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Summary. In this paper, we propose an algorithm to derive nodal methods 
corresponding to various two and three-dimensional nonconforming and 
mixed finite elements. We show that this algorithm can be used to obtain 
several classical schemes as well as some more recently developed schemes, 
and that it leads to a simple proof of unisolvence for these methods. Finally 
we use our method to obtain a three dimensional nodal scheme of BDM 
type. 

Subject Classifications: AMS(MOS): 65N30; CR: G1.8. 

1. Introduction 

Nodal methods are methods which try to combine the most favorable features 
of the finite element method (f.e.m.) and the finite difference method (f.d.m.), 
two discretization methods which, a priori, are quite different. From the f.e.m., 
they borrow a piecewise continuous, usually polynomial, approximation to the 
solution of the problem considered. Like the f.d.m., they usually produce quite 
regular and well structured algebraic systems of equations: they are in fact 
fast solvers, well suited for parallel processing. This is true of course for relatively 
regular meshes, the most typical one being probably the "union-of-rectangles" 
mesh. 

Nodal methods were introduced in nuclear engineering during the late 1970's: 
first references are Refs. [12, 19, 20, 26] while Refs. [9, 13, 28] are essentially 
review papers where many more references can be found. In reactor analysis, 
there have been applications in static diffusion and in space-time dynamics, 
as well as in transport, covering, by the way the three classical types of partial 
differential equations elliptic, parabolic and hyperbolic, all of them linear or 
quasi-linear. In reactor calculations, the sequence is almost always the following: 
a preprocessing operation is first performed whereby fine details of the reactor 
core are homogenized into a fairly coarse and regular array of homogeneous 
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assemblies, a coarse-mesh or nodal calculation is then performed and if fine 
details of neutron flux are wanted, a postprocessing follows, yielding the local 
maxima of the flux where hot spots can be expected. 

It is very interesting to note that in many fields of application, which have 
nothing to do with reactor calculation, we are confronted with very similar 
situations, except that the pre and/or  postprocessing operations are usually 
absent, in other words, situations for which everything boils down to the coarse- 
mesh or nodal calculation. This is typically the case for the numerical simulation 
of flow in porous media. Traditionally, finite differences are used here over 
fairly regular meshes of the union-of-rectangles type. This is so because in most 
cases the boundary of the region to be modelled is not very well-known, so 
that a regular grid is fairly natural. Moreover, the coefficients of the modelled 
equations, such as the porosity of the medium, its permeability, etc., are simply 
not known with enough accuracy to allow for more than a mean or average 
value per coarse cell. This is for instance the case in underground water hydrol- 
ogy, oil reservoir simulation, nuclear waste disposal, etc., applications, where 
the people involved basically speak "finite differences". Outside of the porous 
medium field, we could mention similar applications, for instance, those in atmo- 
spheric pollution modelling. 

In Refs. [11, 17, 18] the relationship existing between some early nodal 
schemes and nonconforming formulations of the f.e.m, was made explicit: that 
these early nodal schemes do not climb correctly in order was shown [11], 
a family of nodal schemes which does was proposed [17], and "numerical eviden- 
ce"to support that claim was exhibited [18]. By a "family of nodal schemes 
climbing correctly in order",  we mean a family such that if k is a nonnegative 
integer index attached to each member of the family, convergence orders in 
the L 2 norm of O(h k+2) can be expected for the error between the approximation 
uh and the solution u, where h is a measure of the size of the cells in the mesh. 
More recently the relationship existing between this new family of nodal schemes 
and extensions of mixed-hybrid finite elements [1] was demonstrated 1-16]. At 
present, mixed and mixed-hybrid finite elements are particularly fashionable 
in research codes for oil reservoir simulation [5, 6, 10]. It is therefore interesting 
to establish the connection between schemes used in two fields of application 
apparently so far away, showing incidentally that our above remarks were well 
founded. Applications to neutron diffusion and transport have also been pre- 
sented [8, 15]. 

A characteristic of nodal schemes leading to reduced couplings is that the 
"nodes",  "cells", "blocks",  or "elements" are basically coupled by interface 
variables which usually are moments of the unknown function or sometimes 
its values at Gauss points. To these variables, we must add some interior vari- 
ables, in principle moments of the unknown function over the cell. These edge 
and cell moments are linear functionals which will hopefully capture the essential 
behavior of the unknown function. This leads us to the concept of finite elements 
of nodal type, for which the basic parameters or degrees of freedom are edge 
and cell moments. In rectangular IR" geometry, which is the only geometry 
we shall consider in the following, it is always possible to refer to the reference 
cell [ - 1 ,  + 1]" by a simple diagonal affine mapping; thus, we shall define the 
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edge and cell moments with respect to the reference cell. In 2D for instance, 
let u(x, y) be the unknown function. Its edge moments will be defined by: 

+1 
i m mL = ~ PI(Y) u(-- 1, y) dy/Ni, 

- 1  

and 

+1 

m~(u)-- ~ Pi(y)u(+ 1, y)dy/Ni, 
- 1  

+1 

m'~(u)- f P,(x) u(x, - 1)dx/U.  
- 1  

+1 

m~(u) =- ~ Pi(x)u(x, +l)dx/Ni ,  
- 1  

(1) 

where L, R, D, and U stand for "left", "right",  "d o w n "  and " u p "  respectively, 
P~ is the normalized Legendre polynomial of degree i over [ -  1, + 1], and N~ 
= 2/(2i+ 1) is a convenient normalization factor. Cell moments of u are defined 
by 

m~(u) - ~ Pi(x) Pj(y) u(x, y) dx dy/N i �9 %. (2) 
C 

In 3D, we shall have to consider face moments instead of edge moments, 
m}~, m~, mg, m~, m]g, and my, where F and B correspond to " f ront"  and "back".  
Similarly the cell moments will then become m~ k. 

Such finite elements are clearly non conforming in H a (t2) as elements Uh 
of the approximation space are continuous only in the mean, plus possibly in 
some of their higher moments, through the interfaces. If a primal f.e.m, is consid- 
ered, the approximation space must pass the "patch test" [27] to some order" 
for an L 2 convergence of order O(hk+2), k e N = { 0 ,  1,2.. .}, it is sufficient [7, 
14] that 

(i) ~3k+ 1 be included in the space of polynomials describing u h within the 
cell, where 

~3k-- {x~yb; O<=a+b<k}, (3) 

(ii) elements of the approximation space have k +  1 moments continuous 
through each edge. 

See Appendix C for more details. 
In the following other polynomial spaces will be considered such as 

~k,t=--- {x"yb; O <=a<=k, O <=b <=l} (4) 

and ~ k = ~ k , k  . In 3D, a trivial modification would lead us to ~k,l,m with again 

~ k ~ k , k , k  �9 
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The general issue of unisolvence can be stated as follows: given a finite element 
on the cell C (classical or of nodal type), a set of degrees of freedom D is 
defined as well as a space S of polynomials which is the space of restrictions 
to the cell C of functions Uh in the approximation space. In classical finite ele- 
ments, the degrees of freedom usually are values and possibly derivatives of 
the functions Uh in S at special nodes of the given element C, including in 
principle its vertices (which by the way leads to the strong couplings typical 
of the classical f.e.m.). With finite elements of nodal type, these degrees of freedom 
are edge moments m'e(uh), where E stands for L, R, U, or D, and cell moments 
m~(Uh). To say that S is unisolvent with respect to D means that any member 
of S is uniquely determined in terms of the linear functionals in D. A necessary 
condition for unisolvence is, as we recall, dim (S) = card (D) but it is not sufficient. 
The two basic techniques for proving unisolvence are 

(i) to exhibit dual basis functions, i.e. basis functions belonging to S of the 
61~ type ("the i th functional of D is one for the i th basis function and zero for 
the other basis functions"); then, as dim (S) = card (D), if there is a solution 
it is unique, or 

(ii) to prove that if all the functionals in D are zero for a function in S, 
then that function must be identical to zero. 

