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SECOND-ORDER ABSORBING BOUNDARY CONDITIONS FOR THE WAVE
EQUATION: A SOLUTION FOR THE CORNER PROBLEM*

ALAIN BAMBERGER’:, PATRICK JOLY:, AND JEAN E. ROBERTS:I:

Abstract. The treatment of domains with corners in the problem of absorbing boundary conditions for
the wave equation is very important from a practical point of view. A technical difficulty appears as soon
as conditions of order greater than or equal to 2 are considered. A solution is proposed for the two-dimensional
case when second-order conditions are used. This solution consists of prescribing an adequate corner
condition. The problem thus obtained is analyzed theoretically and the condition is proved to be optimal.
The results obtained here are illustrated by numerical simulations. Some extensions to higher-space
dimensions and higher-order conditions are proposed.
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1. Introduction. In [4] and [5], Engquist and Majda introduced a sequence of
absorbing boundary conditions for the two-dimensional wave equation in the half-plane
{(x,,x),x<O}:

(1.1)
Ot \Oxi /’-5-5+Ox" 0

(the velocity is supposed to be constant and taken equal to 1).
These conditions are given recursively by

Ou Ou
Bu=--+=0 on F {(x,, 0)},

Ot Ox2

02hi (921,1 1 02u
(1.2) Bzu=--0t0x2 20x=O onF,

0 1 0 2

B,+lu=(B,u)- Ox(Bn_lU)--O onr.

In [5] it is shown that, according to the Kreiss criterion [8], each of these boundary
conditions is strongly well posed for the wave equation.

If we assume that the interior equation (1.1) also holds on the boundary we may
write (cf. [6])

(1.3) B,,u =-=-_, + u, n 1,2, ,
Ox2

and then it is easy to see that each B, is transparent for plane-harmonic waves striking
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the boundary at normal incidence. Furthermore, if u is a plane harmonic wave of unit
amplitude striking the boundary at an angle of incidence 0 from the normal, then the
amplitude R, of the reflected wave (i.e., the reflection coefficient for B,) is given by

(1-cs ) 02nR,= =o( n=l 2,....
1 +cos

We mention that some extensions of conditions (1.2) and (1.3) have been proposed
in [7] and [15].

For many practical problems we are interested in restricting numerical calculations,
which should be done in theory on an infinite domain, to a bounded domain. Thus
an absorbing condition is needed for the boundary of the bounded domain.

For a domain with a smooth boundary, a solution has been proposed by Engquist
and Majda in [5]. This solution, which makes use of the theory of pseudodifferential
operators, generalizes conditions (1.2). However, if we use a finite-difference scheme
on a uniform grid to compute the numerical solution, it seems more interesting to
restrict the effective calculations to a rectangle. For simplicity of exposition, we restrict
our attention to the case of the quarter-plane {x (x1, x2)/x < O, x2 < O} and then
introduce two absorbing boundaries"

F1 {(Xl, 0), x,-< 0}, r {(0, x), x_-< 0}.

We will denote by zero the corner point (xl 0, x2--0); see below.

I"

The initial boundary value problem obtained by taking (1.1) in f with the first-order
boundary conditions

O2u
-Au=0 inf,,
Ot

OU au
(1.4) --+=0 onF1,

Ot Ox2

ou ou
--+=0 onF2,
Ot OX

and appropriate initial conditions

(1.5)
u(x,O)=uo(x)
o_u (x, o)= u(x)
ot
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is well posed, as we have the following energy identity:

(1.6) dx+: dx +
OU 2

do. 0

(do- denotes the superficial measure on F). Thus the presence of the corner does not
pose any specific difficulty. However, as indicated by the reflection coefficients and
verified by numerical experiments, these first-order conditions give rise to significantly
larger reflected waves than do those of second or higher order.

If we look at the second-order conditions written as

(1.7)
at2 ax2 at 2 ax 0 on

Ot2
F--
Ox at 2 Ox 0 on F2,

it is not at all clear a priori whether the corresponding initial boundary value problem
is well posed. Numerically, if we use a classical finite-difference scheme (for example,
see 12], 13]), a naive matching ofconditions (1.7) at zero is ruled out by the appearance
of the second-order spatial derivatives in any expression for B2. Moreover, it can be
shown, as we will see in 3, that there is no unique solution of the problem in the
class of finite energy functions if no condition at the corner is specified. Furthermore,
it is not clear what corner condition should be chosen, and as reported in [5], an
improper choice of the corner condition may generate instabilities.

Thus, what we propose to do here is to introduce a boundary condition at corner
zero and to study this condition from both a mathematical and a numerical point ofview.

The outline of this paper is as follows. In 2 we explain how we construct our
corner condition and present different extensions of the method we use. In 3 we
analyse theoretically a family of corner conditions, depending on a parameter, contain-
ing our condition and also the one proposed previously in [5]. We try to show in what
sense our condition is the best one. In 4 we present various numerical results
illustrating the theoretical results of 3.

2. Derivation of the boundary condition at the corner. The construction of our
corner condition is guided by two quite simple principles:

(i) The corner condition should not introduce a singularity; i.e., regular initial
data should yield a regular solution.

(ii) The expression of the corner condition should contain only first-order spatial
derivatives in a given direction.

We consider the wave equation (1.1) in f with boundary conditions (1.7) and
initial conditions (1.5), and we suppose that the initial data functions Uo and u belong
to C(f). The idea is that if u is a C solution then (1.1) and (1.7) should be satisfied
at point zero for all time t"

02U
Ot---- Au 0 at Xl x2 0 for _--> 0,

Ot2
t
ax2at 2ax2

0 atxl x2 0 fort >0,

a2u au 1

Ot2 OXlOt 20x2
0 atx x2 0 fort >0.
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Adding the second two equations and subtracting 1/2 times the first equation from the
resulting sum, we obtain

3 02U 02U 02U
q-q---0 at x X2 0 for => O.

20t2 OX10t OX2 3t

Then, integrating once with respect to time, we arrive at

(2.1)
3Ou Ou Ou
---t-+ 0 at Xl x2 0 for >-- 0.

