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ABSORBING BOUNDARY CONDITIONS FOR RAYLEIGH WAVES*

ALAIN BAMBERGERT}, BRUNO CHALINDARS§, PATRICK JOLYT,
JEAN ELIZABETH ROBERTSt, AND JEAN LUC TERONY

Abstract. The first-order absorbing boundary conditions for elastic waves are transparent for P and S
waves at normal incidence, but give rise to parasitic reflections of Rayleigh waves. To treat these phenomena,
a solution of geometric type is proposed that eliminates these parasitic waves but causes others to appear,
which, while less important, are still troublesome. A second solution is proposed by constructing a new
condition of second-order type, transparent for P and S waves at normal incidence as well as for Rayleigh
waves. This condition is analyzed mathematically and its good behavior is demonstrated with regard to
reflection phenomena.
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Résumé. Les conditions absorbantes du premier ordre pour les ondes €lastiques sont transparentes pour
les ondes P et S a incidence normale mais font apparaitre des réflexions d’ondes de Rayleigh parasites.
Pour éliminer ces phénomeénes, nous proposons une premiére solution de type géométrique, qui permet de
réduire ’'amplitude des ondes parasites mais en fait naitre de nouveaux, de moindre importance (quoique
toujours génants). Nous proposons une seconde solution en construisant une nouvelle condition, type second
ordre, transparente pour les ondes P et S a incidence normale et pour les ondes de Rayleigh. Nous analysons
mathématiquement cette condition et mettons en évidence ses bonnes propriétés vis a vis des phénomenes
de réflexion.

Mot clés. conditions aux bords absorbantes, ondes élastiques, ondes de Rayleigh

Introduction. We are interested here in the problem of constructing absorbing
boundary conditions for linear elastodynamic equations in the two-dimensional half
space with free boundary condition. The objective is to reduce the domain of calculation
to a bounded open set ) using artificial absorbing boundary conditions (ABCs) on
the artificial boundary I',. Such absorbing conditions must be constructed so as to
minimize the parasitic reflections that will occur. Solutions to the problem exist for
equations in the whole space for the wave equation [2], [4], [6], for the Navier-Stokes
equations [9], and for linear elastodynamic equations [4]-[8]. In fact, it is well known
that classical first-order boundary conditions for elastodynamic equations in the whole
space have good transparency properties with respect to pressure and shear waves.
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ABSORBING BOUNDARY CONDITIONS FOR RAYLEIGH WAVES 1017

In the half space, on the contrary, the Rayleigh waves, which propagate along
the free boundary T', are reflected by the artificial boundary when they reach the
intersection points with the free boundary (i.e., points C, and C, on the above figure).
This is a parasitic phenomenon whose amplitude, while not exceedingly strong, is of
sufficient importance to be troublesome for applications in geophysics. To our knowl-
edge no author has yet directly attacked this problem; however, we point out that in
[5], the reflection of Rayleigh waves is studied but only for ABCs designed for the
elastodynamic equations in the whole space. In this article, we analyze this phenomenon
of the reflection of Rayleigh waves and propose different solutions to the problem.

1. Reflection of Rayleigh waves by the first-order condition.
1.1. The first-order absorbing boundary condition and its properties. Let us recall
the linear elastodynamic equations in a nonviscous isotropic two-dimensional medium,

2
u d ou; oJu u 0 Jdu; Ju
220 ) )
arr ax, 0%, 9%, ax,)  ox, 3%, 9x,
2
u J du, du 9 Ju, dJu u
222 22 i)
at 9x; 90X, 090X, 90X, 0X; 0%, 0X,
Here, u,(x,, x,, t) and u,(x,, x,, t) denote the horizontal and vertical components
of the displacement vector U(x,, x,, t) of a particle whose coordinates are x; and x,.
The density of the material is denoted by p(x,, X,), and A(x;, x,) and u(x;, x,) are
its Lamé coefficients.
When the medium is homogeneous (p, A, and u are constant), any physical solution

in the whole space R> can be decomposed as the superposition of harmonic plane
waves, i.e., solutions in the form

U(xy, X3, t) = Up exp i(wt — kyx, — k,X5),

where Up is the displacement vector, o is the pulsation, and k = (k,, k) is the wave
vector.
It is well known that there exist two kinds of such plane waves:
(1) The P waves characterized by the two following properties:
(a) The displacement vector Up, is parallel to the wave vector k,
(b) The wave propagates with the velocity

A+2
VP:‘”:( ad

1/2
(M) -

(2) The S waves characterized by the following two properties:
(a) The displacement vector Up, is orthogonal to the wave vector k;
(b) The wave propagates with the velocity

1/2
o (u
v=—=(—) .
* 1kl \p

Now let I" be an artificial boundary of a domain Q of calculation and n be the exterior
unit normal vector to I’

We recall that a classical first-order absorbing boundary condition for the elasto-
dynamic equations is given by [5]

0
(1.1) a-n+Ma—:'=o,
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where a(x;, x,, t) denotes the stress tensor:

ou; Ju u
o =A (_1+'_2> +2,U'_1,

0xX; 09X, 9Xx;
ou, oJu u
Bxl 8X2 GX2
<au1+au2>
T1p=Ory = -+,
12 21 M 0%, ox,

and where M = M(x,, x,) is the matrix

n, n, pVp 0 ) (n1 n, )
2 M= . . .
(1-2) ("2 _"1) ( 0 pVs n, —m

Note that the matrix M is symmetric and positive definite; thus, the boundary condition
expresses the fact that at the boundary, the normal stress on I' is directly proportional
to the velocity.

