UNIVERSITÉ PARIS VIII Licence de mathématiques

Licence/Maîtrise d'informatique, option mathématiques

Examen partiel du 18 décembre 2002 (suivi de son corrigé)

1. (4 points) Déterminer les extrema dans \mathbb{R}^2 de la fonction f définie par :

$$f(x,y) = x^5 + y^5 - 5x^3 - 5y^3 + 10x + 10y$$

- 2. (6 points) On donne les applications $\varphi:\mathbb{R}^3\setminus\{x=0\}\setminus\{y=0\}\setminus\{z=0\}\longrightarrow\mathbb{R}^3$ et $\psi:\mathbb{R}^3\longrightarrow\mathbb{R}$ définies par : $\varphi(x,y,z)=\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)$ et $\psi(u,v,w)=u^2+v^2+w^2$. Calculer la matrice jacobienne $J_{(x,y,z)}\varphi$ et le gradient $\overline{\nabla_{(u,v,w)}\psi}$; en déduire le gradient $\overline{\nabla_{(x,y,z)}\psi\circ\varphi}$ de $\psi\circ\varphi$ (on montrera que $\overline{\nabla_{(x,y,z)}\psi\circ\varphi}={}^t[J_{(x,y,z)}\varphi]$ $\overline{\nabla_{\varphi(x,y,z)}\psi}$). Calculer la hessienne $\nabla^2_{(x,y,z)}\psi\circ\varphi$ et écrire la formule de Taylor à l'ordre 2 en (1,1,1) pour $\psi\circ\varphi$. Par exemple en écrivant (vérifier cette formule): $4(h^2+k^2+l^2-hk-kl-lh)=3(h-k)^2+(h+k-2l)^2$, montrer que cette hessienne en (1,1,1) est positive, mais non définie positive (i.e. son noyau n'est pas réduit à $\{\overline{0}\}$). On admettra d'autre part que $\forall a>0, \forall b>0, \forall c>0, \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$: vérifier que (1,1,1) est pour $\psi\circ\varphi$ un minimum local (et d'ailleurs aussi global) non strict en remarquant que tout point de la droite $\{x=y=z\}$ donne lieu au même minimum, égal à 3, pour $\psi\circ\varphi$).
- 3. (4 points) Déterminer les axes (direction, longueur = distance entre un sommet et le sommet diamétralement opposé) de l'ellipse plane d'équation $q(x,y) = 5x^2 + 6xy + 5y^2 = 4$, en montrant que ce problème (maximisation / minimisation de $x^2 + y^2$ sous la contrainte q(x,y) 4 = 0) revient en fait à rechercher valeurs propres et vecteurs propres de la matrice de la forme quadratique q.
- **4.** (6 points) Montrer, à l'aide de la formule des accroissements finis et du théorème du point fixe, que l'application $\psi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par $\psi(x,y) = \left(\frac{1}{2}\left(\sin xy + \frac{1}{2}\right), \frac{1}{2}\left(\cos xy + \frac{1}{2}\right)\right)$ applique $\overline{B}(0,1)$ dans $\overline{B}(0,1)$ et y admet un unique point fixe dont on donnera un algorithme de calcul à 10^{-3} près en x et en y (on rappelle que : 1/ la norme euclidienne d'une matrice A est la racine carrée de la plus grande valeur propre de tAA ; 2/ dans la méthode des approximations successives, pour une application f contractante de rapport k, une suite $(\overrightarrow{x_n})_{n\in\mathbb{N}}$ telle que $\overrightarrow{x_{n+1}} = f(\overrightarrow{x_n})$ converge vers le point fixe $\overrightarrow{\xi}$ de f avec une vitesse déterminée par la relation : $||\overrightarrow{x_n} \overrightarrow{\xi}|| \le \frac{k^n}{1-k} ||\overrightarrow{x_1} \overrightarrow{x_0}||$, c'està-dire d'autant plus vite que k est plus petit).
- **5.** (4 points) On cherche les extrema dans \mathbb{R}^n de l'application φ définie par $\varphi(\overrightarrow{x}) = ||\overrightarrow{x}||(1-||\overrightarrow{x}||)$. En s'aidant de la fonction : $r \mapsto r(1-r)$ de \mathbb{R}_+ dans \mathbb{R} , montrer que :
 - a/ $\overrightarrow{\nabla_{\overrightarrow{x}}}\varphi$ est partout défini sauf en $\overrightarrow{0}$ (calculer ce gradient) et ne s'annule que pour $||\overrightarrow{x}|| = \frac{1}{2}$;
- b/ $\overrightarrow{0}$ n'est sûrement pas un extremum global pour φ ; en revanche, c'est sûrement un minimum local (N. B.: φ n'est pas différentiable en $\overrightarrow{0}$);
- c/ aucun \overrightarrow{x} tel que $||\overrightarrow{x}||=\frac{1}{2}$ ne peut être un extremum local *strict*, mais que tout \overrightarrow{x} tel que $||\overrightarrow{x}||=\frac{1}{2}$ est un maximum local *non strict* pour φ .