Our objective in this paper is to consider a variety of situations of the nodal 
type where some edge and cell moments are specified, i.e. D is given, while 
S is not known a priori. The edge and cell moments often have some physical 
meaning so it is quite natural that they be given beforehand. The space S of 
basis functions is then to be determined in a way that leads to unisolvence. 
Given D, there are many possible choices of the space S and our concern here 
is to determine in a constructive way an S which has the right approximation 
properties, not only for the inner representation in a cell (~k+~CS) but also 
for the coupling between neighboring cells (continuity of (k + 1) edge moments). 

A visualization for the space 5P is proposed which, in a certain way organizes 
graphically the elements used by various existing methods, while providing a 
systematic and constructive procedure for deriving new families of nodal finite 
elements. 

From a theoretical point of view, the theorem given in Appendix C allows 
one to determine the expected convergence rates of any given (new or already 
known) nodal finite element by simple inspection of its degrees of freedom and 
of the space 5 P generated by our algorithm. 

Finally, the use of Legendre polynomials (instead of the usual monomials) 
and of the normalizations in (1) and (2) leads to a particularly simple way 
of building up the basis functions, as well as to extremely condensed expressions 
for them which were not available previously. Incidentally, we should mention 
that the use of Legendre polynomials is closely related to areas of recent develop- 
ment including for instance hierarchic elements, the p-version of the finite ele- 
ment method, spectral methods in fluid dynamics, etc. 

In Sect. 2, a general constructive algorithm for such finite elements of the 
nodal type in 2D is proposed. It is applied in Sect. 3 to well known situations 
where it is shown to reproduce previous bases. In Sect. 4, we apply it to derive 
the (new) nodal extensions of the recent Brezzi-Douglas-Marini (BDM) mixed 
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finite elements [4]. Section 5 is devoted to 3D situations with examples given 
in Sect. 6. Two appendices finally give examples of basis functions in 2 and 
3D, while a third one gives a general theorem leading to error estimates for 
nodal finite elements. 

2. The Two-Dimensional Case 

Before presenting our constructive algorithm in 2D, we would like to introduce 
some notation which will be useful, even later in 3D situations. As we said 
before, 8 will be the normalized Legendre polynomial of degree i over [ -  1, + 1] 
with the well known properties 

8 ( +  1)= 1, 

8 ( -  1) = ( -  1)', 
(5) 

+1 

I 8(~) P/x)  d~ = ~,j N,, 
--1 

and 

Let us introduce moreover 

8 ( -  x ) = ( -  1) ~ P~(x). 

8 & ,  y)--- 8(x) Pj(y), 
and (6) 

8j~ (x, y, z) - 8 (x) ~ (y) ~ (z). 

For  a given set D of degrees of freedom for functions defined on the reference 
cell C = [ - i ,  + 1] z, our algorithm will define the space ~ of polynomials, in 
which the restriction to C of the unknown function is to be approximated, 
by specifying a basis of normalized Legendre polynomials. The choice of the 
basis of polynomials P~b instead of the more usual basis of monomials x a yb, 
with the normalizations we adopt, yields nice simplifications not only in the 
unisolvence proofs but also in the calculation of the dual basis functions in 
5P. 

In 2D, a convenient way to describe the spaces 5 P which will be chosen 
for a given element type (either classical or nodal) is with a Pascal triangle 
in which the different polynomials P,b forming the basis of ~ are presented 
in a systematic way. In Fig. 1, this representation is sketched for the classical 
choices of spaces 5 P for triangles and for rectangles. In all of the figures, ab 

is used to denote P,b. 
To set the scene for our algorithm, we shall make the following assumptions, 

which are not really restrictive and can in fact be dropped in special applications: 
we shall first assume that on the left and right (or vertical) edges of a given 
cell, moments of order 0 through k are given while on the up and down (or 

, horizontal)  edges, moments of order 0 through I are given. Here k and I are 
integers > -  1, a value of - 1  indicating that no moments are specified on 
the corresponding edges. Further we assume that, within the cell, moments 
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Fig. 1. The Pascal triangle and the basic polynomial spaces ~z  and ~2 

with respect to ~3m, ~m.. or ~ , . , . u ~ . , , .  are prescribed. Again m is an integer 
> -  1, while n when it is specified, is a nonnegative integer, a value of - 1  
for m indicating that no cell moments are prescribed. Clearly, one at least of 
k, l, and m should be nonnegative. 

In the figures representing the degrees of freedom D, the edge moments 
will be represented by small line segments perpendicular to the corresponding 
edge, the absence of such segments meaning that the corresponding index k 
or I is negative. The presence of ~3r., ~ , . , .  or ~ . , , . w ~  . . . .  m, n~N, within 
the cell will mean that the corresponding interior or cell moments are prescribed, 
while the absence of any symbol implies that no cell moments are present. 
This representation should become clear with the proposed examples. 

In 2D, our algorithm can now be stated as follows: 

Algorithm 1 

(i) All the polynomials P~j belonging to the specified set ~, . ,  ~m,. or ~m,. W ~. ,  m 
must be first included in the basis for 5 ~. In the Pascal triangle representation, 
these polynomials will correspond to the ij positions and we shall say that 
they constitute the " t runk"  of the basis. 

(ii) Outside of the area occupied in the Pascal triangle by the trunk, k "two- 
boned legs" must be pulled out to the left and l "two-boned legs" to the right, 
a "bone"  corresponding to a position in the triangle. 

More precisely, the 2(k + 1) vertical edge moments and the 2(l + 1) horizontal 
edge moments give rise to the basis elements P~,,i and P~,+ 1.i, i = 0  . . . .  , k, and 
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Pj, bj and Pj, bj +1, J = 0 . . . . .  l, where the ai's and bj's indicat ing the points  of  depar -  
ture of  the left legs and  right legs respectively, are de termined as follows: 

F o r  0_< i _< min  {k, l}, ai is the least integer a, a > i, such that  Pa. i is not  included 
in the trunk. Similarly, b~ is the least integer b, b > i, such that  P~, b is not  included 
in the trunk.  No te  that  for 0 < i , j < m i n  {k, l} the ith left leg and  the f h  right 
leg can over lap  only in case i = j  and the point  of depar tu re  of  the legs is the 
same, i.e. a~ = bj = i = j .  

(iii) If  it happens  that  the point  of  depar tu re  of  two legs cor responding  
to the i th vertical and the i th hor izontal  moments ,  is c o m m o n  to bo th  legs, 
these two legs will now be a t tached to the cor responding  po lynomia l  P~i, and  
we shall include in the basis, in addi t ion to P~, P~+I.~, and P~.i+l, the element  
P~+z,~-P/,i+2. We shall say that  P/+2,i and  P/.i+2 are also bones  of  the i th left 
and ith right legs, respectively, and  tha t  Pc i is the "/-pelvis" .  

(iv) If k ~e l, say k > l, the i th left legs, i = l + 1 . . . .  , k, or  ra ther  their points  
of depar tu re  al, still have to be defined. In this case, we permi t  a~ to be less 
than  i in order  to fill in the Pascal  tr iangle as much  as possible f rom the top  
but  a~ still should be chosen so that  the i TM left leg does not  meet  one of the 
right legs and does not  lie under  one of them. Thus  for l +  l_<i_<k, a~ is the 
least integer a, a > l +  1, such that  P~ is not  included in the trunk.  

Then  we have:  

L e m m a  1. Given a set D of degrees of freedom conforming to the stated hypotheses, 
the space 5P constructed by the above algorithm is unisolvent with respect to 
D. 

Proof Let us first show tha t  d im (~W)=card (D). There  are clearly as m a n y  ele- 
ments  in the t runk  as cell moments .  The  edge m o m e n t s  by hypothesis  come 
by pairs (vertical and hor izonta l  ones): to each pair  cor responds  a two-boned  
leg in the separa ted  case, while in the nonsepara ted  case we have for two inter- 
secting pairs  (say the i TM hor izonta l  and  vertical moments )  a pelvis plus two 
two-boned  legs or  five elements  of  which four only are independent ,  so that  
clearly d im (5 0 = card (D). 