By construction, the condition (1.1), (1.2) is the unique condition of type (1.1),
with M symmetric and positive definite, which is transparent for all plane harmonic
P and S waves arriving at I' with normal incidence (this means that plane waves P
and S automatically satisfy (1.1) as soon as the wave vector k is parallel to n). Note
also that for each displacement field u satisfying the equations of elastodynamics in
Q and a condition of type (1.1) on I', with M symmetric and positive definite, we have
the energy identity:
1d
2 dt
where E(Q, t), which is given by

1 . au; au\?
dx+— I Aldiv uf? dx+f m (— —’) dx,
2J)a Q 0x; 0x;
denotes the total energy of the field u contained at instant ¢ in the domain Q. Let us
recall that, thanks to Korn’s inequality, we have
0

E(Q, t)ééj p 8’: dx+C(Q)(j}::l(IQ|Vuj|2dx>—IQ|u|2dx).

o
The equality (1.3) implies, in particular, that the total energy is a nonincreasing function
of time, i.e., any boundary condition of type (1.1) is an absorbing condition and thus
leads to a well-posed mathematical problem.

We summarize these well-known properties in the following theorem.

THEOREM 1.1. Formula (1.1), where M is a symmetric, positive definite matrix,
defines a family of absorbing boundary conditions for the equations of elastodynamics in
two dimensions. If M is given by (1.2), the resulting boundary condition is the unique
condition of this family, which is transparent for all plane harmonic P and S waves striking
the boundary I' at normal incidence.

We remark that the first-order condition ((1.1), (1.2)) depends on the geometry
of the domain ) since M depends on the unit exterior normal n.

In particular this condition becomes:

(1) In the case of a vertical boundary (x;=0)
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(2) In the case of a horizontal boundary (x, =0)

ou
[0'12] +p(Vs 0 ) at =0.
(g} 0 Vp/|ou,

ot

Classically, the first-order condition ((1.1), (1.2)) is analyzed in terms of reflection of
a plane harmonic P or S wave, with amplitude 1, striking the absorbing boundary I"
with an incidence 6, 0= 6 = 77/2. We can show the following for a given 6:

(1) An incident P wave gives rise to a reflected P wave with amplitude Rpp(6, v)
and to a reflected S wave of amplitude Rpg(6, v).

(2) An incident S wave gives rise to a reflected S wave with amplitude Rgg(6, v)
and to a reflected P wave of amplitude Rgp(6, v).

The coefficients Rpp(6, v) Rps(6, v) (respectively, Rgs(6, v), Rsp(0, v)) are by
definition the reflection coefficients of a P wave (respectively, of an S wave) for the
absorbing boundary I'. They depend on only the angle of incidence 6 and the Poisson
coeflicient v.

In particular we can show that for small angles of incidence 6,

Rpp(6,1)=0(6),  Res(6,v)=0(6),
Rss(6, v) = 0(02), Rsp(0, v)=0(0),
which show that the first-order condition is “quasi-transparent” for small values of 6,

the results in each case being better for the phenomena of pure reflection (P> P, S > S)
than for the phenomena of conversion (P - S, S P).

1.2. The reflection of Rayleigh waves. Now we consider the numerical simulation
of the propagation of elastic waves in a homogeneous half space, x, =0, with the free
surface boundary condition on the boundary I';(x, =0),

(1.4) [012] =0 onT,.
02

It is well known that in such a medium, besides the so-called “volume waves,”
i.e., P and S waves, there also propagate surface waves guided by the free boundary
I',. These are the Rayleigh waves, which are the solutions of the form

(1'5) uR(XI’XZ: t): UR(xl:t VRt, x2),

where C = Vy is the unique solution in the interval [0, V5] of the classical Rayleigh
equation

C2 1/2( C2> 1/2 ( C2>2
: -= =) =l2-=]).
(16 (1-57) (-5 Vi

For the present, we shall limit our domain of calculation to the quarter plane
Q={(x,, x,) eR* x, =0, x,= 0},

and take for boundary condition on the artificial boundary I',(x; =0) the first-order
absorbing boundary condition

ou

(o271 Ve O at
1.7 + =0 r,.
(1.7) [0'21] p[o Vs] U, on

at
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o-n=0

elastodynamic
equations in )

0""+Mi'1=0
at

r,

We can easily verify that a Rayleigh wave propagating along the free boundary
I', in the positive x; direction, i.e., a wave incident upon the artificial boundary I',,

(1'8) u(xl s X2, t) = UR(xl - VRt’ xz),

does not satisfy condition (1.7). In other words, the first-order condition is not
transparent for Rayleigh waves.

Thus, the question that naturally arises is the following: What happens when a
Rayleigh wave reaches the absorbing boundary I'; ? The mathematical analysis of the
phenomenon is extremely difficult. Only a numerical simulation permits us to have,
in a simple manner, an idea of what happens—at least qualitatively.

1.3. Numerical results with the first-order absorbing boundary conditions. The
results we shall present now were obtained by limiting the domain of calculation to a
rectangle ). One of the sides of the rectangle coincides with the free boundary I';.
The other three sides are absorbing; we have taken the first-order condition on these
sides. The rectangle has width 168 meters and depth 96 meters.

X5
A free boundary
e
Q Vp =1500 m/s
absorbing boundary Vs =750m/s

The elastic waves are excited by the explosion, at time ¢ =0, of a seismic source
centered at point S on the free surface. The following results were obtained by a
numerical simulation in which Q1 finite elements associated with a uniform grid were
used for the spatial discretization, and an explicit scheme was employed for the time
discretization. The meshsize was taken to be Ax =1 m and the timestep At =0.5 ms.