20t OXl Ox2

It is interesting to compare this condition with that proposed by Engquist and
Majda in [5]:

(2.2) /- au au auu++ 0 at x X2-- 0 for t-> 0,

which is transparent for plane-harmonic waves propagating along the diagonal. In
practice, conditions (2.1) and (2.2) differ very little as x/ , although they are obtained
from very different considerations.

At this point, as condition (2.1) is necessarily satisfied by any C2 solution of (1.1)
and (1.7), it is reasonable to ask if this condition serves any purpose other than
numerical ones, for which it differs negligibly from (2.2). We will see its theoretical
utility in 3.

(i) Generalization to the n-dimensional case. Let n-> 2 and put

-n {X (Xl, X2," ", Xn) ft. R n’, Xi < 0 forj 1, 2," -, n}.

We consider the wave equation

(2.3)
02U
Ot2-Au=0 inO fort>0

with initial conditions

u(x,O)=uo(X)

u
(x, o)= u,(x)

ot

and the second-order absorbing boundary conditions

(2.4)
oZu 02u 1 02u
Ot2 Ot OXk 21<=j, OXj

for x E fl,

for x fl,

k 1,..., n, where Fk is the boundary face of f whose normal is Xk. We suppose
that Uo and ul belong to C(f,). If u is a C solution then (2.3) also holds on
and the second-order conditions may be written in the form indicated by (1.3)"

+ u=O onF,

k=l,...,n.
For n > 2 in addition to the condition at the corner itself we need a condition for

each lower-dimensional face Fj of , where, for J = {1, 2,..., n}, we mean by Fj

1-"j {X Rn; Xk <0for kC:J, Xk =0for kJ}.
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If u is a C solution then (2.3) as well as (2.5), for all k J, holds on Fj. If we sum
these equations and divide by 2 we obtain

(j+l) 02u 0 Ou 1 Ou
(2.6) on Fj,

2 0 2 b-- OXk 2 Oxk

where j is the number of elements in J.
For the corner itself, where J={1,2,..., n}, after integration in time, (2.6)

becomes

n + l Ou "_ Ou
(2.7) t- =0.

2 Ot j=lOXj

We note that, by the Engquist-Majda criterion, the corner condition would be

(2.8) Xl/- O___....Or.jil Obl
0

Ot Oxj

and that, for sufficiently large n, (2.7) is really quite different from (2.8).
(ii) Generalization to the third-order boundary condition. Again in dimension 2,

we consider the third-order boundary conditions (1.2)

0311 031 3 O3u 1 O3u
=0 onF1,

Ot t--- 40t OxO Ox2 Ox2 4 Ox2
(2.9)

03u 03u 3 03u 1 03u
Ot 2 0 on F2.

Ot OX 40t Ox 40x Ox2

As before, we assume that u is C so that (1.1) also holds on Fk, k 1, 2, and we
again use the form indicated by (1.3) for the boundary conditions:

+ u=O OnFk,

for k= 1,2.
We sum the following five equations: (2.10) for k 1, (2.10) for k 2, 3 times

(1.1) differentiated once with respect to time, (1.1) differentiated once with respect to
xl, and (1.1) differentiated once with respect to x2. Thus we obtain

+ 0 at0.(2.11) 5 ---2+ 4 t2
0Xl Ot2 ox2] ox2 ox_ oxZ Oxl

The last two terms on the left-hand side need to be eliminated. We differentiate (2.10)
on F1 with respect to x2 and (2.10) on F2 with respect to xl. Equation (1.1) is
differentiated twice, once with respect to each spatial variable. The resulting three
equations are summed to obtain an equation that can be integrated in time. We then have

(2.12)
03U 031g 031g ( 031g 031g )-t- + +3 + 2 =0.

Ot2 Ox, -t2
Ox2 Ot OX OX2 oX21 OX2 OX2 OX,

Summing (2.12) with 3 times (2.11) and integrating the result once in time, we arrive
at the corner condition

02U [ 02U 02U 02U
(2.13) 15---+ 13 \+-x)+7---0 at0.

Ot OX Ot Ox Ox2
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As in the case of the second-order boundary condition, the corner condition (2.13)
can be extended with no specific difficulty to the wave equation in R n.

It would also be natural to generalize this corner condition to higher-order
absorbing boundary conditions (1.2). This problem does not appear to be so easy. For
example, as fourth-order spatial derivatives in a given direction appear in the fourth-
and fifth-order absorbing boundary conditions (see [5]), our conjecture is that three
corner conditions are needed, and more generally that n corner conditions are needed
for the 2nth- and (2n + 1)st-order conditions.

3. Mathematical analysis of the two-dimensional problem. Our goal in this section
is to study from a mathematical point of view the following problem"

02u
-Au=O in fort>O,
Ot2

(Pv)

Ot2 Ox2 O 2 Ox2
0 on F for > O,

O2u 32u 1 32u
Ot2 OX Ot 2 3X2

0 on F2 for > O,

Ou Ou Ou
w++=0 at0 fort>0,Y
Ot OX OX2

u(x, O)= Uo(X) in f,

Ou
(x, O) u,(x) in f.

Ot

For this problem we have the second-order absorbing boundary conditions:

02u oZu 1 oZu
0 on F1 for > 0,(CL1)

Ot2 OXzOt 2 0x
oZu 02u 1 oZu

(CL2)
Ot2 Oxl Ot 20x

0 on F2 for > 0,

and we consider a general corner condition:

Ou Ou Ou
(CCy) y++=0 at0 fort>0,

Ot OX OX2

where y denotes a positive parameter. This generalizes condition (2.1) derived in 2,
and condition (2.2) of Engquist and Majda. We put

y* _--o
It is not obvious how to obtain an existence and uniqueness result for (Pv) via

classical methods based on energy identities and a priori estimates. Moreover, this
problem does not fall into the category of corner problems previously treated in the
literature (cf. [9], [11], and [14]). Thus we develop an analysis specific to this problem.
Nonetheless, we cite the work of Lemrabet [10] on the analogous problem for the
Ventcel boundary conditions.