Let  us now show unisolvence. Assume  that  all the given m o m e n t s  are zero. 
Any  m e m b e r  uh of 5 e is of  the form 

Uh = ~ C.b P~b (7) 
ab 

where ab is any al lowed posi t ion in the Pascal triangle. Clearly in the case 
of  jo ined legs, Ci, i+z=-Ci+2.i .  We shall show tha t  all the coefficients Cab 
in (7) are zero. 

First, for all the cell moments ,  using (2), (5) and (7), we have  

Clj ---- m~ (Uh) ----- 0 ,  (8) 

where ij is any al lowed posi t ion in the trunk.  
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Consider  any  pair, say the ith, of vertical m o m e n t s  with 0 < i _ < m i n  {k,/}, 
not  a t tached to a right leg. F r o m  (1), (5), (7), and (8), we obta in  

c~ ~ ( -  t)+ co+ 1 ,~+~(-  1)= m~(uh)=O 
and (9) 

CaiPa(~ - l)-q- Ca+ 1,iPa+ 1('31- 1) ~--- m/R(Uh) ~--~- 0 

where a i and a +  1, i are the two posi t ions in the Pascal  tr iangle outside of  
the t runk cor responding  to the ith left leg, assumed to be alone. Using (5), (9) 
becomes  

Cai -Ca+ l , i=Cai-~ Ca+ l . i=O,  (10) 

implying that  bo th  C~i and Ca+ ~,~ are zero. The same is true for all the soli tary 
right legs cor responding  to i 'h hor izonta l  m o m e n t s  for 0 < i < min {k, l}. 

Let us now look  at the case of  jo ined legs with pelvis at ii. The  equat ions  
~ " ~ together  with (8) and  (10) yield. for mL, mR, mb, and me 

C i i - C i +  l,i ~-Ci+ 2,i=O 

Cii ~- Ci+ 1, i-4- Ci + 2,i=O 

Cii--Ci, i+~ +Ci, i+z = 0  
and 

Cii-~-Ci, i+ 1 -~ Ci, i+ 2 =O, 

so that  clearly C~ + 1. g = C~, g + ~ = O. We are left with 

Cii-~ Ci+ 2,i=O 
and  

Cii~- Ci.i+ 2 = 0 ,  
implying 

Cii .~- Ci, i+ 2 = Ci+ 2,i=O, (11) 

since Ci, i+2 = --Ci+2, i. 
Finally we consider  a pair  of  i 'h edge m o m e n t s  for i > m i n  {k,l}, say k>l ,  

so tha t  l +  1 <i<_k. F r o m  (1), (5), and (7) we have:  

miL(uh) =~" C j, Pj(-  i) ,  
1 

and 
m~ (Uh) = E Cji Pj( + 1). 

J 

H o w e v e r  f rom (8), (10), and (11), we deduce  that  Cij=O f o r j < a  where P~ and 
P,+I,~ are the two bones  of  the i TM leg. Thus  we ob ta in  the Eq.(9)  and  (10) 
for l + 1 < i < k and  consequent ly  that  C,~ and  Ca + 1, z are zero. Q E D .  

Remark 1. I t  should  be clear f rom the above  demons t r a t i on  tha t  when edge 
moments are present there are infinitely m a n y  spaces ,9" that  could be chosen,  
D being fixed. Given  the cell moments ,  the t runk  is fixed once and  for all, 
bu t  the legs could have  holes provided  their  bones  retained the correct  parities. 
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The ith left leg for instance could perfectly well combine P,i and P,+3,i instead 
of P~i and Pa+l,~- However since we want to fill in the Pascal triangle from 
the top, our choice is the most natural one. 

Remark 2. Our choice of normalization (1) and (2) leads to particularly elegant 
equations. Looking at the left hand sides of (8), (10) and (11), we see that all 
the coefficients take as values - 1 ,  0 or + 1. In the determination of the dual 
basis functions corresponding to each of the moments of D, the second members 
have zero components in all positions, as above, except one of them where 
the value is one. In simple situations, i.e. when dim ( ~ ) = N  is not too high, 
these equations can usually be solved by simple inspection. For  more complex 
cases, the computer could be used. 

Remark 3. With our anatomical analogies, our nodal finite elements are clearly 
potential monsters, with or without a trunk, several legs on each side, and 
eventually one or more pelvises. 

3. Some Examples 

Example 1. The Langenbuch-Maurer-Werner S or sum nodal schemes [19, 20]. 

For  this example: 

= m ~  

mi~  ~ i=0, k C ~ M, �9 �9 �9 

m ~ (Uh), j = 1 . . . .  , k }, card (Dk) = 2 k + 5, (12) 

5Yk= ~k+2,0Ui20.k+ 2, d i m ( ~ k ) = 2 k + 5 ,  

V k ~ N .  

These schemes are illustrated in Fig. 2. Clearly only zero th order edge moments 
will be continuous while ~1 c ~  and ~2 r  Vk. Correspondingly, these nodal 
schemes do not climb correctly in order. As shown earlier [11], they exhibit 
L 2 convergence of O(h 2) Vk. 

Example 2. The Hennart  nodal schemes [l 7, 18]. 

These nodal scheme have been built from the nodal schemes of Example 
1, with the idea of forcing them to climb correctly in order. 

Dk= {miL(Uh), m~(Uh), mg(un), i mv(un), i = 0  . . . . .  k, 

m~(uh), i , j=0  . . . . .  k}, card (Dk)=(k + 1)(k+ 5), 
(13) 

o~k = ~k+ 2,k kA~k,k+ 2, d i m ( ~ k ) = ( k + l ) ( k + 5 ) ,  

V k e N .  

Dual basis functions are given in Ref. [17]. These schemes are illustrated in 
Fig. 3. Clearly, they climb correctly in order. 
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k = O  

I 

-- ~ , o ~  

I 

I 

t t I 

Fig. 2. The  L a n g e n b u c h - M a u r e r - W e r n e r  2; or sum noda l  schemes 

Example 3. The Raviart-Thomas mixed finite elements [25]. 

In the mixed formulation of the f.e.m., a second order elliptic problem like 

--Au=f, in O, (14) 

is written as a couple of first order equations 

~+r 
(15) 

17.g=f in f2. 

A weak form of (15) is then obtained by multiplication by test functions and 
integration by parts. As a result ~ and u are looked for (independently) in 
H(div; f2) and LZ(f2), respectively, the Raviart-Thomas mixed finite elements 
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f: t I 
k = O  

02 

13 

I I 

I 

1 

~lll  t ~2 

I I I  

Fig. 3. The Hennart nodal schemes in 2D 

k = 2  

constituting a conforming finite element approximation of H(div; f2)xL2(O) 
(climbing correctly in order). 

For the scalar variable u 

Dk= {m~(uh), i,j=O . . . . .  k}, card (Dk)=(k+ 1) 2, 

5e~ = f~k, dim G~)=(k + I) z, (16) 

Vk~]N, 

as shown in Fig. 4. 
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~o 

k = O  

0,  

k = l  

Fig. 4. The  scalar  variable for the R a v i a r t - T h o m a s  mixed schemes  

k = 2  

> 
For  the vector variable t~=(vl, v2), we shall have 

with 
Dk =Dkl Lg Dk2, 

Dkl = {m~,~e(Vh 1), 

m~{vh,), 

Dk2 = { m ~ ( V h 2 ) ,  

m~(vh2), 

card D k = 2 ( k +  1)(k+ 2), 

V k e N ,  

~ = ~ , x ~  

i = 0  . . . . .  k, 

i = 0  . . . . .  k - l ,  j = 0  . . . . .  k}, 

i = 0  . . . . .  k, 

i = O  . . . . .  k, j = O  . . . .  , k - l } ,  

dim ~ = 2(k + 1)(k + 2), 

(17) 

�9 i and m~ (resp. i and m/u). For  Uh as well where m )  (resp. m/~) stands for mL mo 
as for Vh, dual basis functions have been given [16]. In the same reference, 
the nodal schemes of Example 2 were shown to be extensions fi la Arnold and- 
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k=O 

I ~0,1 1 
/ 

\ 

/ 

k = l  

Fig. 5. The first Component  171 of the vector variable for the 

k = 2  

\ / \ 

/ \ / 

\ / N 

/ \ / 

\ / 

Raviar t -Thomas mixed schemes 

Brezzi [1] of the Raviart-Thomas mixed finite elements, under appropriate hy- 
potheses. These mixed finite elements have been extended by Nrdrlec to 3D 
[23]. Accordingly, we shall call the nodal schemes of example 2 nodal finite 
elements of the RTN type. Figure 5 illustrates (17) for the first component Vl 
of~. 