Figures 1.1-1.5 represent ““snapshots” of the elastic medium () at different instants.
Each figure presents, at a given time, an image of the deformed medium, in that each
point of the grid has been displaced by its (amplified) displacement vector u. Thus
the compressed regions are darker and the dilated regions lighter.
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Fi1G. 1.5. Deformed grid. Date: 200 milliseconds. AF =3. One trace every 2 meters.

The source was placed at the surface in order to generate surface waves with a
large amplitude. We consider a source of compressional waves. The source is modeled
by a right-hand side of the form

X—Ss

S ) =g(x—s|)h(2)

lx—sl”

where g(r) is of the following form:

g(r)

> r

Ar
and h(t) is a first-order Ricker, i.e., the first derivative of a Gaussian, with frequency
centered at 80 hz.

The P wave front we see only in Fig. 1.1. The second circular front is due to the
conversion at the free surface of the P wave to an S wave. This shear wave is joined
to the P wave front by the head wave and to the Rayleigh wave, which corresponds
to the large perturbation that disturbs the free surface as it propagates along it.

In Figs. 1.1 and 1.2, the Rayleigh wave has not yet reached the absorbing bound-
ary. On the other hand, we can see that the P and S waves cross the artificial boundary
without being noticeably reflected. The Rayleigh wave reaches the vertical boundary
in Fig. 1.3, and in Figs. 1.4 and 1.5 we see that it has suffered a parasitic reflection.
We can observe, propagating along the surface, two fronts converging toward the
source, one with velocity Vp and the other with velocity Vz. While these parasitic
waves might appear to be negligible, in fact they are not at all: The waves are of the
same order of magnitude as the quantities actually measured in the seismic reflection
experiments, which are themselves due to the reflection of the emitted wave by the
heterogeneities of the substratum.

A finer analysis of these phenomena can be carried out by the examination of the
synthetic seismograms, which, placed one next to the other, are the diagrams depicting
the curves that give the variations of the two components, vertical and horizontal, of
the displacements of the points of the free surface as functions of time. As the amplitude
of volume waves decreases with time, we have amplified the results linearly in time in
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order to better observe these waves at later times; see Figs. 1.6 and 1.7. (The amplitude
of the Rayleigh waves, which do not decay in time, of course, appears to increase.)

We can clearly distinguish two lines D, and Dg with respective slopes 1/V, and
1/ Vg, which correspond to the propagation of the P wave and the Rayleigh wave.
Equally well we see lines, Dgp and Dgg, issuing from the point of intersection of the
line Dy with the curve corresponding to the right extremity of the model. These lines
have slopes —1/V, and —1/ Vg, respectively.

The line Dgr with slope —1/ Vi corresponds to the Rayleigh wave reflected by
the absorbing boundary. When it arrives at the vertical boundary, the incident Rayleigh
wave also gives rise to a compression wave that seems to be emitted by the corner
point where the free and artificial boundaries intersect. It is this wave that explains
the presence of the line Dgp with slope —1/ Vp. This is a phenomenon of conversion
from a surface wave to a volume wave. These two lines correspond, of course, to the
parasitic fronts observed in Fig. 1.4.

o4 .2 100 108 116 124 %2 140 148 156 164 169

FIG. 1.7. Vertical displacement. Gradient of amplification =1x107*.
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There appears yet another line Dpg, a second line of slope —1/ Vg, that intersects
the rightmost seismogram, the one corresponding to the registration at the upper
right-hand corner of the model, at the same point as does the line D, representing
the incident P wave: this P wave, arriving at the vertical boundary, generates a parasitic
Rayleigh wave. Anyway, this wave has a very small amplitude, even when compared
with that of the reflected Rayleigh wave represented by the line Dgg, and is visible in
Figs. 1.6 and 1.7 only for large values of 1, i.e., when the amplification factor is maximum.
This is a phenomenon of conversion of a volume wave to a surface wave. This is not
in contradiction with the fact that the first-order absorbing condition is transparent
for normally incident P waves, as here we have, in fact, the presence of a corner joining
a free boundary with an absorbing boundary, a condition that we do not know how
to analyze mathematically.

2. A first solution of geometric type: ears.

2.1. Description of the geometric solution. In the previous section we have seen
that though the first-order absorbing boundary condition is transparent for normally
incident P and S waves, when this boundary condition is used for an artificial boundary
in the problem of a half space with free boundary, we still have the problem of reflected
and converted surface waves. There are two evident ways to approach this problem.
The first, and more rudimentary, is to try to modify the geometry of the domain of
calculation to avoid having the corner connecting the free boundary with the absorbing
boundary. The second is to modify the boundary condition itself. It is the first of these
that we shall consider in this paragraph.

Since the amplitude of Rayleigh waves decreases exponentially with the distance
from the free boundary, a very simple solution to the problem of the reflection of such
waves at an artificial boundary is to enlarge the domain of calculation in a small region
around the free boundary. In this way the length of time necessary for a Rayleigh
wave to reach the artificial boundary and to be reflected back into the domain of
interest can be made larger than the length of time of observation so that no reflection
of a Rayleigh wave is detected.

Thus, if we consider the example of the previous paragraph, the idea is to modify
our rectangular domain of calculation by adding to it two long thin rectangles (ears)
in such a way as to extend the length of the free boundary on both sides of the original
domain. More precisely, if we assume that our free boundary coincides with the axis
x, =0 and that our original domain was the rectangle Q, = [0, 21]x[0, —d] with source
S at (1,0), then our enlarged domain would be

Qz'_—QlU EIUEr,
where we have set (with b<d)
E, =[—a, 0]x[0, —b], E,=[2[,21+a]x][0, —b].

free boundary

58
absorbing
boundary

N

2l+a

> X,

|

N
—— =
3

—_—
~

%

f
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The constant a should be chosen large enough so that the time, (I+a)/ Vg +a/ Vp,
needed for a Rayleigh wave to travel the distance /+ a and for the converted P wave
to return the distance a to the domain of observation exceeds T, where T represents
the final time of the observation. The depth b should be just of sufficient size for the
amplitude of a Rayleigh wave to be negligible at that distance from the free boundary,
but not so large as to greatly increase the time of calculation.