Corrigé de l'examen partiel du 18 décembre 2002

- 1. On calcule: $\overrightarrow{\nabla_{(x,y)}f} = 5 \begin{vmatrix} x^4 3x^2 + 2 \\ y^4 3y^2 + 2 \end{vmatrix}$, gradient qui n'est nul que lorsque $(x^2 1)(x^2 2) = 0$ et $(y^2-1)(y^2-2)=0$, d'où 16 extrema possibles : $(\pm 1,\pm 1), (\pm 1,\pm \sqrt{2}), (\pm \sqrt{2},\pm 1), (\pm \sqrt{2},\pm \sqrt{2}).$ On calcule alors $\nabla^2_{(x,y)}f=20\begin{bmatrix}x\left(x^2-\frac{3}{2}\right)&0\\0&y\left(y^2-\frac{3}{2}\right)\end{bmatrix}$. La recherche des points où $\nabla^2_{(x,y)}f<<0$ (maxima relatifs de f) et de ceux où $\nabla^2_{(x,y)}f>>0$ (minima relatifs de f) met en évidence exactement 4 maxima: (1,1), $(1,-\sqrt{2})$, $(-\sqrt{2},1)$ et $(-\sqrt{2},-\sqrt{2})$ et 4 minima: (-1,-1), $(-1,\sqrt{2})$, $(\sqrt{2},-1)$ et $(\sqrt{2}, \sqrt{2})$. Aucun de ces extrema ne peut être un extremum global, puisque $\lim_{x,y\to+\infty} f(x,y) = +\infty$ et $\lim_{x,y \to -\infty} f(x,y) = -\infty$.
- **2.** On calcule: $J_{(x,y,z)}\varphi = \begin{bmatrix} \frac{1}{y} & \frac{u}{y^2} & 0 \\ 0 & \frac{1}{z} & \frac{-y}{z^2} \\ -z & 0 & 1 \end{bmatrix}$ et $\overline{\nabla_{(u,v,w)}\psi} = 2\begin{bmatrix} u \\ v \\ w \end{bmatrix} = {}^tJ_{(u,v,w)}\psi$, d'où

$${}^{t}\overline{\nabla_{(x,y,z)}\psi\circ\varphi}=J_{(x,y,z)}\psi\circ\varphi=J_{\varphi(x,y,z)}\psi\times J_{(x,y,z)}\varphi=2\left[\frac{x}{y}\quad\frac{y}{z}\quad\frac{z}{x}\right]\left[\begin{array}{ccc}\frac{1}{y}&\frac{-x}{y^{2}}&0\\0&\frac{1}{z}&\frac{-y}{z^{2}}\\\frac{-z}{x^{2}}&0&\frac{1}{x}\end{array}\right]=$$

$$2\left[\frac{x}{y^{2}} - \frac{z^{2}}{x^{3}} \quad \frac{y}{z^{2}} - \frac{x^{2}}{y^{3}} \quad \frac{z}{x^{2}} - \frac{y^{2}}{z^{3}}\right], \text{ et } \overline{\nabla_{(x,y,z)}\psi \circ \varphi} = 2\left[\frac{\frac{x}{y^{2}} - \frac{z^{2}}{x^{3}}}{\frac{y}{z^{2}} - \frac{x^{2}}{y^{3}}}\right]$$

Du calcul du gradient de
$$\psi \circ \varphi$$
 on déduit par dérivation la hessienne en (x,y,z) quelconque :
$$\nabla^2_{(x,y,z)}\psi \circ \varphi = 2\begin{bmatrix} \frac{1}{y^2} + 3\frac{z^2}{x^4} & \frac{-2x}{y^3} & \frac{-2z}{x^3} \\ \frac{-2x}{y^3} & \frac{1}{z^2} + 3\frac{x^2}{y^4} & \frac{-2y}{z^3} \\ \frac{-2z}{x^3} & \frac{-2y}{z^3} & \frac{1}{x^2} + 3\frac{y^2}{z^4} \end{bmatrix}$$

En (1,1,1), le gradient est nul et la hessienne vaut $\nabla^2_{(x,y,z)}\psi\circ\varphi=2\begin{vmatrix}4&-2&-2\\-2&4&-2\\2&2&4\end{vmatrix}$, et la formule de Taylor à l'ordre 2 s'écrit donc :

$$\psi \circ \varphi(1+h,1+k,1+l) - 3 = \begin{bmatrix} h & k & l \end{bmatrix} \begin{bmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{bmatrix} \begin{bmatrix} h \\ k \\ l \end{bmatrix} + o(h^2 + k^2 + l^2) = 4(h^2 + k^2 + l^2 - hk - kl - lh) + o(h^2 + k^2 + l^2) = (3(h-k)^2 + (h+k-2l)^2) + o(h^2 + k^2 + l^2)$$

