, 
move toward a new weak formulation by testing (3.5.i) against a vector 
v~ V i = n(div, f2j): 

(3.8) (o~qj, V)aj -- (U j, divvj)~j + (u~, v. v)o~j = O, ve Vj. 

Apply (3.5.iii) and (3.7.i) to (3.8) to obtain (3.9.i) below, and test (3.5.ii) against 
we ~ = L2(f2j) to obtain the second equation in the system below. Thus, the weak 
mixed formulation of (3.1) over the partition {I2j} is given by the seeking of 
{q j, u j}~ Vj x Wj,  j = 1 . . . . .  M,  such that 

(3.9.i) (ctq~,v)oj - ( u j ,  divv)oj + ~ ( f l ( q j . v j  + qk 'Vk)  + Uk, V 'Vi)r jk  
k 

= - ( o , ~ ' v j ) r ~ ,  v e V ~ ,  

(3.9.ii) (divqj, w) + (cuj, w) = ( f  w), we  Wj .  

There is a technical difficulty with (3.9.i); if vje Vj and Vke Vk, it is not necessarily 
the case that the product of their normal components is integrable on Fjk. Also, 
the meaning of the restriction of an L2-function on ~2k to F~k is not clear. 
Thus, (3.9) is properly viewed as motivation for the treatment of the discrete 
case, and the remainder of the remarks in this section must be treated as 
heuristic. 

The objective of a domain decomposition iterative method is to localize the 
calculations to problems over smaller domains than f2. Here, it is feasible to 
localize to each (2j by evaluating the quantities in (3.9) related to f2j at the new 
iterate level and those in (3.9) related to neighboring subdomains Ok such that 
F~k :~ f25 at the old level. Specifically, the algorithm in the differential case would 
be as follows: 

(3.10) Select{q~ u o } e Vj x W j, j = 1 . . . . .  M,  arbitrarily ; 

then recursively compute { qy, u7 } by solving 

(3.11.i) (ctq~., v)~, - (u~., div v)a, + ~ (flq~" v j, v.  v~ )r~  
k 

2~ Pqk " Vk 
k 

+ u ' U ~ , v . v j ) j k  -- ( g , v . v j ) ~ ,  v e  Vj ,  

(3.11.ii) (divq~., w)a, + (cu~, w)a, = ( f  w)a,, w~ Wj. 

4. The mixed finite element problem 

We shall treat the case in which {O j} is a partition of f2 into individual elements 
(simplices, rectangles, prisms), though an inspection of the argument would indi- 
cate that larger subdomains are permissible. Let V h x W h be a mixed finite element 
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space over {f2j}; any of the usual choices is acceptable: [-3, 5-7, 24-26]. Each of 
these spaces is defined through local spaces Vj • Wj = V(f2i) • W(f2j), and setting 

(4.1.i) V h = {wH(div, f2) : vl ~j ~ Vj} , 

(4.1.ii) W h = {w:wlu j  ~W~} . 

The global mixed finite element approximation to (3.3) is given by restricting (3.4) 
to the space V h • Wh; the existence, uniqueness, and convergence properties of the 
method are very adequately covered in the references cited above, as well as in such 
papers as [2, 15, 23]. 

In each space W h in the various families of mixed elements referenced above, 
the functions we W h are allowed to be discontinuous across each l'jk. As a conse- 
quence, attempting to impose the consistency conditions (3.7) would force a flux 
conservation error; i.e., (3.6.ii) would not be satisfied unless the approximate 
solution uhe W h to the discrete analogue of(3.4) is constant, a totally uninteresting 
case. So, let us introduce Lagrange multipliers [-1, 19, 20] on the edges {Fjk}. 
Assume that, when q~ = qhlf~j , qh~ vh, its normal component q ~ . v j  o n  I'jk is 
a polynomial of some fixed degree z, where for simplicity we shall assume r inde- 
pendent of Fjk (see [4] if not). Set 

(4.2) a h = {,~:,~ [rj. eP~(r~) = A~k. rj~:~ ~ } ;  

note that there are two copies of P~ assigned to the set Fjk: A jk and A k~- Then, the 
hybridized mixed finite element method is given by dropping the superscript h and 
seeking 