It is clear that (Pv) can have a C(I)xR+) solution only if y= y*, and that in
this case condition (CCy) is superfluous. In 3.3 we will see that if the initial data
functions Uo and ul belong to C(f), then there does indeed exist a solution u of

(Pv.) in C(I)x+). (The corner condition is not used for this construction.)
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In 3.1 the corner condition is used to derive a weak formulation of (P). This
weak formulation is used in 3.2 to obtain a uniqueness result and in 3.3 to extend
the existence result for 3’ Y* to the case in which the initial data lie in HSx Ha.

In 3.4 we obtain an existence result for arbitrary y > 0 and point out the existence
of a singular corner wave when 3’ 3’*. We then analyze the properties of this corner
wave.

3.1. Weak formulation of the problem. Suppose there exists a function u such that

u c(fi* x/) (fi [0, )),

(3.1) Vt>-_O u(t) hascompactsupport,

u satisfies the equations of (Pv).
We differentiate the wave equation (1.1) with respect to t, multiply by a test function
v(x, x2) in C(), and integrate in space to see that such a function u satisfies

dt
uv dx A

Ou
vdx=O.
Ot

Using Green’s formula we obtain

(3.2)
dt

u(t)v& + Vu(t)Vv& (t)vd=O.

Let us transform the boundary integral as follows:

fF 02u IF 02u 02u
On Ot

t)v d v dx v dx2.
Ox20t v Ox Ot

Using the boundary conditions on F and F2 we see that

fr o2u
On Ot

(3.3)

v de =- uv ax, -- ox v clx,

We finally use the corner equation (CCy) to obtain

if o2u lfr O2u l{fr OU OVdXlq_I
F

Ou ODdx2}-- , OX21
ID dx, - Oil

10 dx2 - 10Xl OXl 20X20X2
(3.5)

yd+(u(O)v(o)).

Thus, regrouping (3.2), (3.3), and (3.5), we have proved that u satisfies the equation

at
uv dx + .vd + VuVv dx +i

(3.6)
_1 __Ou __Or d 0 for all v e C(fi).+2 r O O

A double integration by parts leads to the equality

1 O2U 1 O2U 1 Ou Ov
dx+-- OX V dXl - 20x V dx2= OXl OXl 20X20X2

(3.4)

-{O (0)+
2 OX2

O(0) } g(O)"
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It is clear that (3.6) can have a sense even if u is less regular than required in
(3.1). Thus we are led to introduce the functional space

(3.7)
V= {v e H’(I)); v(x) v(x, 0) Hi(F1), v2(x2) V(0, X2) G H(F2),

def

Vl(0 V2(0

Note that V is well defined. Indeed, for v in H1(12) the trace vl (respectively, v2)
belongs to H/2(F) (respectively, H/-(F2)), and thus we can ask if it also belongs to
Hi(F1) (respectively, H(F2)). Moreover, vj(O) makes sense as vj belongs to
Hl((-oo, 0)). Note also that V contains C(1). We define the following norm on V:

(3.8) v Zv do’+lv(O)l 2

Ja Ja Jr Or

(Or/Or is the function on L2(F) defined by Ov/OT[Fj-OVj/OXj, j 1, 2). It is easy to
show Lemma 3.1.

LEMMA 3.1. Equipped with the norm (3.8), V is a Hilbert space.
Remark. Note that V is nothing but the closure of C(fi) for the norm
To complete our mathematical framework, we introduce, for H a Hilbert space

(with norm I1" IIH) and r a positive number, the space

(3.9) Ll(N +" H)= v(t)" N +--> H; IIv(t)[lHe-’ dt <

Such a space is of interest because it is possible to define the Laplace transform of
any v in V by (see [2], [3])

(3.10) (p) v(t) e -p’ dt for Re (p) > o-

and to show that the function p -> 3(p) e H is analytic in the half-plane Re (p) > o-. In
particular we have the property

3(p)=0 for all pen
(3.11)

such that p > r implies v(t) 0 for all -> 0.

Note also that L(N+; V) c Loc(N+; V) c D’(N+; V).
Now we can give a definition.
DEFINITION 3.1. A function u(t) is a weak solution of problem (P) if and only

if there exists cr > 0 such that

(i) u, e L(N +’, V) x L(N +’, L(a)),

du
(ii) u(0) Uo e V, - (0)= u e

d3(fli )d2(ffF )d(fl(iii) - uv dx + uvd +Z VuVv dx+ u(0)v(0)

1 fvOUOVd=OinD,(+) for allv6E+
2 Or Or

Remarks. In (i), the derivative du/dt is taken in the sense of distributions with
values in L2().
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If we choose v D(I), it is easy to see that (iii) can be interpreted as

02u
or---Z- Au 0 in D’(R+ x f),

which shows, as A(HI(f); H-l(f)), that d2u/dt- belongs to the space L(R+;
H-(f)). Then we deduce that

u C’([0, +oo); H-’(f)) fq C([0, +o); L2(f)),

which permits us to give a meaning to initial conditions (ii).

3.2. A uniqueness result. Let u be a solution of (P) in the sense of Definition
3.1. Then for Re (p) > r its Laplace transform a(p) is, at least formally, a solution of

Aa +p2a u + puo f inf,,

20x
(3.12)

1

+p=0 onF1,i-p
Ox2

20x
+pEa =0 onF,i- p
Oxa

++ypfi 0 at O,
Ox2

or more exactly, using the weak formulation, of

(p) v,
(3.13)

(p, a(p), fi)= (L(p), )

where the bilinear form (p, .,. is defined by

for all 3 e V,

(p, a, t3)= Va. Vt3 dx+p adx

(3.4)
+p d+

2p 0r 0r 2

and the linear form ((p), .) is given by

(3.15) ((p), )= UldX+p uodx.