Before moving to example 4, we would like to offer some comments. In 
all the previous examples, as we have seen, our algorithm gave us exactly the 
spaces 50 (or '~k) which have been obtained independently by quite different 
approaches E17, 19, 20, 25]. This confirms a posteriori its validity. The fact 
that the corresponding elements (here in H~(~) or H(div; (2)) do or do not 
climb correctly in order is then derived by direct inspection of S and D in each 
case. In example 4, as in the previous example, we are concerned with a space 
of scalars and a space of vectors. However, in this example, the two components 
of the vectors are not independently determined. Thus our algorithm and proof 
of unisolvence cannot be directly applied, but we would like to show how our gen- 
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k= l  

Fig. 6. The scalar variable for the Brezzi-Douglas-Marini mixed schemes 

k = 2  

eral approach to unisolvence can be exploited to provide a clean and direct 
demonstration. 

Example 4. The Brezzi-Douglas-Marini mixed finite elements [4]. 

These recent mixed finite elements are conforming in H(div; (2) • L2(~2), like 
the RTN mixed finite elements. The basic idea behind their development was 
to achieve the same convergence orders as with their RTN counterparts but 
with (asymptotically) only fifty percent of the unknowns. Assuming that k ~ N ,  
(i.e. k > 1), the scalar variable is taken to be in ~3 k_ 1 instead of ~k, namely 

Dk={m~(Uh), O<=i+j<=k--1}, card(Dk)=k(k+l)/2, 

~k=~k_l ,  dim(Sak)=k(k + l)/2, (18) 

V k e N , ,  

as shown in Fig. 6. 
For  the vector variable 3= (vl, v2) 

Ok={mig(VhO, i = 0  . . . . .  k, 

m~(vht), O < i + j < k - 2 ,  

m'~(vh2), i = 0  . . . . .  k, 

m~(vh2), O<i+j<k--2} (19) 

card D, = k 2 + 3 k + 4. 

9  +1,0 
5ek={~3kX~3k}@span[\--(2k+l)Pk~]'\ Po,k+ 1 ] )  

dim 5ak=k2 + 3 k + 4 ,  

V k e N , ,  

The fact that to ~k- -  ~k X ~ ,  is added a space of dimension two of particular 
vector polynomials of degree ( k + l )  has to do with the following: if ~ (resp. 



A Constructive Method for Deriving Finite Elements of Nodal Type 715 

V 1 

l I k=l 

COU L 

I 

v 2 

I ! 

I 

V 
1 

D 

V 2 

I t f 

I I I 

Fig. 7. The vector variables for the Brezzi-Douglas-Marini mixed schemes 

5eh) denotes the finite dimensional subspace approximating H(div; f2) (resp. 
L2(f2)), the numerical analysis of the resulting methods depends on the fact 
that div . ~  c5r Clearly this is satisfied here since div ~k C ~k-~ and since the 
extra two terms have been chosen so that the divergences of the monomials 
of degree k+  1 cancel out. In the previous example, the two components of 

were determined independently: here this is no longer the case as v~ and 
v 2 are dependent on each other, a situation we have attempted to illustrate 
in Fig. 7. 

Basically, the two-dimensional vector space added to ~ adds four extra 
terms to the Pascal triangles which are coupled two by two as follows: a term 
in position (k+ 1, O) (resp. (1, k)) for vl coupled to a term in position (k, 1) 
(resp. (0, k +  1)) for v2. These two pairs of terms are coupled in the sense that 
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if one of them disappears, the other one must also disappear. The unisolvence 
proof is now easy: first, we get rid of the two trunks (~k-2), then we look 
at the (k+ 1) left legs of the Pascal triangle corresponding to vl. The leftmost 
leg has three bones (!) so we can say nothing about it, but the k following 
ones have only two bones which must disappear by parity considerations as 
in the proof of our basic algorithm, implying in particular that the (1, k) position 
must be void, and also the (0, k + 1) one for v2 thanks to the coupling. Looking 
now at the (k+ 1) right legs of the Pascal triangle corresponding to v2, we 
see that they are now all with two bones since the third bone of the rightmost 
leg has been canceled. Consequently they are all void, in particular in the (k, 1) 
position, implying that the ( k + l ,  0) position for vl is void and that finally 
the leftmost leg of vl also disappears QED. 

We remark that for the construction of the basis for 5Pk our algorithm 
applies up to the point where we take into account the dependance of the 
two components of the vector variable. 

4. Nodal Finite Elements of the BDM Type 

Example 5. The nodal finite elements of the Brezzi-Douglas-Marini (BDM) type 
[4]. 

In Arnold and Brezzi [1], a mixed-hybrid formulation of the f.e.m, was 
presented which has many computational advantages over the classical mixed 
one [25]. In fact in the mixed-hybrid formulation, the conformity conditions 
in H(div; (~) are dropped (JhCH(div; f2)) and enforced by the use of Lagrangian 
parameters. These parameters are associated with moments of the normal com- 
ponent of g on the edges of the cells and therefore provide some valuable informa- 
tion about  the corresponding moments of the dual variable, i.e. the scalar vari- 
able u. Hence edge information can be combined with the cell information con- 
cerning u in a postprocessing operation performed cell by cell, to obtain a 
better approximation of u than the original one in L 2. This procedure can be 
called an "extension" or "enhancement"  of u. 

In their original paper [4], Brezzi, Douglas and Marini proposed such a 
nodal extension for their family of mixed finite elements. However, except in 
the case k =  1, their extension, does not use all the information available. In 
fact, the number of parameters used is (k2+ 5 k + 12)/2 while if all the parameters 
were used, namely 4(k + 1) edge moments plus k(k + 1)/2 cell moments, the total 
number of parameters would be (k z + 9 k  + 8)/2. Except for k =  1, this number 
is larger than the previous one. Since this information is available, why not 
use it completely. The convergence order will not be modified but the approxima- 
tion of u will in principle be richer. 

Our general algorithm can again be applied and we have here (see Fig. 8) 

Dk= {rn~ (uh), m~(Uh), m~(Uh), m~v(Uh), i = 0  . . . . .  k, 

m~(Uh), 0 < i + j  < k -- i }, card (Dk) = (k 2 + 9 k + 8)/2, 

~k-----~k+l 0 ~Rk 0 span {P/i, P/+ x,i, P/,i+a, P/+2, i - -  P/,i+2 : 
(k + l)/2 <i<k},  
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Fig. 8. Nodal finite elements of the BDM type in 2D 

~ 0~2 It=2 

where 

~ k = S p  an {P~+ 1.i, P~,i+ x ,  P/+2, I- -P/ . i+2,  i =  k +  1/2}, k odd, 

{P/+2, I--P/,i+2". i=k/2}, k even, 

V k ~ N  (20) 

Note  that we do not restrict k to IN, but only to N,  as a nodal finite 
element of the BDM type exists per se when k =  0 even if it cannot be directly 
related by extension to a mixed-hybrid BDM finite element. Also when k =  1, 
the spaces ~ we construct is identical to the one Brezzi-Douglas-Marini consid- 
ered for their nodal extensions, another  positive feature of our algorithm. Finally 
as it is easy to check, these finite elements climb correctly in order. 
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i I I t k=l 

I I 

t 1 +o 
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! | i 

Fig. 9. Family a: a family of nodal finite elements not  climbing correctly in order 

It is tempting to investigate the possibility of constructing other families 
of nodal finite elements with the BDM philosophy of minimizing the number 
of parameters necessary to ensure the same orders of convergence. To pass 
the patch test at order k, we use (k+l )  moments on each edge or 4(k+l)  
such moments in total. To ensure ~ k + l C ~  we need a total, edge and cell 
moments, of (k + 2) (k + 3)/2 degrees of freedom at least. 