{qjeVj ,  u jeWj ,  2jkeAjk : j =  1 . . . . .  M; k = 1 . . . . .  M}  

such that 

(4.3. i)  ( a q j , ~ ) ~ - ( u j ,  diw)oj +~()~jk,  v-Vj)rj ~ = - ( g , v . v j ) ,  v ~ V j ,  
k 

(4.3.ii) (divqj, w)oj  + (cur, w)oj  = ( f  w)o , ,  w~ W j ,  

(4.3.iii) (# ,  q j .  vj  + qk" Vk)rjk = O, # e A j k  �9 

The constraint (4.3.iii) is equivalent to (3.6.ii), and it follows easily that the 
pair {q, u}, where ql aj = q~ and u[ aj = u j, solves the original discrete problem. 
In the references cited above, it was assumed that 2jk = 2kfi the limit values of 
these multipliers resulting from the iteration defined below satisfy this 
equality. 

Let us formulate an iterative version of (4.3). Consider the Lagrange multi- 
plier to be "~jk a s  seen from f2j and "~,kj a s  seen from O k. Then, modify (3.7) 
to read 

(4.4.i) 

(4.4.ii) 

so that 

- f l q j . v j  -t- J'jk = flqk "Vk + "~kj, X~Fjk C ~'~j , 

- f l q ~  "vk + 2~j = flqj . v j  + 2~,  xeF~k c Of 2k, 

( ~ ,  v. Vj)rjk = (/~(qj �9 vj + qk" v~) +2kj, v ' V j ) r ~ .  
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Define the iterative process analogously to (3.10) and (3.11). Let, for all j 
and k, 

(4.5) qO ~ V j ,  u 0 E W j ,  2jkO ~ A j k  ' 20j ~ Ajk arbitrari ly,  

(2j ~ = 20  seems natural) and then compute {qT, u~, 27k } e Vj x Wj x Ajk recursively 
as the solution of the equations 

(4.6.i) " i ( " (~r v)or - (u j, d vv).~ + ~ flqj" vj, v" v j ) r r  k 
k 

= _ ~ ( f l q ~ - i  "Vk + 2 ~ f l , v ' v j ) r j k  - ( g , v ' V j ) r ~ ,  v E V j ,  
k 

�9 n n W (4.6.ii) (dlvqj, w) oj + (cuj, ) ~r = ( f  w) aj, we Wj 

(4.6.iii) 2j"k = fl(qT" Vj + q~,- ~. Vk) + 2~,j- ~ . 

Note that (4.6.i) and (4.6.ii) are independent of 27k and determine q7 and uT; 2j"k is 
then evaluated by (4.6.iii). 

Let us demonstrate the convergence of the iteration defined by (4.5)-(4.6). For  
each of the mixed spaces cited, there exists a solution of the global problem over the 
decomposition {f2j}. Set 

n n n n n n (4.7) rj = qj - q j ,  e j  = u j  - u j ,  [,Ajk = t~jk - -  / t ' jk ,  # ~ j  = t~jk - -  2 ~ j  , 

where {q j, u j, 2jk} is the solution of the global problem on f2j; also, interpret the 
spaces Vj, Wj, and Ajk as is appropriate for each problem. 

The error equations can be written in the form 

r n  n n V , (4.8.i) (cr j, v) o r - (e j, divv), j  + y '  (/~jk, "V j )  rr~ = 0, vE Vj 
k 

(4.4.ii) (divrT, w)or + (ceT, w)o r = O, w~ Wj , 

n n n - 1  (4.8.iii) #jk = f l ( r j ' v i  + r~-1 .  Vk) + #kj " 

Choose v = r7 in (4.8.i) and w = u7 in (4.8.ii) and add the resulting equations; 
then, 

(4.9) (0r rT)or  + (ceT, eT)oj + ~ <#j"k, rT " Vj)rr~ = O . 
k 

Let Bj = Of 2j\Fj,  and then note that, by (4.9) and with l" ]o,rj~ indicating the 
L2-norm on Fjk, 