We have the following lemma.
LEMMA 3.2. For y > O, ifp is a positive real number, the bilinearform (p, , ) is

V elliptic.
Proof It suffices to write

(p, a, a) IV al = dx + p= [al = dx + p [a[ 2 d+ d

to deduce that
Then, using the Lax-Milgram lemma, we see that problem (3.13) admits, for

(Uo, u) in VxL2(a), a unique solution (p) in H. In paaicular, if Uo=U=0, we
necessarily have a(p) 0 for all p > . Using property (3.9), we deduce the following
theorem.
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THEOREM 3.1. The solution u of Pv, if it exists, is unique.
Of course, we could try to develop an existence theory for (P) using the Laplace

transform method. We could hope to prove an existence and uniqueness result for
problem (3.12) when p =r// ito, r/> 0 being fixed and to varying in R, and to obtain
estimates on t(r// ito) (in V) for any to in R. We did not succeed in obtaining such
estimates (we can show that such estimates are available in the region to2__< 3r/2, but
we do not know how to extend these estimates to the whole line p r/+ ito).

3.3. The existence of a smooth solution for /= /* =-. We assume that the initial
data functions Uo and Ul belong to C(I). We will construct a solution u of (Pv.) of
class C. Toward this end we remark that if u is such a function then the C function
v defined by

V L1L2u,
02 02 1 02

(3.16) L1 =-ff+Ox2 Ot-- Ox’
02 02 1 02

L2
_
Ot2 OXl Ot 2 0x’

satisfies

021)
or--5- Av 0 in 11 for > 0,

Vlr 0 for > 0,
(3.17)

1)(x, O)= 1)o(X) in 11,

O___v (x, O) va(x) in 0
Ot

where

(3.18)

1 1 04/,/0
1)0 " A2UO "it" " OX21 OX-2 "it"

OX OX2

1 1 04Ul 02AUl
1)1 - A2 I’ll "it" " OX210X "it"

OX OX2

1 (O3Ul .it.O3Ul 03/,/1
-1
t-

03/,/1
"it" - "X31 -X32 ] "it"

OX OX2 0X OX’-2
+ + A2uo- + Auo.

OX O-X2
Furthermore, as u is a solution of the wave equation, we deduce that

1 (;+Xl)
2 (t+02) 2

(3.19) 1) Lu
4

u.

Now, to actually construct a C solution of (Pv.), we let 1) denote the unique
solution of (3.17) whose existence is guaranteed by the theory of images. We then let
u be the unique solution in the quarter-plane of

Lu=v inl’ fort>0,

(3.20) Ou 02lg 03U
-Auo, --AUl inf fort=0.U UO, ---- hi1,

Ot2 Ot

This problem is well posed, as its solution is obtained by integrating in the quarter-plane
fl {(Xl, x2); Xl < 0, x2 < 0}. Moreover, its solution u is C.
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THEOREM 3.2. The function u defined by (3.17), (3.18), and (3.20) is a classical
solution of Pr.).

Proof To see that u satisfies the wave equation in 12 it suffices to note that
w =02u/Ot2-Au is the unique solution to

Lw=O in12 fort>0,

w 0 in12 for =0.
Ot Ot2 Ot Ot4

Thus w 0 in 12.
Since u is C, u satisfies the wave equation on F. Thus to see that (CL1) holds

for u on F1 it is sufficient to show that w2 (0/0t + O/8x2)2u vanishes on F1. For this
result we note that gl(xl, t)= WE(X1, O, t) is the unique solution of-- gl(Xl t) O for x E F1 and > 0,

gl(Xl, O)=- gl(xl, O)=0 for x E Il

and thus that gl(Xl, t)-0 for xl F1.
That (CL2) holds for u on F is demonstrated in the same manner.
For completeness we would like to check that the solution u constructed above

belongs to the class of functions for which we obtained the uniqueness result in 3.2,
i.e., we would like to check that u is a weak solution of (P) in the sense of Definition
3.1. (While we know that u is C, we do not yet know that it belongs to the space
LI(+; V), for which we must show that the energy does not increase more than
exponentially in time.)

In checking the solution we obtain estimates that allow us to extend our existence
and uniqueness result to the case in which the initial data (Uo, Ul) lies in Hs() x H4().
(This result is probably not optimal, though we have not succeeded in improving it.)

THEOREM 3.3. The classical solution u of (Pv.) defined by (3.17), (3.18), and (3.20)
is also a weak solution in the sense of Definition 3.1. Thus it is unique.

Proof. Suppose that f and g denote functions regular in 1) such that

of+ Of=g in12.
Ot Ox

If we multiply this equation by f, integrate over 12, and then integrate from zero to
we get

(3.21) - Ifl dx / Ifl dx2 ds [fo[ 2 + fg dx ds,

where fo(x)=f(x, 0). Then, using Gronwall’s Lemma, we obtain

(3.22) [fl dx <-_ Ifol = dx + Ig[ = dx as

and plugging (3.22) into (3.21) we have

(3.23) If] dx2 ds <= (1 + 2t) Ifol 2 dx + (1 + t- s) ]gl 2 dx ds.
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Now consider two functions w and g defined in 12 and related by the sequence
of equalities (with w- w1122)

tW C1421
Ot OX

g,

OWl2 OWl2
Ot Ox2

W1

OWl12 tWll2- W12
Ot OX

0Wl122 0Wl122
-}- Wll2

Ot Ox2

Then assuming that ja [g[2 dx<= 1160112 uniformly in time, we get, using (3.22),

I lw,] dx<=2(lw,(O)]2/ Goll2t),

f [W12[ 2 dx<=2{lw12(O)12/2’Wl(O)12t/ 11(3o[I 2

I IWl,212 dx<=2{lwa,2(o)12/2lWl2(O),2t/2lw,(O)lat2/ / Goll 2

and finally, with the aid of (3.22) and (3.23), we see that

lwl dx C(1 / t4)(lw(o)12/lw,12(o)12/lw,2(o)12/lWl(O)12/ Goll =),
(3.24)

I I Iwl 2 dx2 as<= c(1 / I5)([w(O)I2/IWl12(O)I2/IW12(O)I2/IWl(O)12/11(301[2).
do dI2

We can now invert the roles of x and x2 in the previous estimates. We then introduce
w2, w2, and w22 to obtain

(3.25)
w[ dx 6(1 / t4)(lw(O)12/[w221(o)12/lw21(o)[2/lw2(o)l./

Io’ I Iwl= dxl <= C(1 + t)(lw(o)12/lw221(o)[2/lw21(o)12/lw2(o)12/ o112).