2.2. Numerical results for the geometric solution. The following figures represent
the results of the same experiment as do those presented in paragraph 1.3, except that
the domain of calculation here is ), instead of (),. As before, (, is a rectangle of
width 168 meters and depth 96 meters, and the source is centered at depth 0. At the
midpoint of the upper edge of (};, the depth of the ears is 49 meters. To reduce the
number of our calculations, we have taken () to be only roughly twice the depth of
the ears, whereas in practice the depth of (); would be much greater.

-199 0 168 367
S
f=80hz
—49
-96
Vp =1500m/s
Ve=750m/s

Figures 2.1-2.4 are the snapshots corresponding to those of Figs. 1.1-1.4. Figures
2.1 and 1.1 are, of course, identical, as the disturbance has not yet reached the artificial

shons »
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it ytiey ettt
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FIG. 2.2. Deformed grid. Date: 80 milliseconds. AF =3. One trace every 2 meters.
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boundary. However, the fact that Figs. 2.2 and 1.2, as well as Figs. 2.3 and 1.3, appear
indistinguishable indicates that the P and the S wave fronts have passed the interior
corners, located at (0, b) and (2, b) without any noticeable diffraction. In Fig. 2.3 the
Rayleigh wave reaches the bounds of the observed domain and in Fig. 2.4 we see that
it has passed into the ears without giving rise to the parasitic P wave or Rayleigh wave
observed in Fig. 1.4.

In Figs. 2.5-2.7 we restrict our attention to roughly the right quarter of the observed
domain as well as to the right ear itself. The times of observation are the same as those
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F1G. 2.5. Deformed grid. Date: 80 milliseconds. AF = 3. One trace every 2 meters.
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in Figs. 1.2, 1.3, and 1.4, respectively, as well as in Figs. 2.2, 2.3, and 2.4. In Figs. 2.5,
2.6, and 2.7, we see the Rayleigh wave and S wave as they propagate toward the
artificial boundary, reach the right ear, and move into the ear with apparently no
problem. However, to more closely observe what happens at the interior corner, we
look again at Fig. 2.8 at the deformation seen in Fig. 2.7, but this time with an
amplification factor 10 times larger. In Fig. 2.8 a diffraction due to the corner is definitely
visible, though it is not immediately evident if this is due to the S wave, the Rayleigh
wave, or even the connecting wave between the two.

The seismograms corresponding to those presented in Figs. 1.6 and 1.7 are given
in Figs. 2.9 and 2.10. As in Figs. 1.6 and 1.7, we can clearly distinguish the two lines
D, and Dg, having slopes 1/ V, and 1/ Vi, respectively, resulting from the disturbance
caused by the P wave and Rayleigh wave arising at the source. However, the lines
Dy and Dgp, which correspond to the reflected and converted Rayleigh wave as well
as the line Dpg, which corresponds to the conversion of the incident P wave to a
parasitic Rayleigh wave, have disappeared. Thus, even for the large amplication factors
toward the final time, there is no trace of these parasitic waves since the boundary
giving rise to them has been pushed farther from the source.
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FIG. 2.9. Horizontal displacement. Gradient of amplification =1x 107*.
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FIG. 2.10. Vertical displacement. Gradient of amplification =1x 10™*,
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However, in Fig. 2.9, representing horizontal displacement, and to a lesser extent
in Fig. 2.10, representing vertical displacement, there is a definite disturbance indicated
in the lower right-hand corner. This perturbation corresponds to the phenomenon
already detected in Fig. 2.8, which is due to the diffraction at the interior corner.

To further examine the phenomenon of diffraction at the interior corner, we have
repeated the previous experiment, increasing the depth of the original rectangle to
192 meters and that of the ears to 99 meters, and also increasing the final time of the
observation from 200 milliseconds to 400 milliseconds.

-199 168 367

6
T
|
i
|
1
1
1
1
1
]

———— o

-192

Figures 2.11 and 2.12 are snapshots at 200 milliseconds and 220 milliseconds,
respectively. In both we still observe the diffraction phenomenon. Figure 2.13 represents
the corresponding seismogram, depicting horizontal displacement. At around 275 mil-
liseconds, there appears the same sort of disturbance as seen in Fig. 2.8, only here at
a later time, because the corner is farther from the source. We remark that an analysis
of the velocity indicates that the nature of the diffracted disturbance is probably an S
wave; and again we emphasize that the amplification factor in the seismograms at later
times is quite large.

2.3. Conclusion. The ears solution is effective in eliminating the reflection and
conversion of the Rayleigh wave at the artificial absorbing boundary. It also eliminates
the parasitic Rayleigh wave generated when the incident P wave reaches the corner
joining the free boundary with the artificial boundary. However, the interior corners
introduced by the addition of the ears do give rise to a diffraction that, though smaller
in amplitude than the parasitic Rayleigh waves, is still of an order that can be detected

F1G. 2.11. Deformed grid. Date: 200 milliseconds. AF =20. One trace every 4 meters.
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in the snapshots and seismograms. We can hope to improve these results by modifying
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FIG. 2.13. Horizontal displacement. Gradient of amplification =1x 107,

the absorbing condition in a neighborhood of the corner.

of the complexity of the model.

first-order condition

3. A condition transparent for P, S, and R waves.
3.1. Derivation and analysis of a new condition. We restrict our attention to the
case of a half plane () with boundary, the line I having unit normal vector n. The