(4.10) Y~ - & 7 " v j  +~Tkl  2 - -  O ,  f jk  
k 

2 , 2 2 f l~(r7 I~j"k)rjk = a21r ' 'v j lo ,Br , -  ~ + Z l / ~ j k l o , r ~  -Y- .v j ,  
k k 

= l~2 Ir7 ~ 20,BJ + Zl~Tk120,rjk -+ 2fl{(o~rT, rn~)oj + (ceT, enj)oj } �9 
k 
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Set 

(4.11) E ( { r , e , p } ) = } - ' ( f l 2 ] r j . v j l 2  j + ~ l ~ j k l  2 O, Fjk ) 
j k 

+ 2f l~{(ar~,  ri)a" + (cej, e j )a ,  } , 
J 

and let E" = E({r", e", #"}). Then, 

(4.12) E" = ~ 1  - f lr '] .vj  + 1~Tk[ z O, Fj~ 
j k 

= y~Z I&~, -~ .v~ + ~ , ; 1  1 o,~ ~ 
j k 

(4.13) 

= E "-1  - 4fl~" {(ar~- 1, r~- 1)~j + (ce~- 1, e~- 1)} . 
J 

Since {E"} is a decreasing sequence of nonnegat ive numbers ,  

n = l  j n = I  

so that  

(4.14) r " ~ 0  inL2(f2)  a s n ~ o o .  

If the function c(x)  > Co > 0 on ~?, then it would follow also that  e" ~ 0 in 
L2(O) as n ~ oe. However ,  we did not assume Co to be positive, just nonnegative.  

If p j  is the rat io of the d iameter  of Q~ to the d iameter  of its inscribed sphere, 
then for each of the mixed finite element spaces we have referenced, it is known that  

(4.15) Irj "Vjlo,ooj < M 1 (P j, d iam O j)I]rj I] o,~j �9 

(If the par t i t ion is quasiregular,  M 1 (P j, d iam O j) < Ch - 1; this fact and some other  
consequences of quasiregulari ty will be used in Sect. 6 to derive a rate of conver-  
gence; here, we obtain  convergence at an unspecified rate under  weaker  hypothe-  
ses.) Thus,  

(4.16) ] r~ . v j ]o .o~  ~ 0 ,  j =  1 . . . .  , M  , 

so that, in part icular,  

(4.17) r~ .v~ + r~ -1 "vk ~ 0  in L2(F jk ) .  

This is not  enough, but  we can begin with a boundary  element O~ (i.e., an element 
with one face, fiat or  curved, contained in F). Fo r  each of the families of mixed finite 
element spaces referenced (for the Ravia r t -Thomas-Nede lec  elements, see [15]; for 
the others, see the original references for the spaces), it is shown that  a feasible set of 
degrees of  f reedom for ~ can include 

(4.18.i) v.  v j, x ~ l ' j k  , (thus, xet?OjkF~) , 

(4.t 8.ii) divv, x~f2j  . 
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Moreover, these degrees of freedom can be supplemented, if necessary, in such 
a way that 

(4.19) [Ivllo,n~ _-< M(pj, diam~2j)(lldivv[] o,~, + Z l v - V j l o , r j k )  . 

Now, choose v = v"�9 Vj on the boundary element f2j such that 

divv" = e~ on Oj and v" .v j  = 0 on Of~j\Fj. 

Then, (4.8.i) implies that 

IIe~ ~ 

Hence ,  

(4.20) [le~[to, oj ~ 0  i f r j  + ~ . 

If, instead, we choose v�9 ~ such that 

divv = 0  on f2j; v . v j =  f#Jk o n  l " ik  , 
~o on I)l, 14= k , 

then 
{ItTk] zo,r~k =- --  (o:rT, v")  =< M j t l rTl[o ,~  [ I t jk lo ,r~  , 

and 

(4.21) 

By (4.17), 

(4.22) 

IP~klo.r~-*0 i f F j + g ~  . 