Nqw we can apply estimates (3.24) and (3.25) successively to

ou ov
-ot’ ot

Ou Ov
w- g-

OX OX

Ou Ov
w- g-

OX2 0/)X2

and we can take 11Gol] 2 J I/)112 dx +]V Vol 2 dx since v satisfies a classical energy identity.
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Using the relations between (Vo, Vl) and (Uo, ul) it is easy to get the following estimate"

7; dx + IV ul dx + 7; d, + --o- d+ d

6(1 +

where and u denote unit tangential and normal vector fields, respectively, on F. The
theorem follows.

Decomposition of the solution. It is interesting to analyze the structure of the
solution we constructed with the help of the theory of images. Indeed, the solution v
of (3.20) can be written as

:.+++.
where (v, v, v, v) are, respectively, the restrictions to of the solutions of the
wave equation in the whole plane
being the extensions of Vo, v by 0 outside )"

v,(x,, x, O) o(X, x), ore (Xl, x, 0) l(X,, x),
ot

v(x,, x, o) -o(X,, -x), ov (x,, x, o)= -,(x,, -x),
ot

v(x, x,o) -o(-X, x), ov (x, x, o) -(-x, x),
ot

v%(x, x, o)= o(-X,, -x), (Xl, x, 0): (-x,,-x).
ot

Then the solution u constructed in Theorem 3.2 can be equivalently decomposed:

(.6) , + + + ..
where u is the restriction to of the solution of the wave equation without
boundary, i.e., with (o, 6 being defined as were o, ),

026
Ot-At O,

a,(x, o) ao(X),

a’(x,O)=a,(x),
ot

and where u (j 1, 2, 0).denotes the restriction, to f of the solution a of

0aJR 02,JR 03aJRL(a) al,(x, o)=77- (x, o)= t (x, o)= (x, o)=o.
O Ot

The decomposition (3.26) can be interpreted as follows:

UI is the incident wave.
u is the wave reflected by the absorbing boundary I" 1.u, is the wave reflected by the absorbing boundary F2.
U0R is the secondary reflected wave corresponding to the reflection of u, on F2
and that of u on I"1.
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In the case of a point source, we can represent the different wave fronts corresponding
to decomposition (3.26) as shown below. The three curves depicting ui indicate that
the amplitude of Ul is greater than that of u and u, each represented by two curves,
which is in turn greater than that of UR represented by a single curve. Also, along
and u the arrows point in the direction of decreasing amplitude (cf. numerical results
of 4).

X2

FI l X1

3.4. The case ,g : existence of a corner wave. We return now to the problem
(P) for arbitrary y > 0. We again assume that all initial data is C .and is compactly
supported in f. First, suppose that u is a solution to (P) for some given y. If we
denote by u* the regular solution of Pr for 3’ we may define

Thus we can decompose u:

where u* is regular everywhere and v is a function that clearly satisfies the following
equations (here we omit the index 7 for simplicity):

(P)

02/)
Otz

02/)

-A/) =0, xE, t>0,

02v 1 02/)-Ot2 Ot OX2 20x2
O2v 02v 1
at2 at ox 2 ox2

02/) O(OXy ot----+-- +

=0, xEF1, t>0 (CL1),

-0, xF2, t>0 (CL2),

Or)OX2
g, X 0, t>o (cc)’,

v(x, o) =: (x, o) o,
Ol
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with

(3.27) g=gv=-(y-y*)

(We remark that, in this section, for simplicity of exposition we have chosen to
work with the corner condition (CCy)’ instead of (CC7), since with the zero initial
conditions (CCy)’ and (CCy) are equivalent.)

What we will do in the following is to show that there exists a solution H of.P
with g 6(t). Then v will be defined to be H.g and will thus be a solution to (P)
with g-= g. We will show that v has a singularity at the corner and will say that v
is the corner wave due to the corner condition (CCy). Finally, the solution u to (P),
with g 0 or equivalently to (P), will be obtained by adding the regular solution u*
of (P.) to v" u v + u*.

To construct the solution Hr to (r) we will proceed much as for the construction
in 3.3 of the regular solution u* to (Pv.), except that here we need to introduce a
singularity at the corner point. Thus we will start with the elementary solution G to
the wave equation in 2 at the point (0, 0). Then, as before, we will integrate G along
the characteristics of (3.19) to obtain G, which should satisfy the wave equation as
well as the zero initial conditions of (Pr). However, as G does not vanish on the
boundary F, there is no reason why G should satisfy the boundary conditions (CL1)
and (CL2) of (’). However, we observe that 02G/Oxl OX2, which will play the same
role here as v in 3.3, does vanish on F. Therefore, taking the corresponding derivative
of (, H 02G/0xl Ox2, we will obtain a function H that we will demonstrate satisfies
all of the equations of () except the corner condition. Moreover, we will show that
a constant multiple H aH of H does indeed satisfy the condition (CC7)’.

To be more precise, we let G denote the solution to

Ot---w-AG=g(x)6(t), x2, t>0,

OG
6(x, o) (x, o) o, x2.

Then G is given explicitly by

--XlG(x, t)=
1/2"rr(t2 2 x2)1/2
0

x +x <t
otherwise.

Next we integrate G twice in the direction (t+xl) and twice in the direction
(t + x2) to obtain the solution ( to the problem

(3.28)
-l(;t+ G=G,LG

4

05 025 03-1((x, O) -- (X, O) Ot---- (x, O) =Ot (x, O) = O,

X [] 2,

x2.

An explicit expression for G may be obtained by straightforward calculation"

(3.29) (--{(t-xl-xz)3F(b(x’ t))’ X+X<t2’
otherwise,
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where

bI0

0"3/2
F(b)

(1 + 0")2
do, ds,

(3.30)
t2_x_x

b(x,t)-
(t-x-x2)2"

Remark. We may further calculate that

(3.31) F(b)= 5+b ,/-(5+3b) arctan,/,

with b given by (3.30); however, as we are interested in the derivatives of G, the form
(3.30) is easier to work with.