J
L(u)=o0- n+M3-;l=0,

Dp

Dy

Finally, we should note that though the addition of the ears should not significantly
increase the time of calculation, it does complicate the programming. Still this complica-
tion is not extraordinary, as the ears may be programmed once and for all, independent
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with M the symmetric positive definite matrix

R G ey
n, —m 0 PVS n, —m ’
is transparent for all P and S waves with normal incidence. Let us now consider the
differential operator
d
—+Cn- grad,
at
where C designates a positive velocity. Clearly we have

0
—u+Cn-grad u=0
at

for any C wave with normal incidence, i.e., for any wave u of the form
u(x,t)=uc(x:7,x-n—Ct),

where 7 is a unit vector tangent to I', and u. is an arbitrary vectorial function of two

scalar variables. We introduce the operator

$4w=(%+argm0$4w

and the boundary condition
3.1) ZLe(u)=0 onT.

We remark that this condition is:
(1) In the case of a left half plane with I" a vertical boundary

<i+Ci>$1(u)=0 onT,
Jt X,
with
ouy
$I(u)=[0"]+p<V” 0) oL
02 0 Vs/|ou,
at

(2) In the case of a lower half plane with I" a horizontal boundary

(3 +C-—q—> ZLi(u)=0 onT,

5 90X,
with
o
V. t
$¢m=[mﬂ+p(s O) o
gy} 0 Ve/|ou,
at

THEOREM 3.1. The boundary condition (3.1) is transparent for the following:
(i) P waves at normal incidence;

(ii) S waves at normal incidence;

(iii) C waves at normal incidence.
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Proof. The first two points are clear. The last is also clear together with the
observation that £-(u) may also be written in the form

Le(u)=4%, (%4‘ Cn - grad u).

The operator 3/3t+ Cn - grad is diagonal, and thus, as C is constant, commutes with
$1 . D

We turn now to the question of the stability of (3.1). For simplicity of exposition,
we consider the case () the left half plane,

Q={(x, %)% <0},  T'={(x1,%)|x; =0}

Then the problem may be written as follows:

u, 9 P
=— — 0
P " ax, TN T ox, 12 .
) inQ,
9 uy a + d
=0 — 0
Por " ox, T ax, 02

with boundary condition

3.2) ZLe(u)=0 onT
and with initial conditions
u(x,0)=u(x)
ou (.0 08) in Q.
at

THEOREM 3.2. The problem (3.2) is well posed.
Proof. We introduce the function w,

As u satisfies the equations of elastodynamics in (), so does w. Also w satisfies the
initial conditions
0 0 ou’
w(x, 0)=w'(x)=u"(x)+C—(x)
ax,
in Q).

3 i i
S (0= =25 (5, 0+ C5

— 0
4 3tdx, (x,0)

An expression for 3*u/dt*(x, 0) may be deduced from the equations satisfied by u at
the initial time ¢ =0. Furthermore, the function w satisfies the boundary condition

ZLi(w)=0, onT.

We know (cf. § 1) that we can obtain energy estimations for w. Namely,

J

[ e ac= cawer+vwr,

2

3
Z| axs c(wtP+ v,

at
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L

[| 1w ax= cautie+ it
Q

which easily lead to

2
dx = C([|u®) 22+ |00 3),

Then, thanks to Gronwall’s lemma
visT [ des Tl ISl
It remains to obtain estimates about u. For this we can use the following lemma.

LEMMA. Let (v, ) satisfy in Q the equation

av v
—+c—=1.
at X,

Then we have the following inequality, for any t>0:

1/2 t 1/2 1/2
(J |vf? dx) éj (J [ dx) ds+(I |vo|® dx) ,
(¢} o Q Q

where vo(x) = v(x, 0).
Proof of the lemma. We multiply the equation by v and integrate over ), which gives

11([ | |2dx)+£j+®|v(0 x t)|2dt—J Yo dx
2 dt o v 2 . s M2 - o )

from which we deduce

([ ([ o) ([ o)

Then Gronwall’s lemma leads to the result. [
We can now apply the previous lemma with

v=u, y=w,
u ow
v=""), =
ot at
u ow
v=—""0 =—, j=1,2
5%’ ¥ ox, J ,

which permits us to obtain the following: (V¢ €[0, T])
|uf? dx = C(T)(|u®|| 22+ [|4°]1 300),
JQ

2

Ju .
dx= C(T)(|u’ll 7+ 14 3),

JQ

IVul? dx = C(D)(|u’ 172+ 0% 500),
Q

o

and the theorem follows. 0O
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It is easy to check that in the operator #., second derivatives in the normal
direction to the boundary exist, which cause trouble.

The expression for the boundary condition (3.1) may be transformed in such a
way that only first-order derivatives in the direction normal to I' appear. In the
expression for L-(u),

d Fu 9
,‘Zc(u):a(a- n)+Cn- grad (o - n)+M(gt-5+C£n-grad u),

the term containing the second-order normal derivative is Cn - grad (o - n). Assuming
that the equations of elastodynamics are satisfied on I', we deduce that

o’u

n-grad (o-n)=—7-grad (o T)+p'5't—2-,

where 7 is a unit vector tangent to I'.
Combining these two equations, we obtain

2
d
(%(o” n)—Cr- grad (o- 7)+(M+pC1)Z—:;+CM5n-gradu=0.

2

&?c(u)=%(0'- n)—C(7) grad (o- T)+(M+pC1)Z—t1:+ CM-;; n- grad u.