Thus, we have proved convergence ofq~, u~, 2~k, and 2~,j on boundary elements. 
Consider an element having a common face Fjk, with one of the boundary 
elements. Use diw and v- v j, j ~= k*, as degrees of freedom and repeat the above 
argument. Since the same scaling argument that gives (4.19) would also show for 
this interior element (and, thus, with flat faces only) that 

(4.23) [v'vjlo, rjk, ~ Mj(lldivvllo, nj + ~ [v'V~[o,rjk) , 
k4: k* 

the only new term arising is 

I(#i~*, v. v~)r~k. I _-< ]/xj~. [ o, rj~. 1~" v~] o,rjk., 

and convergence takes place for u~, 2ink, and 2~j on these elements, as well. The 
argument can be repeated until the domain is exhausted. 

We have finished the proof of the convergence of (4.6) in the discrete case, as 
stated in the following theorem. 

Theorem 4.1. The iterates {q~, u~, 2~k}e ~ X Wj x Ajk converge to the solution 
{q j, u j, 2jk } of the global hybridized mixed finite element procedure (4.3) in the 

following senses: 

(i) q~ ~ qj = q* {r~ in L2(f2j), 
(ii) u~ -* uj = u*]nj in L2(t2j), 

(iii) 2j~k and ~,~ ~ 'tjk in L2(F~k), 

where {q*, u*} �9 Vh x W h is the solution of  the global mixed finite element method. 
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5. Spectral radius of the iterator without quasiregularity assumptions 

The iterative procedure described in Sect. 4 is actually a simple iterative method to 
approximate the fixed point of an appropriately defined operator. Let us recall that 
in the definition of A h = {Ajk:j ,  k = 1 . . . . .  M} it is not assumed that Ajk = Akj. 
Now, let Ti.g be the affine mapping from Vhx W h x A h to itself such 
that, for any (s, p, 0)e V* x W* x A h, (r, e, 11) = Ti,  o(s, p, O) is the solution for the 
following equations: 

(5.1.i) ( ~ r j ,  v)t~j --  (e i, d i v v ) ,  i -b 2 ( f l r j ' V j ,  V" Vj>r~ k 
k 

= - - ~ ( f l S k ' V k  + Okj, v 'Vj)r j~ -- ( g , v . v j ) r j ,  v e V i ,  
k 

(5.1.ii) (divrj, w)~j + (cej, w)~j = (f, w)~j ,  we Wj , 

(5.1.iii) #jk = f l (r j .v j  + sk" Vk) + Okj. 

Lemma 5.1. The triple (q, u, 2)~ g h x W h x A h is the solution of  the discrete problem 
(4.3) if and only if it is a fixed point for the operator Ty,9. If(q, u, 2) is a fixed point of  
Ty.o, then 2ik = 2k~ for all j and k. 

Proof Let (q, u, 2) be a fixed point of the operator for Ty, g. Substituting the 
equality (5.1.iii) into (5.1.i) yields (4.3.i). Then, (4.3.ii) is trivially verified by (5.1.ii). It 
follows from (5.1.iii), with (s, 0) and (r, p) replaced by (q, 2), that 

2jk =/~(qi" vj + qk" vk) + 2kj, 

2kj = fl(qk'Vk + qj 'v~)  + 2jk �9 

Summing the above equations implies that 

q~ �9 v j  + qk " Vk = 0 ,  

which is equivalent to (4.3.iii). This shows that 2jk = 2kj and that any fixed point of 
Ti, g is a solution of the problem (4.3). It is trivial to see that any solution of (4.3) is 
a fixed point of the operator TI, o, and the lemma has been proved. 

Let To = To, o, and let f =  TI, o(O, 0, 0). Then, 

(5.2) r~,~(s, p, 0) = To(s, p, 0) + f .  

The fixed point of the operator Ty, o is characterized as a solution of the equation 

(5.3) (I - To)(q, u, 2) = f .  [] 

Lemma 5.2. I f  p(To) is the spectral radius of To, then 

(5.4) p(To) < 1.  

Thus, the iterative procedure (4.6) is convergent. 

Proof Let ? be an eigenvalue of To and (q, u, 2) be the corresponding eigenvector, 
so that 

To(q,u, 2) = y(q,u, 2) . 
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Our  objective is to show that ]7] < 1. It follows from (4.11) that 

(5.5) E ( r o { q ,  u, 2}) = 17[ 2E({q, u, 2}) .  