Concerning the regularity of (, we note that is bounded but singular along the
plane x + x2 t. However, the intersection of this plane with the domain that interests
us, fix N +, is the point x 0, 0.

Next we introduce the function H defined by

g(x,t)- (x,t).
OXl OX

We can show the following result.
THEOREM 3.4. (i) H vanishes in the part of x R+ outside the closure of the cone

X2 + X < 2.
(ii) H is C in the part of (l +.
(iii) H is C in (1 +\{(0, O, 0)}.
(iv) The second derivatives ofH are singular along x+x 2.
(v) H satisfies the wave equation in the distributional sense in 2+ and in the

+ except along x+x 2 In particularclassical sense in 12 ,
-AH=0, (x, t)+0{(x, t)" x21+x2<t}.
Ot2

H also satisfies the initial conditions

OH
/4(x, 0) (x, 0) 0,

(vi) H satisfies the boundary conditions (CL1) and (CL2).
(vii) H satisfies (CCv.)’ with g 0 for > O.
Proof. See Theorem 3.3, Corollary 3.1, and Lemmas 3.2 and 3.3 of [1] for the

details. The idea is the same as that for the smooth solution given in Theorem 3.2,
the difference being that here we have introduced a singularity via the elementary
solution G.

We point out that while H satisfies (CCv.)’ with g- 0 for > 0, it does not satisfy
(CCv.). In fact we establish the following important result.

LEMMA 3.3. The first derivatives ofH in time and in space at the corner x x2 0,
for > 0, are constant in time and positive, i.e.,

0H(0, t) c>O fort>O,
ot

(0, t) OH=0x2(0, t)=c2>0 fort>O.
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Thus for 3/> O, we have along the axis (0, O, t), > O,

d( OH+OH a) 1+ =--a(0),
dt T at axl av

where the amplitude av is defined by

1
Tel A-22 > 0.

Proof. We consider first the time derivative. From (3.29), (3.30) we calculate

H=--=I 1 Ob ob

Ox Ox 2
"t- x x’F’b" -4 "t- x x"

(3.32)

( ----+F’(b) ...).1
F"(b)

OXl Ox2 aXl ox2/
+ (t X X2)

Ob Ob O2b
12

Now for xl x2=0 and t>0, b 1 while Ob/Oxa =Ob/Ox2 t/2 and Ob/OXl OXz=6/t2.
Thus

4F,,(H(O, t)=-(2F(1)-2F’(1)+- 1)), t>0,

and we conclude that OH/Ot (0, t) is constant, > 0. More precisely, we have

r5/ 23 57r
F"(1) =-,F(1)-F’(1)

(1 +or)
do’-

6 4

from which we deduce that

oH 57r
0--7 (0, t) 2-’-8-> O.

As H is symmetric in the variables xl, x, we clearly have OH/Oxl =OH/Ox2 at
x 0. We can obtain an expression for OH/Ox from (3.29) by straightforward calcula-
tion that permits us to determine that OH/Ox is constant in time at x x =0, > 0,
but that is not very amenable to determining that the constant is positive. Thus it is
simpler to proceed in an indirect fashion.

As H satisfies the wave equation in , t>0, in the distributional sense, on
integrating over and differentiating in time we obtain

d3 fa d frOHdy=O t>0.
dt

H dXl dx2-- 0--7
Integrating conditions (CL1) over F and (CL2) over F2 and adding, we have

[2d2fr atdfraHd3’=l[OffO-7 OH]Hdy+-z, (0, O, t)+(O, O, t)
Ox2

We then combine these two equations to arrive at

t- Hdx, dx+- Hd,=- (0, O, t)+(O, O, t)
Ox2

The relation between H and , H =O/Ox Ox, gives us

d(0,0, t)+ (0,0, t)+(0,0, t) (0,0, t)+(0,0, t)
Ot Ot2 Ox2 Ox2
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We calculate from (3.28), (3.29)

d(O, O, t) 1-- t3F(1),
12

0---G-G (0, 0, t) 0---G-G (0, 0, t) -F(1) + F’(1)
0X 0X2 -"

Thus we have

OH
OX

(o, o, t) a.___ (o, o, t)
ON2

21F(1)+ F’(1)

1 J" (o’+I)o-3/2= o (1+0")2
do"

It is now natural to define

(3.33)
and it follows that

>0. 13
2

+ =a(o)
dt

)’
Ot OX OX2 /

along the half-line (0, 0, t), > 0. Thus Hv is a solution to/5 with g 8(t). We next put

(3.34) vr H, gr,

where gr is given by (3.27), and finally define

(3.35) u v + u*.

THEOREM 3.5. The function ur given by (3.35) is the unique weak solution of P.
u* is the regular part of the solution and vr is the singular corner wave, whose properties
are:

(i) vr is offinite energy for any > 0;
(ii) vr is of class C in x /;
(iii) vr has singular second-order spatial derivatives along (a) the line x O, and

(b) the cone Ixl- t.

Proof See 1 for the proof.
We conclude this section with three important remarks.
Remark 3.1. For each positive % ur is proportional to u* along the axis xl x2 0.

Thus ur is C in time along this axis.
Remark 3.2. For each positive % ur is a solution of (1.1), (1.5), and (1.7) in the

class of finite energy functions. We thus have a counterexample to the uniqueness of
the solution of the problem without a corner condition.

Remark 3.3. It is interesting to note that for each positive % the corner wave v
is proportional to H oztl*/Ot2"

T-T* 02U*
vr:H*

Tel + 2c2 Ot
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and that the constant of proportionality remains bounded between -(y*/2c2) and 1/C
as y ranges between 0 and +c, the constant being negative for y < y*, positive for
y > y*, and vanishing for y-- y*. In fact we see that v is well defined even for y_-< 0
except for 3’ -2(c2/cl).

4. Numerical results.
4.1. Numerical scheme. Here we exhibit the results of numerical experiments

confirming the conclusions obtained in the previous section. These results were obtained
using a variational scheme, which we apply not to the wave equation (1.1) itself but
to its time derivative so we can use the boundary equations after the standard integration
by parts in the variational formulation. The discretization in time is obtained using an
explicit scheme incorporating the four time levels n-2, n-1, n, and n+ 1, as a
third-order time derivative appears in the time-differentiated wave equation. We remark
that it is not the numerical scheme per se that interests us here, and that another
scheme--the finite difference scheme proposed by Engquist and Majda in [5], for
examplemcould just as well have been used.