The operator Z-(u) may be written as follows:
(1) In the case of a left half plane with I' a vertical boundary

~ + 2 2
$c(u)=—‘9—|:0-11]—Ci|:012]+p(VP = 0 )a—l;+pC<VP 0) ou 5
at [2p3] axZ (Y} 0 Vs+C at 0 VS 6t0x1
(2) In the case of a lower half plane with ' a horizontal boundary
~ J T2 [¢] 011 Vs+ C 0 )82u
£ =— -C— + —
C(u) at[a'zz] ax, [0’21] p( 0 VP+C 812
Vs 0) o’u
0 Vp/otox,

+pC(
THEOREM 3.3. The boundary condition (3.1) is equivalent to the condition
gc(u) = 0.

3.2. Plane wave analysis. As in the case of the first-order condition, the condition
(3.1) may be subjected to analysis in terms of the reflection coefficients Rpp, Rps, Rss,
and Rgp, defined in § 1.2.

We take for domain Q the left half plane {x: x; <0} and assume that on the
boundary I'){x: x, =0} we have the following absorbing boundary condition (3.1):

Lo(u) = (%+ c%) Pi(u)=0,
1

o Vo 0 )\ou
g‘(")z[an]ﬂ’( o v, )5'
21 S
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X

FLe(u)=0

elastodynamic equations in ) *

r,
Consider a harmonic P wave of unit norm,
u® = up eikrx—wn,
propagating toward the boundary I',. Suppose that upon arriving at I',, u” gives rise
to a reflected P wave u™” and a reflected S wave u™:
U™ = Rppipp e'krrx=on u™S = Rpgipg e'krs*=D,

If the angle of incidence (measured from the normal) of u” is 6, then the angle
of emergence of u”™” is also 8 and that of u™ is ¢, where ¢ is related to 6 by Snell’s
law

. Vs .
sin ¢ = v, sin 6.
P
We know that the length of the propagation vectors, kp and kpp, of the P waves is

w/ Vp and that the length of kpg, the propagation vector of the S wave, is w/ Vs.

Furthermore, the unit displacement vectors up and upp of the P waves are parallel
to their propagation vectors kp and kpp, while the displacement vector ups for the S
wave is perpendicular to kps:

k_£<cos¢9) k _ﬂ(—cose) k _“_a_)_<—cos¢r)
P Ve\sing)” " Ve\sing )0 T Vs\sinyg )’

(cos 0) (—cos 0) y (sin w)
Up = , Upp=\ . s = .
P \sin 0 PP sin 6 P$ 7\ cos 11/
Now if we consider the sum u of these three waves,

PP PS
u=uP+Rppu +Rpsu 5

we know that, by construction, u satisfies the equations of elastodynamics in (). By
imposing that u also satisfy the condition (3.1), on I';, we obtain the following linear
system in the unknowns Rpp and Rpg:

(cos 8+1)(2 cos 0+ k*—2)(m cos 8+ k)Rpp
— Kk sin (2 cos Y+ k) (m cos ¢ +1)Rps
=(cos —1)(2 cos  —k>+2)(m cos 6 — k),
sin 6(2 cos 0+ k)(m cos 6+ k)Rpp
+ k%(cos Y +1)(2 cos ¢y —1)(m cos y +1)Rps

(3.3)

= —sin 0(2 cos 6 —k)(m cos 0 — k),

where « is the ratio Vp/ Vg given as a function of » by

_(1(1—1/))‘/2
““\1-2v

and m is the ratio C/ V.
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Similarly we obtain a system in the unknowns Rgp and Rgg by considering the
reflection of a harmonic S wave of unit amplitude

uS = ug eiks* o0

by the boundary I',. For an angle of incidence 6, there are a reflected P wave u°* and

a reflected S wave uSS:

i(ks},x—wt) i(kssx-—wt)
>

P
usf = Rgpusp e u® = Rgsuss e

emerging at angles ¢ and 6, respectively, with

\%
3.4) sin ¢ =Vpsin 6.

N

As before, the length of the propagation vector kgp of the P wave is w/ Vp, while that
of ks and kg is w/ Vs, and the unit displacement vector ugp is parallel to ksp, while
us and ugs are orthogonal to ks and kg, respectively:

k_i(cos(?) X _£<—cos¢) X _£<—coso)
ST Ve\sin0)> " Vo\sinyg )> 5 vg\sine )’

(—-sin 0) (—cos 1//) y (sin 0)

ug = usgp=1{ . , = .

$ cos ) F sin ¢ S5 \cos 6

Again, the linear system in Rgp and Rgs is obtained by requiring that the sum u

of the incident wave u®, with the two reflected waves Rspu®” and Rgsu®®, satisfy the
boundary condition (3.1) on I',. Thus, we have

(cos ¢y +1)(2 cos ¢+ k*>*—2)(m cos ¥ + k) Rsp
—k?sin (2 cos 6+ «k)(m cos 6+1)Rgg
= —k’sin 6(2 cos 6 —«)(m cos 6 —1),
sin (2 cos y+ k) (m cos ¢ + k) Rgp
+ k*(cos @+1)(2 cos 6 —1)(m cos 0+ 1)Rss
=—k?(cos 6 —1)(2 cos 6 —1)(m cos 6 —1).
We remark that (3.4) implies that for 6 larger than arcsin 1/k, sin ¢ is larger than
1, i.e., ¢ is no longer real. In this case, the propagation vector kgp becomes
_w_(—i(sinz Y- 1)‘/2)
Vs sin ¢

(3.5)

ksp =

and the reflected P wave

RSPuSP = Rgpligp e(w/vs)(sin2.p—1)'/2xl i@/ Vo)(sinyx,—awt)
is no longer a harmonic wave but is a surface wave propagating along the boundary
I' with amplitude decreasing exponentially with distance from I',.