Also, by (4.12), 

E( To { q, u, 4}) = E({ q, u, 2}) - 4f l~{(~qt ,  qt)~ + (cut, U ~) o, aj } .  
J 

Combining the above and (5.5) yields 

(5.6) 17, = + (cut ,  , 
J 

which implies that [71 _-< 1. Equali ty holds if and only if 

(5.7) (~zqj, qt)aj + (cut, Ut)o.~j = O, j = 1 , . . .  , M .  

Suppose 17] = 1. We would like to derive a contradict ion by showing that the 
eigenvector is trivial. First, it follows from (5.7) that q = 0. Then, (5.1.iii) implies 
that 

(5.8) 2t~ = ~2kt �9 

Now, choose ve V~ on a boundary  subdomain f2 t such that 

d i v v = 0  o n f 2  t ,  

v . v j  = 2jk on 0f2 t \F  ~. 
Then, (5.1.i) implies that 

12tk[E,rj~ = 0 ,  for a l l k .  

This indicates that 2 j k  ~ 0 for all the boundary  subdomain f2 t. By (5.8), 
2tk* = ~2k*j = 0 if Ftk, is a common  face with one of the boundary  subdomains.  By 
induction, it is easy to show that  2ik = 0 for a l l j  and k. Finally, the Eqs. (5.1.i) and 
(5.1.iii), together with the fact that  q = 0 and 2 = 0, implies that 

(ut, divv) o j = 0 ,  v~V t .  

It follows that  uj = 0 for all j, so that I?[ < 1 and the iterative procedure 
converges. [] 

6. Spectral radius of the iterator with quasiregularity 

Assume that there exists a constant  Q such that  

(6.1) E({q, u, 2}) < 4Qfl~{(~qj ,  qj)aj + (cuj, uj)0,~j } 
J 

for any eigenvector of To. If so, (5.6) implies that, for the corresponding 
eigenvalue ~,, 

(6.2) 171 z < 1 - 1/Q, 

and an estimate for the convergence rate for (4.6) would follow. Thus, it suffices to 
derive the inequality (6.1). 
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In order  to find an estimate of Q in terms of h, assume that the part i t ion {f2s } is 
quasiregular. Then, there exists a constant  C such that 

(6.3) [qs 2 - i 2 �9 Vs]o.B j < Ch [Iqj[I ~- O, ~?j - 

It is easy to see from (5.1) that the eigenvector (q, u, 2) satisfies the equat ion 

(6.4) (~qj, v)oj  - ( u j ,  d i vv )o j  + ~ ( 2 j k ,  V .V j )G~  = 0 ,  v E V  s . 
k 

Now, choose ve ~ such that 

1 
= _ _ , ~ j 2 S k  , (6.5) v.  Vj 2jk  , divv = Os i f2j } --.,,j 

2 Ilrtlo,   < C l l ~ j l  2 = O,Bj " 

It follows from (6.4) that 

(6.6) ~ [~jk [2 o,r~ = (aqj, v) -- (us, divv) 
k 

= (aqs, v) + [Oj[(us, 1) 

< Cliqjllo,~ llvlto,~ + I0s{ IQsl 1/2 [lus[io,~ . 

By the Schwarz inequality, we have 

[0J[  < [ ~ f f 2 j , l ] 2 ( ~  ) 1 / 2  

Now, substituting the above inequality and (6.5) into (6.6), we obtain the bound 

2 [~j]B 2, = ~[~jk lO,  Gk ~ C(C~/2 + ~ l ~ a j l / I O j [  )l~slo,B, , 
k 

By first eliminating I)~s I O,Bj and then squaring both  sides, we find that 

(6.7) [2jl2j < C(C1 Ilqj[t 2 

Assume that the coefficient c(x)  is bounded below by a positive number: 
c(x) > Co > 0. It then follows from (6.3) and (6.7) that there exists a constant  C, 
independent of h, such that 