We let 1) denote the unit square (0, 1) (0, 1) with boundary F written as the
disjoint union of F1 the upper edge, F2 the right-hand edge, C the upper right-hand
corner, and FR the left and lower edges with the three remaining corners (see Fig. 1).

X2

I’ll

FI C

I’ll
FIG. 1. Domain 1) and boundary F F U I" (.J C (.J I" R.

The problem we will solve numerically is the following"

03bl oAbl of
in,(4.1)

Ot Ot -Ot
with boundary condition

(4.2), +-- -0
Ot2 Ot Ox2 2 0x2 inF1,

I"
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(4.2)2

(4.3)

(4.4)

02U 02U 1 02u
Ot2 OtOx 2Ox-O inF._,

Ou 3u Ou
--++=0 atC,Y
Ot OXl Ox2

u=0 onFa,

and initial conditions

(4.5)
u Uo at --0,

OU
U at O,

ot

where f L2(’) is of compact support.
The solution u will be sought in the space W of functions in H1(12) having trace

in H(F), where by H(F) we will denote the Hilbert space of functions in L2(F) whose
restrictions to F1 and to F2 are H functions determining the same value at the corner
C and whose restriction to FR is identically zero (see 3.1):

W-- {v E HI(-)" trace (u) Ho(F)},
H(F) {4 e L2(F) 4, 4lr e H’(F,); (/)2-- (IF2 ( H’(F2);

4,(C) 4)2(C); and 41r, -= 0}.

Thus, to obtain a variational form of (4.1), we multiply by a test function v e W and
integrate over

v v for allvW,
Ot Ot

where (,) denotes the inner product in L2(f).
Integrating by parts, we have

v =(fv) for allvV,(4.6)
Ot

(u, v) +’ (V u, V v)
Ot Or’ r

where (,)r denotes the inner product in L2(F) and v is the outward pointing unit
normal vector on F. The boundary conditions (4.2) and (4.4) imply

/ 02U ) 02 1 /02U ) 1/02u )(4.7) -\Ot 0V’
/3

r =(U,0t2 /))F-- \2X12, U
I’, -- \X22’/) r2’

where (,)r and (,)r2 have the obvious meanings, and integration by parts yields

(4.8)

Plugging (4.8) into (4.6) and applying the corner condition (4.3), we arrive at the
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variational problem on which our numerical scheme is based" Find u W such that

at’-" (U, D)
Ot

(VU, VD)+(U,ot2 D)I’+ OXl--" F, + OX2 F
(4.9)

1 0 0
+yu(1,1)v(1,1)=(v) VvW.

To discretize we use a uniform mesh of triangles obtained by cutting diagonally,
from the upper left to the lower right, each of the squares of a uniform mesh of squares.

The approximation uh of u will be sought in the space Wh of functions in W
whose restriction to each triangle of the mesh is linear. Thus the degrees of freedom
are the values at the vertices. Mass lumping is used for the integrals not involving
spatial derivatives. Other integrals are computed exactly.

The time discretization is an explicit four-level scheme involving times m, m + 1,
m- 1, and m- 2 and is centered at time m-. For more details see 1].

4.2. Description of experiments. In these experiments we are concerned with the
reflection by the corner. We study the corner condition (4.3) for several choices of the
constant y, y 1.5, y=0.1, and y 3.0.

To generate strong reflections at the corner, the source was placed near the upper
right-hand corner C (1, 1) of the domain O [0, 1] x[0, 1] with center at (.89, .89)
and radius .04 (see Fig. 2). The source was introduced as a right-hand side,f(x, x2, t)
g(xi,x2)h(t):

10,000 x (1 r/.04) if r < .04,
g(x, x2)

0 otherwise,

X2

1.0

0.9

0.8

0.8 0.9

FIG. 2. Source and location of seismograms.

P3

P2

F

x
1.0
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where r is the distance of the point (xl, X2) from the center of the source (.89, .89),

e-(1-t/.05) 2 ift<.l,
h( t)

0 otherwise.

The calculations were done with meshsize Axl Ax2 .01 and timestep At .005.
The results of the experiments are presented first in the form of "snapshots"

representing the displacement u as a function of (x, x2) at the times .3 and .5,
and then as seismograms representing the displacement u as a function of time
t, 0-< <- 1, at the points P1 (.79, .79) P2 (.99, .79), and P3 (.99, .99) (see Fig. 2).

The solutions obtained with the various choices of y are compared with the
so-called "exact" solution, obtained by doing the calculations on the larger rectangle
[0, 2] x [0, 2] so that the wave has not reached any edge and thus there is no reflection
by the observation times .3 and =.5, and so that the reflection has not reached
any of the observation points P1, P2, or P3 by the end time of the experiment, 1.
We have also presented as seismograms results obtained by using the first-order
absorbing boundary condition for the boundaries F and F2. To obtain these results,
(4.2) 1,2 are replaced by

so that (4.7) becomes

and (4.9) is replaced by

03 0
(u,v)+ (v

O -
Ol Ot OX2

O2U O2U
Ot2 Of OXl

--=0 onF1,

=0 onF2,

v =<u,v),
\Ot 09’ r Ot2

0 2 O
u, Vv)+<u, v>= (f, v)

O 2 -- for all v e W.

4.3. Experimental results. In Figs. 3-10 we see snapshots representing the displace-
ment u as a function of (Xl, x2) at times .3 and .5. Figures 3 and 4 give the exact
solution. In Figs. 5-10, to see the reflected wave better, we have pictured the difference
between the solution obtained with the second-order absorbing boundary condition
for the sides Xl and x2 1 and the corner condition for the various choices of y,
and the exact solution.