We remark that for k< 3 the number of edge moments necessary to satisfy 
the patch test is greater than the number of edge and cell moments necessary 
to satisfy ~k+1C5~, and the situation is reversed when k>4. At this stage, 
it is important to mention that, in real life calculations, high order elements 
(say k > 2) are quite seldom used. 

It is clearly possible to improve upon the nodal finite elements of the BDM 
type by taking fewer cell moments, for instance moments with respect to r 
(k > 1) (family a) or with respect to ~3 k_ 3 (k > 2) (family b) instead of with respect 
to ~k-1 (k>0). If we apply Algorithm 1 to obtain the corresponding space 
5Pk, these spaces are Dk-unisolvent but the corresponding finite elements do 
not climb correctly in order as ~k+l is not in general contained in 5ek (see 
Figs. 9 and 10). 
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i I l I t �9 k = 2  

I I I 

Fig. 10. Family b: a family of nodal finite elements not climbing correctly in o r d e r  

i 
. I i 

I I l 
+~ ~ +  k_-I 

YES 

Fig. 11. Nodal finite element schemes resulting from a modification of Algorithm 1 for family a - k  = 1 

We can however modify Algorithm 1 in order to achieve correct orders, 
and we have indicated some of the resulting schemes in Figs. 11 and 12. There 
does not seem however to be a general pattern for doing so; see Fig. 13. Still, 
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Fig. 12. Nodal finite element schemes resulting from a modification of Algorithm ! for families a 
and b - k = 2  

as can be seen for these examples, the kind of unisolvence proof used before 
is quite helpful. 

Before leaving this section, we illustrate in Fig. 14 that our  algorithm can 
also be used in situations where some asymmetry is present, as for instance 
when more horizontal moments are prescribed than vertical ones. There are 
indeed physical situations where the use of thick or thin rectangles is clearly 
recommendable, as for instance in neutron transport deep penetration problems 
[15]. 

5. The Three-Dimensional Case 

In three dimensions, the Pascal triangle becomes a Pascal tetrahedron and it 
is clearly more difficult to visualize what happens. As before, we shall first 
assume that on the left and right (or vertical) faces of a given cell, moments 
with respect to ~3k~ or ~kx, Zx are prescribed, where kx is an integer > - 1 ,  while 
l~ when it is specified is a nonnegative integer, a value of ( -  1) for k~ indicating 
that no moments are considered on the vertical faces. On the up and down 
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NO 

Fig. 13. Schemes resulting from a modification of Algorithm 1 which are not unisolvent (Family 
a , k = l )  
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Fig. 14. Examples of asymmetric nodal finite elements 
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(or horizontal) faces as well as on the front and back (or frontal) faces, moments 
are similarly prescribed with respect to ~3k, or ~k,,l, and ~3kz or ~k~,l.. Finally, 
cell moments with respect to ~, ,  or ~ . . . . .  are also prescribed. Clearly, one 
at least of kx, k r, ks and m should be nonnegative. The notation used is illustrated 
in Fig. 15. For the sake of simplicity we shall consider the case where kx=ky 
=k~=k  and Ix=ly=l~=l. 

In 3D, our algorithm can be stated as follows: 
Assume that vertical, horizontal, and frontal face moments with respect to 

~k or ~k,l are specified as well as cell moments with respect to ~, ,  or ~ . . . . . .  
one at least of the integers k and m being nonnegative. The following algorithm 
gives a corresponding unisolvent basis that we shall represent with the help 
of a Pascal tetrahedron. We have: 

Algorithm 2 

(i) All the polynomials P~k belonging to the specified set ~m or ~ . . . . .  must 
be first included in the basis of 5(. In the Pascal tetrahedron, these polynomials 
will correspond to the i jk positions and we shall say that they constitute the 
trunk of the basis. 

(ii) Outside of the area occupied in the tetrahedron by the trunk, p two-boned 
legs must be pulled out in the x-direction, in the y-direction, and in the z- 
direction where p is the dimension of the specified set ~k or ~k.l" 

More precisely, the 2p vertical, horizontal, and frontal face moments, give 
rise to the basis elements P~,j, ij and P~,j +1, it, Pifi ~3k o r  ~k, l, Pi, blj, j and P/, b,j +l, j, 
Pij(~.~(~ k o r  ~k.t, and Pij, c,j and Pij, c,j+t, Pij~'~'~k o r  ~k.t, where the ali 'S  , bi j ' s ,  
and ciSs indicating the point of departure of the x-legs, y-legs, and z-legs respec- 
tively are determined as follows: 

For  P/je~3 k or ~k.l, aii is the least integer a, a > m a x  {i,j}, such that P~ij 
is not included in the trunk. The b~Ts and c~j's are defined analogously. We 
remark that as in the 2D case, the ij x-leg and the i'j' y-leg can overlap only 
if i =  i',j =j' and the points of departure of the legs is the same, i.e. a~j = b~,j, = i = i', 
and analogously for x-legs and z-legs or y-legs and z-legs. 
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(iii) If it happens that the point of departure of two but not three legs, 
say an x-leg and a y-leg, corresponding to the ij vertical face moment  and 
to the ij horizontal face moment  respectively, i . j ,  is common to both legs, 
these two legs will now be attached to the iij  position, and we shall include 
in the basis in addition to Pilj, Pi+ ~,i~ and P~,~+I,j the element P~+z.ij-Pi,~+2,~. 
We shall say that P~+z,~j and P~,i+z,j are bones of the ij x-leg and the ij y-leg 
respectively and that P,j is the iij-pelvis. The other combinations of two joined 
legs are handled analogously. 

(iv) We still have to consider the case that the point of departure of three 
legs, an x-leg, a y-leg, and a z-leg corresponding to say the i i vertical face 
moments,  the i i horizontal face moments,  and the i i frontal face moments  respec- 
tively, is the same. These three legs will now be attached to the i ii position, 
and we shall include in the basis in addition to Piii, P i+ l . i i ,  Pi, i + l , i  and Pii, i+ l  
the elements Pi+2.i i ,  P/,I+2.1, and P.,~+2 with the condition C i + 2 , i i - I - C i ,  i+2, i 
+ C . , / + 2 = 0  where Cabc is the coefficient of Pabe in the expansion of a member  
uh of ,~ namely 

Uh = ~ C.b~Pabc. (21) 
abc 

Then we have: 

Lemma 2. Given a set D of degrees of .fi'eedom conforming to the stated hypotheses, 
the space 5 '~ constructed by the algorithm is unisolvent with respect to D. 

Proof Quite similar to the proof  of Lemma 1. 

Remark 1. As for Algorithm 1, we could have assumed in (i) that P~k belongs 
to a set of the form s . . . . .  u ~  . . . . .  w ~  . . . . .  in order to be able to construct 
Langenbuch-Maurer-Werner  [19, 20] Z or sum nodal schemes in 3D, in analogy 
with Example 1. Again, these schemes do not climb correctly in order and their 
interest is therefore limited. 

Remark 2. In Algorithm 2, we could also include asymmetric cases k~+ky+k~ 
(and possibly l~ + ly 4= l~). In such situations an analog to point (iv) of Algorithm 1 
should also be considered. In practice, when such a situation is encountered, 
it is trivial to proceed by analogy with the 2D case. 

6. Some Examples in 3D 

Example 6. The Hennart  nodal schemes in 3D [17]. 

These schemes are obtained from the mixed-hybrid formulation/~ la Arnold- 
Brezzi [ I ]  of the N6d61ec [22] mixed finite elements (see Example 7), under 
appropriate  hypotheses. See Ref. [6] for the 2D case. We have: 

D~= {mT(~), m~(u~), ~ m~ (Uh), i, j = 0 . . . . .  l, 
m~ "k (uh), i, j, k = 0 . . . . .  l}, 

card (Dr) = (l + 1) 2 (1 + 7), (22) 

~ =  ~l+2, l, zu ~l,t+ 2.t U ~l,~,l+ 2 
dim (~)  = (1 + 1) 2 (I + 7), 

V I e N .  
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• 

Fig. 16. Hennar t  nodal scheme in 3 D - - l = 0  

Z 

3 0 0  2 0 0  

3 1 0  2 1 0  

1 0 0  0 0 0  

1 1 0  0 1 0  

1 2 0  0 2 0  

1 3 0  0 3 0  

• 

Fig. 17. Hennar t  nodal  scheme in 3 D - - l  = 1 

u 

Explicit dual basis functions are given in [17]. These schemes are illustrated 
in Figs. I6 and 17 and clearly climb correctly in order. 