THEOREM 3.4. The reflection coefficients Rpp, Rps, Rsp, and Rgg depend only on
the angle of incidence 6, the Poisson coefficient v, and the ratio C/ Vs, and for small
angles of incidence 0:

(i) For C=Vp:

RPP(O’ V) = 0(04), RPS(G, V) = 0(03),
Rss(6,v)=0(6),  Rsp(6, v)=0(0).
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(ii) For C=Vjg:

RPP(09 V) = 0(02), RPS(oa V) = 0(0),
RSS(oa V) = 0(04)’ RSP(B’ V) = 0(03)'

(iii) For C # Vp, C# VS:

Rpp(6, v, C/ Vg) = 0(02), Rps(6, v, C/ V5)=0(6),
Rss(6,v, C/ Vs) = 0(02), Rsp(0, v, C/Vs)=0(90).

Proof. Using (3.3), we obtain by a direct calculation:

RPP = [_w_,_ 0(02)] (1_&_%) 02’

43 (m+«k)
_|_@-x)m 2 _x_®
RPS_I: 2K2(m+1)+0(0 )]<1 m 2)0'

Thus, for C = Vp, we have m = k, and the term (1—«/m — 6>/2) gives another factor
of 6% in the expressions for Rpp and Rps.
Similarly, from (3.5) we obtain

Ry = [_(K—4)(K+1)m+ 0(02)](1 _i__0_2> 0,

4k(m+1) 2
_|_Q-—x)m 2 _l_ff
RS”"[ 2(m+:<)+0(0 )](1 m 2)0’

and observe that for C = Vg, a factor of 6 is gained from the term (1—1/m —6%/2) in
the expressions for Rgg and Rgp. [

In Figs. 3.1 and 3.2 the amplitudes Rpp, Rps, Rss, and Rgp for the boundary
conditions £,(u) =0 and L (u) =0 with C = V, may be compared. These curves give
the reflection coefficients for various values of the Poisson coefficient », from 0.0 to
0.48, as functions of the angle of incidence 6. We have not distinguished here the
different values of »: we want only to emphasize the weak influence of this parameter.
We remark that even for the coefficients Rgp and R,,, which are of the same order in
0 for both conditions, the results seem to be better for the condition L (u)=0.

The corresponding curves for the condition Z-(u)=0 with C = Vs and C = Vi
are shown in Fig. 3.2. We can easily see that, for all values of C we have considered,
the various reflection coefficients have been uniformly improved (not only for small
values of 0).

3.3. A condition transparent for P, S, and R waves. We return now to our example
of the half space x,<0 with free boundary I'),I';=0. We restrict our domain of
calculation, as in § 1.2, to the quarter plane

Q={x:x,=0and x,=0},

and take for boundary condition on the artificial boundary I',, x, =0 the condition
(3.1), ka(u) =0.
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r,

Q elastodynamics equations Py (u)=0

r,

Thus, all P, S, and Rayleigh waves at normal incidence are absorbed by the
boundary TI',.

Remark. Inorder that Rayleigh waves traveling along the boundary I'; be absorbed
by the boundary T',, we need to take C = Vg, the velocity of the Rayleigh wave. On
the other hand, Theorem 3.3 indicates that it would also be of interest to take C =V
or C = Vs in order to have a higher-order absorbing condition for P waves or for S
waves. Thus, we are led to a defined C = C(x,) to be a smooth function of x,, having
value Vi for small x, but having value, say, Vp for large values of x,, where the
amplitude of the Rayleigh wave should be negligible. A rigorous analysis in the case
remains to be done.

3.4. Numerical results for the boundary condition &£ ~(u) =0.

3.4.1. The discretization scheme for the boundary condition. Here we present
without analysis the discretization scheme used to obtain our numerical results. For
an in-depth study of this scheme see [3].

To describe the discretization scheme for the absorbing boundary, we restrict our
attention to the left half plane Q, x, <0, and we assume we have the boundary condition
ZLc(u) =0 on the boundary I', x, =0.

Asin 1.3 and 2.2, we employ an explicit scheme using Q1 finite elements associated
with a uniform grid to solve the equations in Q. This scheme is equivalent to a finite
difference scheme, and we use a finite difference approximation to discretize the
boundary condition.

The condition Z~(u)=0 on I' can be rewritten as follows:

2 VZ 32 02 62
[ g (u) =0,

Aot Ay ——+ Ay ——+ A5+ A
052 loatax, | Catax, | ox: | x,0%,

where the matrices Ay, A,, A,, A;, and A, are defined by

1 0 Ve O
A0=P(0 1), A1=P<0P Vs)’

A= ( 0 (Vi—2V§)/(Vp+C))
2= P\vi/(vs+0) 0 ’
([ V5/(Vet+C) 0 )

a==c (T o)
o 0 Vs/(Vp+C)

e O )
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Thus to describe the approximation scheme it suffices to give the approximation of
each of the derivatives

Fu  d*u Pu  du ’u
at?’ atax,” atdx,” 9x3’ 9x,0%,

The scheme is designed to be explicit in time, centered at time level n, and centered
in space between the two last columns of the grid and to be second order in time and
space. If we denote the approximation of the function u(x,, x,, t) at time " = nAt,
n=0,1,2,--+, at the grid point (xi,x})=(iAx,jAx)i=-+-,~1,0,1,---; j=

++,=2,-1,0, by u};, then to obtain the value u(’)'jl, we approximate the above
derivatives on the boundary I', x; =0, as follows:

For 3*u/atox, , the standard backward difference in x, and centered first-order difference
in t are used:

2 -1 1 -1
8_u___<ug;%1 —2ug i+ up; L uli—2u", + uﬁ,’j>
at> 2 Af? A

For 9°u/dtdx, , the standard backward difference in x, and centered first-order difference

in t are used:
Su _ (u(','j-‘ —u"yy ugy'— u'_'f,’j)/zm
atdx, Ax Ax
For 8°/3tdx,, the derivative in the x, direction is approximated by the standard centered
difference, but to keep the scheme explicit while centering between x,; and x_, ;, the
time derivative is approximated by the average of a forward difference at x_, ;, and
a backward difference at x,;:

2
u _ (u'f{jﬂ R uﬁl’j_l)/ZAt
atax, 2Ax 2Ax

-1 —
+ Ugj+1— U0 _u6',j+1—u3,j11 2AL
2Ax 2Ax '

The second derivative in x,, 3°/dx3, is approximated by the average of the standard
second difference at x,; at time level n and that at x_, ;,

2 n n n n n n
U _Uojey—2Uo,F Uo o1 Ulrjn T2UTH U,
ax3 2Ax7 2Ax3? )

Finally, for 6°/9x,0x,, we use a centered difference in x, and a backward difference
in x,, all at time level n:

2 n n
u :(uo,j+l—uO,j—l_uﬁl,j+l‘u£1,j—l Ax
8X,9X, 2Ax 2Ax )
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Hence, in classical notation, the difference scheme may be written as follows:
%AoDiDt_(ug’] + ufl_l,j) + AID:)Dil(u(')l’j),
(3.6) 3A, D D4 (ug +u”, ) +3As D2 D (ug ;+u”y )
+ A,Dg2DX(ug ;) =0, j=-+, -1,0,1,---.

We point out that the case of a corner joining the absorbing boundary with a free
boundary must be treated separately. Let () denote the lower left quarter plane, x, <0,
x, <0, and assume that on the boundary I';, x, = 0 we have the free boundary condition
o-v=0 and on the boundary I',, x, =0, the absorbing condition £-(u)=0. Then
some of the terms in (3.6) are defined only for j <0, and indeed the question arises as
to whether there needs to be a special treatment mathematically as well as numerically
for such a corner. Thus, following the development in [1], where the corner condition
for a corner joining two absorbing boundaries for the wave equation is treated, we are
led to construct a condition for the corner by assuming that both the free and the
absorbing boundary conditions, as well as the equations of elastodynamics, hold at
the corner, and then use this assumption to eliminate the troublesome derivatives. For
the resulting condition, as well as its numerical treatment, we again refer the reader
to [3].

3.4.2. Presentation of the numerical results. Here we repeat the experiments
given in 1.3 and 2.2, changing the absorbing boundary condition. The results are
presented in the form of seismograms. As before, the receptors have been placed along
the right half of the upper boundary, and each simulation will generate two groups of
seismograms, the first depicting the horizontal components of the displacements and
a second one the vertical components.

We normalize all these seismograms with the same value in order to exactly
compare the reflections generated by each boundary condition. However, we shall use
a greater gradient of amplification than in 1.3 and 2.2 because of the small values of
the reflections obtained with the boundary condition £ (u)=0.

In order to illustrate the threshold conclusions at § 3.2, we shall present the results
for four simulations where we have successively used on the vertical edges:

(i) The first-order absorbing boundary condition %,;(u) =0, (Figs. 3.3 and 3.4);

(ii) The absorbing boundary condition £-(u) =0 with C = Vp, (Figs. 3.5 and 3.6);

(iii) The absorbing boundary condition £ (u) =0 with C = Vg, (Figs. 3.7 and 3.8);

(iv) The absorbing boundary condition L(u)=0 with C = Vg, (Figs. 3.9 and

3.10).

Our first observation is that condition £~ (u), for each choice of C, is clearly an
improvement over %;(u) with regard to the absorption of each kind of wave.

When C =V, (Figs. 3.5 and 3.6), we no longer see any trace of a wave along the
lines Dpp and Dpg, i.e., the operator £y, seems to have completely absorbed the P
wave. However, in this case we can clearly observe waves along the lines Dgp and
Drg, indicating a reflection of the Rayleigh wave and a conversion of the Rayleigh
wave to a P wave.

On the contrary, when we choose C = Vi (Figs. 3.9 and 3.10), we note a much
better absorption of the Rayleigh wave while there remain small reflections due to the
P wave.

Finally, we note that the choice C = Vs (Figs. 3.7 and 3.8), for the example given
here, presents little change from the choice C = Vi since the difference between Vj
and Vg is small. However, in other examples we tested, where Viz and Vg were not
so close, the Rayleigh wave was much better absorbed by the condition £y, than by %y..
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FI1G. 3.3. %,(u) =0: Horizontal displacement. Gradient of amplification =3 x 107,

NER

FIG. 3.4. &,(u)=0: Vertical displacement. Gradient of amplification =3 x 107,
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FiG. 3.6. &y,(u)=0: Vertical displacement. Gradient of amplification =3 x107*.
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FIG. 3.7. %y (u)=0: Horizontal displacement. Gradient of amplification =3 x 10,
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FiG. 3.8. &y (u)=0: Vertical displacement. Gradient of amplification =3x10™*.
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FI1G. 3.10. £y, (u)=0: Vertical displacement. Gradient of amplification =3 x 1074,
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Hence, we conclude that by varying the value of the speed C, we can select the
type of wave to be absorbed. Particularly in our case, we would choose C = Vg in order

to most nearly eliminate the reflection due to the Rayleigh wave propagating along
the surface.

3.5. Conclusion. The boundary condition £y, we derived in this article gives good
results as shown by the numerical experiments of § 3.4. This condition is in particular
very efficient for eliminating the parasitic phenomena due to Rayleigh waves, according
to the theoretical results. It would be interesting to investigate the generalization of
this condition to the three-dimensional case.
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