In Figs. 5, 7, and 9, for .3 we see at a distance of about from the corner C
near both boundaries Xl 1 and x2 1, a reflection that is due to the second-order
absorbing boundary condition. The amplitude of this reflection is .14, or 16% of the
amplitude .81 of the initial wave at time .3. In Figs. 7 and 9 there appears much
nearer the corner a reflection due to the corner that is the y-wave. In Fig. 7, for y 0.1,
y too small, the y-wave is positive of amplitude .25, or 31 percent of the amplitude
of the initial wave, whereas in Fig. 9, for y 3.0, y too large, the y-wave is negative
of amplitude .15, or 19 percent of the amplitude of the original wave.

In Figs. 6, 8, and 10, for 5 we see the reflection due to the second-order
boundary condition now at a distance about 1/2 from the corner. The amplitude of the
reflection is now .23, or 38 percent of the amplitude .61 of the initial wave at time

.5. (This increase in the amplitude of the reflection is expected, since at time .5
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FIG. 3. Exact solution. Time .3" minimum 0.00; maximum 0.81.

FIG. 4. Exact solution. Time .5" minimum 0.00; maximum 0.61.
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FIG. 5. Difference between solution calculated with 3/-- 1.5 and exact solution. Time .3" minimum
-0.06" maximum 0.08.

FIG. 6. Difference between solution calculated with 3’ 1.5 and exact solution. Time .5; minimum
-0.13" maximum 0.10.
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FIG. 7. Difference between solution calculated with y 0.1 and exact solution. Time .3; minimum
-0.05’ maximum 0.24.

FIG. 8. Difference between solution calculated with y O. and exact solution. Time .5" minimum 0.13"
maximum O. 10.
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FIG. 9. Difference between solution calculated with y 3.0 and exact solution. Time t--.3; minimum
-0.18" maximum 0.08.

FIG. 10. Difference between solution calculated with y 3.0 and exact solution. Time .5" minimum
-0.15" maximum 0.10.
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the incident wave is striking the boundary at an angle from the normal much larger
than at time .3.) In Fig. 8 the y-wave for small y is no.w of amplitude .15, or 25
percent of the amplitude of the incident wave. In Fig. 10 the y-wave for large y is of
amplitude .10, or 16 percent of the amplitude of the incident wave.

Thus at the earlier time we see that the reflection due to the corner, when y is
improperly chosen, is as large as or larger than that due to the second-order condition
itself. At the later time, however, it has diminished, whereas the reflection due to the
second-order condition has increased. It is important to keep in mind, though, that
the large amplitude reflection due to the second-order boundary condition is caused
by waves striking the boundary at large angles from the normal. Thus the large reflection
propagates at angles close to the tangential and does not travel very rapidly into the
interior of the domain, while the reflection due to the corner travels directly toward
the center of the domain.

We remark that in Figs. 5 and 6, where the "good" y, y-- 1.5, has been used, there
seems also to be a slight reflection from the corner, though it is much smaller than the
y-waves appearing in Figs. 7-10. This is, however, only the effect of the second-order
absorbing boundary condition.

The last six figures, Figs. 11-161, are the seismograms giving the response at three
points at equal distances from the source, P1 (.79, .79) in the interior, P2 (.99, .79)

3.0

2.0

/\
u(Pi, t)

FIG. 11. Response at P- (.79, .79). Exact solution; second-order ABC (7 1.5); first-order ABC.

near the boundary, and P3 (.99, .99) near the corner. For the odd-numbered figures
the solid line represents the exact solution, the dotted line the solution obtained with
the second-order condition with y 1.5, and the dashed line the solution obtained
with the first-order condition. At all of the points, even at P1 which is farthest from
the boundary, the better behavior of the second-order condition is quite pronounced.

For the even-numbered figures the three curves all represent solutions obtained
with the second-order condition but with different choices of the constant y. For the
solution represented by the solid line we have y 1.5, by the dotted line y 0.1, and

In Figs. 11-16, "absorbing boundary condition" is abbreviated "ABC."
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u(P, t)
3.0

2.0

1.0

-1.0 w’ ’-0.0 0.2 0.4 0.6 0.8 1.0

FIG. 12. Response at P1 (.79, .79). Second-order ABC 3/= 1.5; second-order ABC 3/=0.1; second-order
ABC 3/= 3.0.

3.0

2.0

/\
u(P, t)

-1.0
time

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 13. Response at P2 (.99, .79). Exact solution; second-order ABC (3/= 1.5); first-order ABC.

3.0

2.0

/\

u( t"

-1.0 -! ,time-,
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 14. Response at P2 (.99, .79). Second-order ABC 3/= 1.5" second-order ABC 3/= 0.1" second-order
ABC 3/= 3.0.
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3.0

2.0

u( t’

FIG. 15. Response at P3 (.99, .99). Exact solution; second-order ABC (7 1.5); first-order ABC.

/\
u(P3, t)

3.0-

2.0

1.0

time
-1.0 , , ,,, ,.. ,- , ....

0.0 0.2 0.4 0.6 0.8 1.0
FIG. 16. Response at P3 (.99, .99). Second-order ABC T= 1.5; second-order ABC =0.1; second-order

ABC y 3.0.

by the dashed line 3’ 3.0. Again at each point it is quite clear, especially on comparison
with the exact solution in the corresponding odd-numbered figure, that the better
solution is obtained with y 1.5. We do remark that by the final time of the observation
all of the solutions with the second-order condition have nearly converged to the exact
solution, while the solution with the first-order condition remains at some distance.

As a final remark, we point out that we have not presented results with the value

3’ x/ as proposed by Engquist and Majda [5], since with the scale we used we could
hardly see the difference between results obtained with y x/ and those obtained with

3’ 1.5. In fact, for the two-dimensional case with the second-order absorbing boundary
condition, the solution we have presented differs little from that proposed in [5],
though it was obtained from a very different point of view. We have seen that the
second-order condition is much better than the first-order condition even in the presence
of a corner, and that the condition chosen for the corner is significant. Also we have



352 A. BAMBERGER, P. JOLY, AND J. E. ROBERTS

shown theoretically that our approach to the corner problem yields a solution to the
problem in three dimensions and can be used to obtain a solution for the corner
problem when higher-order boundary conditions are used.
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