(6.8) ~ ( f l 2 [ q j . v s [ 2  2 - 1) O,B~ + ~l~jkl o , G k )  = < C ( C l f l  1 + f l h -  1 + p f l - l C o  . 
j k 

2 2 �9 4fl~(l]qjlto, a~ + collujll ) O,.Qj 

where s 

(6.9) p = max I~a j I / l~s l  �9 
J 

The estimate (6.8) indicates that (6.1) is verified with 

Q = C ( f l - ' C x  + flh -1 + p f l - l c o l  ) . 
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If constant Q is considered as a function of [3, then it is minimized by taking 
[3 = a / h ( C 1  + pco i ) .  Such a choice of [3 yields the estimate 

(6.10) Q = 2 c N / C 1  

@ 

p c o  1 + 

h 

Combining the above estimate with (6.2) yields the following result. 

Theorem 6.1. L e t  c (x )  > Co > 0 and p be as above. As sume  that  the parameter  fl in 

the i terat ive procedure (4.6) satisf ies  [3 = x/-ff(C 1 + pc f f  1 ). Then, the spectral  radius 
r ( T o )  o f  the operator To is bounded as fol lows: 

r ( T o )  < 1 --  x / ~  =- Y o ,  
2 C x / C I  + p c o  ~ 

and the i teration (4.6) converges with an error at the n th i teration bounded asymp-  
tot ical ly  by O(7~). 

Now, we consider two particular examples for the domain decomposition 
method (4.6). First, assume the triangulation {f2~} of f2 into elements to be 
quasiregular and that the subdomains in the domain decomposition to coincide 
with {O j}, In addition, assume Co = O(1). Then, by a scaling argument, we see that 

C i  = O(h) ,  p c o  1 = O(h - 1 )  . 

By choosing the parameter fl = x / h ( C 1  + p c o  ~ ) = O(1), it follows that (4.6) con- 
verges with rate bounded by 

7o = 1 - c h .  

Numerical experiments have confirmed that the (1 - ch)-rate is a correct estimate 
for the choice of [3 given above. 

In our second example, we consider Co = O(1) and subdomains so that 
If2j[ = O(1). For  reasonably shaped subdomains, p = O(1), so that the choice 

[3= 
leads to the estimate 

70 = 1 - c v / h ,  

for the spectral radius of the iterator in (4.6). This rate of convergence can be seen 
to be optimal for the case when f2 is a rectangle divided into two equal parts. 

7. Time-dependent problems 

Consider as a typical example the heat conduction problem given by finding 
u: f2 x J---~F,, where J = (0, T], such that 

du 
t3t div(aVu) = f ,  x e f 2 ,  t e J  , 

(7.1) u = g, x ~ f 2 ,  t e J  , 

U = Uo, x e f 2 ,  t = O . 
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Approximate (7.1) implicitly 
system 

U l __  U I - 1  

A t  

(7.2) 

by backwards differencing in time to obtain the 

div(atVu l) = f ~ ,  x 6 f 2 ,  t t = l A t e J  , 

u ~ = gl ,  x ~ 3 ( 2 ,  t t ~ J  , 

U 0 --~ U O ,  X E ~ - 2  . 

At each time level t ~ (7.1) represents an elliptic problem for ut; if a mixed method is 
employed to approximate  its solution, then the resulting algebraic equations are of 
exactly the form treated in Sect. 4. Quite good initial guesses can be computed  by 
extrapolat ion from the values obtained at previous time levels (see, e.g., [13, 14]), 
where both  rules for obtaining initial guesses and for stopping iteration processes 
are discussed. Note  that 

1 
C o ~ ;  

thus, the choice 

fl = x f ~ -  + At 

is indicated for a decomposi t ion into individual elements. In this case, 
r ( T o )  <= 1 - c for some c < 1 if the time step is required to satisfy the natural  
relation At = O (h  z ) .  For  the incomplete iteration methods described first in [12] 
and refined in [13] and [14], this bound  on r ( T o )  implies that only some fixed 
number  of  iterations are required for each time step. 

Similarly, second order  hyperbolic problems can be treated by mixed methods 
and the iterative procedure of  Sect. 4 applied. 
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