FONDEMENTS DES MATHÉMATIQUES 1996-97

Examen partiel du 12 décembre 1996

- **1.** (5 points) Résoudre dans \mathbb{C} l'équation $X^4 + 4 = 0$ (donner les résultats sous forme algébrique et sous forme exponentielle). En déduire la factorisation du polynôme $X^4 + 4$ dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.
- **2.** (5 points) Résoudre dans \mathbb{C} l'équation $Z^2 2Z + 4 = 0$ (on donnera les résultats sous forme algébrique et sous forme exponentielle). En déduire l'ensemble des solutions (sous forme exponentielle) de l'équation en $z: z^{2n} 2z^n + 4 = 0$, où n est un entier positif.
- 3. (5 points; a/ et b/ sont indépendants.) Soit P le polynôme $(X \sin \frac{\pi}{48} + \cos \frac{\pi}{48})^{12}$. a/ Quel est son terme de plus haut degré? son terme en X? son terme constant? (on rappelle la formule du binôme : $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$; on ne cherchera pas à calculer $\cos \frac{\pi}{48}$ ni $\sin \frac{\pi}{48}$). b/ Calculer le reste dans la division euclidienne de P par $X^2 + 1$ (on doit trouver : $\frac{\sqrt{2}}{2}X + \frac{\sqrt{2}}{2}$).
- **4.** (5 points; a/ et b/ sont indépendants.) Soit l'application $\varphi : z \mapsto iz + 1$ de \mathbb{C} dans \mathbb{C} a/ Quel est l'unique z_0 de \mathbb{C} invariant par φ (c'est-à-dire tel que $z_0 = \varphi(z_0)$)? Donner son module et son argument. b/ Montrer que φ est une bijection de \mathbb{C} dans \mathbb{C} et trouver sa bijection inverse φ^{-1} .

b) Montrer que φ est une bijection de \bigcirc dans \bigcirc , et trouver sa bijection inverse c/ Interprétation géométrique de φ et de φ^{-1} ?

5. (**4 points**) Trouver l'ensemble des points M(x,y) d'affixe z=x+iy du plan complexe tels que $\left|\frac{z+i}{z-i}\right|=\sqrt{2}$ (on rappelle que l'ensemble des points M(x,y) du cercle de centre I(a,b) et de rayon r a pour équation : $(x-a)^2+(y-b)^2=r^2$).