Example 7. The original N6d61ec mixed finite elements [22]. 
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X ~ 

V i  

1 0 0  0 

2=0 

Y 
Fig. 18. Original N+d61ec mixed finite elements in 3D. First component  of vector variable - 1 = 0  

The case of the scalar variable is as trivial in 3D as it is in 2D and we 
shall only consider the vector variables g=(Vl, v2, v3). For 

Dl={m~(Vh,), i,j=O, ..., l, 

m ~jk i=0 ,  l-- 1 ' j ,  k=0 ,  l, 
ij m~(Uh2), 

m klVh2), 
m (vh3), 
mgk(v.3), 

i,j=O, ...,1, 

j=O, . . . , l - - 1 ; i , k = O  . . . .  , l ,  

i , j=O, . . . , I ,  

k=0,  . . . , l - - 1 ; i , j = O  . . . . .  l}, 

card Dl= 3( /+ I)2(/+ 2) 

~ =  {St+ 1,l,, x ~l.z+ 1,z x ~t,l,l+ 1}, dim ~ =  3(l+ 1)2(l+ 2), 

VleN. 

(23)  

See Figs. 18 and 19. As shown by N6d61ec [22], these elements climb correctly 
in order. 

Example 8. The new N6d61ec mixed finite elements [23]. 

For  the scalar variable, it is the same as in Example 7, while for the vector 
variable ~= (vl, v2, v3), we shall have 

Dl={miJ(l)lh), i , j=O . . . . .  l, 

m~k(V~h), i=0 ,  ..., l - -2 ; j ,  k=O . . . . .  l, 
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Y 
Fig. 19. Original N+d+lec mixed finite elements in 3D. First component of vector variable - l =  1 

miJ(Vzh), 

miJ(v3h), 
m~k(v3n), 

i,j=O, . . . , l ,  

j = 0  . . . . .  1--2; i, k = 0  . . . . .  1, 

i,j=O, . . . , l ,  

k = 0  . . . . .  l - 2 ;  i , j=O . . . .  , l}, 

(24) 

card Dt=3(l+ 1) 3 

~ = ~ l x ~ t x ~ l ,  d i m ~ = 3 ( l + l )  3, 

V / e N , .  

See Fig. 20. As shown by N6d61ec [23], these elements climb correctly in order. 
If we call N1 the dimension of ,~ (or the cardinality of Dt) for the original 
N6d61ec mixed finite elements and N 2 the corresponding dimension for the new 
N6d61ec mixed finite elements, we have 

N2 /+1  
N~ - l + 2'  (25) 

which tends asymptotically to one. Consequently, the lowest order new N6d61ec 
mixed finite elements with l=  1 or maybe 1=2 are the most interesting ones. 
We note that if a mixed-hybrid form is considered, the nodal finite elements 
obtained by extension would be identical to the Hennart  nodal schemes in 
3D [17] as are those obtained from Example 7. 

Example 9. The 3D mixed finite elements "~t la B D M "  [3]. 
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I s  

Fig. 20. New N6d61ec mixed finite elements in 3D. First component of vector variable - 1 =  1 and 
l = 2  

In a recent pape r  [3], Brezzi et al. p roposed  mixed finite elements in 3D, 
which are a na tura l  general izat ion to 3D of the 2D mixed finite elements of  
Ref. [4] (see Example  4). 

Assuming  tha t  l e l N , ,  the scalar var iable  is taken to be in ~3z_1, instead 
of ~ ,  namely  

l(l+l)(l+2) 
D t = {m~ jk, 0 ~ i + j  + k < l - 1 }, card D~ = 6 ' 

l(l+l)(l+2) 
= ~ t - 1 ,  dim ~ = 6 ' (26) 

VIe ]N, .  

F o r  the vector  variable O=(vl ,  v2, v3) 

Dt={m~(Vhl), O<i+j<=l, 
m~k(Vhl), O<=i+j+k<=l--2, 
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it mr(vh2), O<=i+j~l, 
m~k(vh2), O<=i+j+k<=l--2, 
m~(vh3), O<i+j<l, 
m~k(vh3), O<i+j+k<l--2}, 

card D z = (l 3 + 612 + 171 + 12)/2, 

[/ \ 
0 < = { ~ 3 , • 2 1 5  il-(lo1)Pt,o), l Poo,2,+, ) 

span / f ( i  +1)  Pli, l-i~ 

t\  o" ')' 
i=1  . . . .  , l ,  

dim ~ = ( l  3 + 612 + 17l+ 12)/2. 

,~ 
( i+ 1)Pi l-i 1/ 

(27) 

- - ( l+  1) Po, i l l  

(i+ l)Pl-i. 1 

P / - i , o , i +  1 

As in Example 4, it is possible to use our general technique to prove unisolvence. 

Example I0. The (new) nodal finite elements of BDM type in 3D. 

These nodal finite elements are extensions "fi la Arnold-Brezzi" of the 3D 
mixed finite elements "/L la B D M "  of Example 9. We have: 

Dz={m~(uh), mT(uh), mi~(Un), O<=i+j<=l, 
m~k(un), O<i+j+k<l--l},  

card D~ = (l + 1) (l + 2) (l + 18)/6 
3 3 

i = l  i = 1  

where ~r ~r and d 3 are the spaces generated by the solitary legs corresponding 
to the vertical, horizontal, and frontal face moments respectively, 

d l  = span  {Piik, Pi+ 1.j,k: i>j, k, i+j+k=l}, 

with d 2  and d 3  being defined as was d l  with the obvious rotation of the 
indices; ~1,  ~2  and ~3 are spaces generated by the joined pairs of legs,. 

:~l =span  {Pijj, Pi.~+ l,i, Pij.j+ l, Pi, j+ 2, j--Pii j ,  j+ 2 : i>j, l<=2i +j<=21--j}, 

again with ~z  and ~3  being defined as was ~ with the proper index rotation; 
and cg is the space generated by the joined triples of legs, 

~ = s p a n  {Piiii, Pi+ l , i , i ,  Pi, i+ l , i ,  Pi, i ,i+i, Pi+ 2,i,i, 

Pi.i+ 2,i, Pi, l,i+ 2, with Ci+ 2,, 
Ci, i+ 2,i+ Cn, i+ 2=O: I/3<i<1/2}. (28) 

dim ~ = (l + 1) (l + 2) (l + 18)/6, 

VI~N. 
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Fig. 21. Nodal finite elements of BDM type in 3 D - l = 0  
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Fig. 22. Nodal finite elements of BDM type in 3 D - l =  1 
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The first two such elements are illustrated in Figs. 21 and 22, including the 
case / = 0  which exists per se. To see that these elements again climb correctly 
in order, we need to show that ~3~+Lc~.  Consider PUk with i+j+k=l. We 
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may assume i>j, k. Then P~jk is the first bone of the leg corresponding to the 
j k  horizontal moments: if i>j ,k;  P i j k~ l ,  if i = j > k  or i=k>j ;  P/jke~3 or 
Pi~ke~Z, and if i=j=k ,  P~ik6cg. Next suppose i + j + k = l + l  and again assume 
i>j, k. If i>j, k then P~k is the second bone of the leg corresponding to the 
j k  vertical moments. Otherwise, say i=j, P~jk is the first bone for the ik horizontal 
face moments and for t he jk  vertical face moments and P~jkeM 3 unless, of course, 
i=j  = k in which case P~k ~ ~. 

We remark that since ~t+~ = ~  an expression analagous to that given for 
the 2D BDM nodal elements could be used to define 5~/ but in 3D such an 
expression is quite tedious. (In fact even with the expression given here ~ is 
probably more easily constructed using Fig. 21 or Fig. 22 than using the formu- 
la.) 

Appendix A 

Examples of Basis Functions in 2D 

1. The Hennart Nodal Schemes in 2D [17, 18]. The basis functions have been 
given explicitly earlier [ 17] and will be recalled here for the sake of completeness. 

Corresponding to the degrees of freedom m i and m~ of u (see Eq. (13)), we 
have: 

U~=�89  i] , i----0 . . . . .  k ,  

U~=�89 l,i--~-Pk+2,i], i=0,  ..., k, (A1) 
i ) _  Uc-  Pij-- Pk +,,,), j --  Pi, k +.,~), i , j = 0  . . . . .  k, 

where re(i) (resp. re(j))= 1 or 2 is such that i and k+m(i) (resp. j and j+m(j))  
have the same parity. As in the preceeding examples, the basis functions corre- 
sponding to the vertical degrees of freedom m i can be obtained by exchanging 
x and y and by replacing L and R by D and U respectively. In [17], asymmetric 
2D basis functions are also given. 

2. The Raviart-Thomas Mixed Finite Elements [25]. These basis functions have 
also been given explicitly earlier [16]. 

For  the degrees of freedom m~ of the scalar variable u (see Eq. (16)), the 
basis functions are quite simple (they are of the trunk-only type) and reduce 
to 

u~(x, y)-u~=Pi~=Pij(x, y), i,j=O .. . .  , k. (A2) 

For  the degrees of freedom m i and m~/ of the first component vl of the 
vector variable ~ (see Eq. (17)), we have the corresponding basis functions 

vilL=�89 i = 0  . . . . .  k, 

v]R = �89 [Pk~+ Pk+ 1,,], i = 0  . . . .  , k, 
and 

V]Jc = P / j -  Pk_ 1 +,,(0, j, i = 0  . . . . .  k - 1 , j = 0 ,  ..., k, 
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where m(i)= 1 or 2 is such that i and k - 1  +re(i) have the same parity. Similar 
expressions hold for the corresponding degrees of freedom of v2, with the roles 
of x and y exchanged and L and R replaced by D and U respectively, 

3. The Brezzi-Douglas-Marini Mixed Finite Element [4]. Here the situation is 
more complex than in the Raviar t -Thomas case and for the vector variable, 
we were unable to find a general compact  expression. For  the scalar variable 
formula (A 2) is again valid. 

We can however easily retrieve the basis functions by hand for the simplest 
cases or by computer  as soon as k grows. For  k = 1 for instance (the first such 
mixed finite element), we have following (19) 

. . -5) 1 vL- (~ (e~o- eoo), 0) 
~ =(�89 o) 
vL-(:(P,'- ~ ,-Po,),~(Poo-Po~)) 

(A 4) 
~1__ 1 1), 1 ( P o o _  Po2)). vR-(z(Pol + ~ 

Similar expressions for vD, "~ vv,~~ vo~l and ~ are obtained by exchanging the compo- 
nents as well as x and y and by replacing L and R by D and U respectively. 

4. The Nodal finite Elements of the BDM Type in 2D. Here again, a general 
pattern was not evident but we have for instance corresponding to the degrees 
of freedom given by (20) and in the case k = 0 

0 1 UL =~(Poo-- 2 P~ o + P2o- Po2) 
(A 5) 

0 1 UR = ~ (Poo +2P~o + 1~ Po2), 

with u g and u ~ being determined similarly. 
In the case k = 1, we get 

0 1 UL=:(-  Plo + P2o + P12) 
u~189 
ui =k(-Pi~ +2P~ -P~i +Pl~) 
ui =1(+ pi~ +2P~ +P~l-p~3) 

and 
0 0 _ _  Uc - P o o -  P ~ o -  t"o2, 

the same remark as above being valid for the vertical edge basis functions. 

(A 6) 

Appendix B 

Examples of basis functions in 3D 

1. The Hennart Nodal Schemes in 3D [17, 18]. These basis functions were given 
in [17] and are recalled here. Corresponding to the degrees of freedom m~ 
and mic Jk of u as in (22), we have 

uiJ--• [P/+ ,ij--Pl+z,ij], i,j=O, l, L - - 2  I, 1 " ' ' ~  

u i j _ •  "~- P/+ 2, i j] ,  i , j=O, 1, (B1) R - -  2 L ~ l +  l , i j  " ' ' ~  

u~k=Pok-- Pl+m(i),jk--Pi, t+m(j),a-- Pii, t+,,(k), i,j, k = 0  . . . . .  l, 
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where m(i), re(j)  and re(k) have the same meaning as before. Again the other 
face basis functions can be retrieved from u~ and u~ by trivial symmetry opera- 
tions. 

2. The NddOlee M i x e d  Fin i te  E lemen t s  [-22]. The case of the scalar variable 
being again trivial, we shall only pay attention to the vector variable and more 
specifically to its first component  vl. The basis functions for the other two 
components  are obtained as in Appendix A by trivial exchanges of the arguments 
and substitutions of the face identifiers. 

For  vl whose degrees of freedom m i~ and m~ k are described in (23), we 
have the corresponding basis functions: 

i j  1 l V I L = Z ( - -  1) [Pt+ t.~i-- Ptij], i , j = O  . . . .  , l, 

vii _ l_r p i, j = O  . . . .  , l, l R - -  2 L ' . j  + Pt+ 1. i~],  
and 

v i j k _  p _ p i = 0 ,  t - - 1 ;  j ,  k =O, I, (B2) I C - - ~ i j k  * l - l + m ( i ) , j k ,  " ' ' ~  " ' ' ,  

where re(i)= 1 or 2 is such that i and 1 -  1 +re( i )  have the same parity. 

3. The N e w  Ndddlec M i x e d  Fin i te  E lemen t s  [23]. As in the previous example, 
we shall only consider the first component  v 1 of the vector variable whose 
degrees of freedom m ij and m~ k are described in (24). 

The corresponding basis functions are 

vilJL=- �89 l [Pl, ij-- Pt_ l.ij], i , j = O  . . . . .  I, 

v ~ J R = k [ P I _ I , i j + P , j ] ,  i , j = O  . . . . .  l, 
and 

l)ilJ'~ = P i j k  - -  P / -  2 + re(i), j k ,  i = 0 . . . .  , l - -  2 ; 

j, k = 0  . . . . .  l ( B 3 )  

where m(i)= 1 or 2 is such that i and l - 2 + m ( i )  have the same parity. 

4. The N o d a l  Fin i te  E l emen t s  o f  the B D M  Type in 3D. As in Appendix A 
Sect. 4, a general pattern was not evident but we have for instance corresponding 
to the degrees of freedom given by (26) and in the case l =  0 

O0 1 UL = g (Pooo -- 3P1oo + 2Pzoo -- Po2o - -  Poo2), 
(B 3) 

u ~176 = ~ (Pooo + 3 Pi oo + 2P2oo -- Po2o - Poo2), 

The other basis functions are obtained as above by symmetry considerations. 

Appendix C 

Error  Es t ima te s  

In this last appendix, we give a general theorem leading to error estimates 
when nodal finite elements are applied to approximate  the solution of the second 
order elliptic equation, 

- - A u = f  in O, (Cla)  

u = 0  on F. (Clb)  



A Constructive Method for Deriving Finite Elements of Nodal Type 733 

Classically this strong form of the equation is first transformed into an equiv- 
alent weak form which reads 

Find u e V such that 

a(u,v)=f(v)  VveV, (C2) 

where V-H~( f2 )  is the standard Sobolev space of functions which have square 
integrable (generalized) derivatives up to and including first order and a zero 
trace on F, while 

a(u, v)= I Cu.r 
f2 

and 
f ( v ) =  I f vd : .  

To obtain a discretized version of (C2), we assume, as in the text, that we 
have a family indexed by h of regular meshes Oh= {O~: e =  1 . . . .  , Eh} of the 
union-of-rectangles type on O with h an upper bound on the diameters of the 
rectangles O e in Oh. With classical finite element methods, to obtain an algebraic 
system of finite order N, the primal form (C2) is replaced by 

Find uhe Vh such that 

a(uh, Vh)= f (Vh) V Vh e Vh (c3) 

where Vh is a finite dimensional subspace of V whose elements are polynomials 
over each f2, in Oh and are continuous on O. 

If nodal finite elements are used instead as in examples 1, 2, 5, 6 and l0 
the elements of the finite dimensional space Vh are polynomials over each f2~ 
but only some of the moments  and not the functions themselves are required 
to be continuous through the edges (in 2D) or faces (in 3D) common to two 
adjacent rectangles. On the boundary F moreover, the trace of an element vhc Vh 
is not necessarily zero but again only some of its moments. Consequently Vh ~ V 
and (C 3) must be replaced by 

where 

Find uh Vh such that 

ah (uh, vh) = f ( Vh) V Vh e Vh, (c4) 

E 

ah(uh, vh)= ~ ~ :Uh':Vhdi. (C5) 
I=1 ~2e 

Let us assume in the following that we are in 3D, the 2D case being trivially 
deduced from the 3D case, and that the restriction vhla~ of an element Vh of 
Vh to the element (2e is defined as in the main text by a set of degrees of 
freedom D and a space 5 e of polynomials. Assume moreover  that ~k c ST, k a N , ,  
and that the restriction Uhlre: of Un to the faces Fey of f2e, where f stands for 
L, R, U, D, F, and B have moments  with respect to ~t ,  laN,  continuous through 
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the corresponding faces, i.e. that m~/eD, O< i + j <  l. With these hypotheses and 
assuming that at each step of the following demonstration u has the regularity 
required by the context, we can prove: 

Theorem. 

IlU--UhNo <=Ch ~ +111ULI~ +1,~ (C6) 

where 2 = m i n  {k, l+  1} and IP' JIo is the L 2 norm of the error U-- Uh. 

In the demonstration which follows, many steps are classical and we shall 
refer the interested reader to Ciarlet [7] for the details. 

D~monstration. a) Let us first introduce for each element VheVh a norm llVh Ilh 
defined by 

e = l  

where 

~e 

II " lib is a priori only a semi-norm on Vh. However, we have: 

Lemma 1. IF " Ilh is a norm on Vn. 

Proof IlVhHh=O implies that VhlFae=Ce, e = l  . . . .  ,E ,  where Ce is a constant 
depending in principle on e. Now with the above hypotheses, C~=vhl~o=Vhlee~ 
=m~O(Vh) for any face f and is thus continous through it. In other words, C~ = C, 
Ve. Finally on F, at least the zeroth order moment  of Vh is equal to zero so 
t h a t C = 0 .  QED. 

b) Let us enlarge the domain of definition of ah(" , ") and [l" Ilh to Vn+ V: 
VveV, ah(V, v)=a(v, v) and IlvHh=lvlx,~. We remark that rl lib is a norm on 
Vh + V and we have 

Lemma 2. For the family of spaces Vh, aa( ", ") is uniformly Vn elliptic in the sense 
that there exists ~ > 0 such that 

c~llv~ll~<=ah(v., vh) Vv. 

where ~ is independent of h. Moreover there exists a positive constant M indepen- 
dent of h such that 

Jah(U, v)I<=MI]u]IaNvlla Yu, VeVh+V. 

Proof The proof  is based on the definitions (C 5) and (C 7), and is trivial. 

As a consequence of this lemma, there is one and only one solution to 
the discrete problem (C4). 

c) The next step consists in getting error estimates and it depends on the 
second Strang lemma (Ciarlet [7], p. 210), saying that if we consider a family 
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of discrete problems (C4) such that Lemma 2 is satisfied, there exists a constant 
C independent of h such that 

IlU--UhHh < C (  inf IlU--Vhllh+ sup 
\vh ~ vh wh ~ vh Ilwhlth }" 

To obtain error estimates, it remains to bound the two terms appearing in 
(C 8), the second one coming from the nonformity Vh eg V. We have 

(i) For  the first term, we clearly have 

inf [lU--Vhlth~ I[u--~hl[h, 
OhEVh 

where fin is the interpolation of u in Vh, distinct in principle from its approxima- 
tion Uh. If U is any member of ~ k = ~  we shall have U--ah and it is a direct 
consequence of interpolation theory in Sobolev spaces (Ciarlet [7], w that 
under standard assumptions on the regularity of the mesh considered, there 
exists a constant C such that 

so that 
IlU--l~h IIh~ chklulk + 1 ,~  

inf IlU--Vh llh ~ chk[1Alk + l,f2 
Vh~V h 

(C9) 

(ii) For  the second term, we have for any WhE Vh 

and 

E 

f (Wh)=~ f W h d f =  Z I fWhdf ,  
f2 e = l  ~e  

fWhd?= -- ~ AU.Whd(= ~ lYu. VWhdF- ~ ([TU'le) Whds , 
~e  f2~ f2~ F~ 

where ~ is the boundary of ~2e and ]'e a unit outward pointing normal on 
F~, Consequently 

E 

ah(U, Wh)--f(Wn) = ~ ~ (r W h ds. (C 10) 
e = l  Fe 

Let Htef(lYu.ie) denote the interpolation of Vu.lelr~ ~ in ~31, l~N. Clearly, the 
sum appearing in the righthand side of (C10) is identically zero when ffU'le 
is replaced over each face appearing in F~ by this interpolation. First of all, 

�9 if Fee, denotes the common face of two adjacent elements f2~ and t2~,, we have 

Hee,(VUlr~e. 1 e -  [~Ulo, " le,) W n ds=O, 
Fee" 

(cll) 
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since the m o m e n t s  m~(Wh) , O ~  i+ j< l, are continuous through any internal face. 
Moreover  if ~y is any external face (F~: c F), we have 

IIt~:(17u l~) wa ds=O (C 12) 

as the m o m e n t s  m~(wh) , 0 < i + j <  l, are zero on any external face. Consequently 
(C 10) can be rewritten as 

an(U, Wh)-- f (Wh)= ~ ~ { Vu" Ir Ht~(I~U" I~)} wads. (C13) 
e r~ 

Consider one term of the sum appearing in (C 13). It is a linear functional 

wh ~ ~ {Vu-i~ II~y(Vu-le)} wads 
roy 

continuous on H 1 (~e), of norm less than or equal to II ~u. ~ e -  n~y(r fe) l[o, to:, 
identical to zero VWhe~9o (since flu. 1~ and its interpolate have at least the same 
mean value over each Fez). Employing the Bramble-Hilbert  lemma, (Bramble 
and Hilbert [2] Th. 2), we have 

I [. { : u ' l e - - U ' e s ( r  r~: �9 

Using again the results of interpolation theory in Sobolev spaces we have 

hence 

I ~ {Vu'-fe-II~s(:U'i~)} whdsl<Cht+'lwnll,e,  ll:u'lellt, r~: 

I ~ { V u ' l e - l T ~ f ( V u ' i e ) }  wnds [~gh~+' lwn l , ,~ l luH~+ z,o~ �9 (C 14) 

Combining C 14 and C 13 we obtain 

so that 
Jan(u, wn)- f (wn)l ~ Ch '+ I lIWh 14nlul~+ 2,n 

laa(u, wh)-- f (wh)[ < Cht+ , lul~+ 2,~. sup = 
wh~Vh Ilwntlh 

(c15) 

Finally, from (C8), (C9) and (C 15), we get 

Ilu--uhLLh <ChX[ul~+ l,n, (C 16) 



A Constructive Method for Deriving Finite Elements of Nodal Type 737 

w h e r e  2 = m i n  (k,  l +  1 }. 

d)  T o  ge t  t h e  L 2 e s t i m a t e  o f  (C 6), s t a n d a r d  A u b i n - N i t s c h e  a r g u m e n t s  s h o u l d  

b e  a p p l i e d .  S e e  fo r  i n s t a n c e  N i t s c h e  1-24] a n d  L e s a i n t  [ 2 l ] .  Q E D .  
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