La hessienne en (1,1,1) est bien positive, mais non définie positive, puisque son noyau, défini par $\{h-k=0,\ h+k-2l=0\}$ n'est pas réduit à zéro : c'est la droite $\{h=k=l\}$ de \mathbb{R}^3 . On ne peut donc pas conclure à l'existence d'un minimum strict pour $\psi\circ\varphi$ en (1,1,1). Et de fait, si l'on admet 1 que $\forall a>0, \forall b>0, \forall c>0, \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$, il est clair que (1,1,1) est pour $\psi\circ\varphi$ un minimum global (puisque $\psi\circ\varphi(1,1,1)=3$), donc aussi un minimum local. Mais comme en tout $x\neq 0, \ \psi\circ\varphi(x,x,x)=3$, tout voisinage de (1,1,1) contient une infinité de points en lesquels $\psi\circ\varphi$ vaut 3 comme en (1,1,1), et (1,1,1) est bien un minimum (global et) local *non strict* pour $\psi\circ\varphi$.

- 3. D'après le théorème sur les extrema liés, la fonction n^2 , carré de la norme euclidienne, ne pourra passer en (x,y) par un extremum sous la contrainte q(x,y)-4=0 que si en (x,y) les gradients $\overline{\nabla_{(x,y)}q}$ et $\overline{\nabla_{(x,y)}n^2}$ sont proportionnels. Or $\overline{\nabla_{(x,y)}q}=\begin{bmatrix}10x+6y\\6x+10y\end{bmatrix}$ et $\overline{\nabla_{(x,y)}n^2}=\begin{bmatrix}2x\\2y\end{bmatrix}$, donc la condition s'écrit: $\exists \lambda \in \mathbb{R}, \begin{bmatrix}5x+3y\\3x+5y\end{bmatrix}=\lambda\begin{bmatrix}x\\y\end{bmatrix}$, soit encore: $\begin{bmatrix}5-\lambda\\3\\5-\lambda\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$, ce qui n'est possible en $(x,y)\neq(0,0)$ (car comme $q(0,0)\neq 4$, (0,0) ne pourra être un extremum pour n^2 soumis à la contrainte q(x,y)=4) que si λ est valeur propre de la matrice $\begin{bmatrix}5&3\\3&5\end{bmatrix}$, matrice de la forme quadratique q (rappel: un système linéaire homogène n'a de solution différente de la solution nulle que si le déterminant du système est nul), et si $\begin{bmatrix}x\\y\end{bmatrix}$ en est un vecteur propre associé à λ . Les valeurs propres sont δ et δ , et on trouve pour vecteurs propres associés, respectivement δ . Pour δ et δ , et δ et δ , et on trouve pour vecteurs propres associés, respectivement δ , et δ et δ
- 4. Il est clair que ψ est, comme les fonctions sinus et cosinus, indéfiniment différentiable. De plus $||\psi(x,y)||^2 = \frac{1}{4}\left(\sin xy + \frac{1}{2}\right)^2 + \frac{1}{4}\left(\cos xy + \frac{1}{2}\right)^2 = \frac{1}{4}\left(\sin^2 xy + \cos^2 xy + \frac{1}{2} + \sin xy + \cos xy\right) = \frac{1}{4}\left(\frac{3}{2} + \sqrt{2}\sin\left(xy + \frac{\pi}{4}\right)\right) \le \frac{1}{4}\left(\frac{3}{2} + \frac{3}{2}\right) = \frac{3}{4} \le 1$, donc l'image de ψ est incluse dans $\overline{B}(0,1)$.

 1. $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ (ou encore $\frac{x^2}{y^2}$, $\frac{y^2}{z^2}$, $\frac{z^2}{x^2}$) étant 3 nombres positifs dont le produit vaut 1, ceci peut aussi s'énoncer ainsi: $\forall x_1 > 0, \forall x_2 > 0, \forall x_3 > 0$, si $x_1.x_2.x_3 = 1$, alors $x_1 + x_2 + x_3 \ge 3$. Plus généralement: $\forall x_1 > 0, \forall x_2 > 0, \dots, \forall x_n > 0$, si $x_1.x_2.\dots x_n = 1$, alors $x_1 + x_2 + \dots + x_n \ge n$. Ceci résulte de la convexité de l'exponentielle: comme $\sum_{i=1}^n \ln x_i = 0$, alors $1 = \exp\left(\frac{1}{n}\sum_{i=1}^n \ln x_i\right) \le \frac{1}{n}\sum_{i=1}^n \exp(\ln x_i) = \frac{1}{n}\sum_{i=1}^n x_i$. Mais donnons-en, dans le cas n = 3, une démonstration élémentaire qui n'utilise pas la notion de convexité: d'abord $\forall x > 0, \forall y > 0, x + \frac{y}{x} \ge 2\sqrt{y}$ ($\cot \frac{1}{x}(x \sqrt{y})^2 \ge 0$), donc $x + \frac{y}{x} + \frac{1}{y} \ge \frac{1}{y} + 2\sqrt{y} \ge 3$ (car il est facile de vérifier que la fonction $y \mapsto \frac{1}{y} + 2\sqrt{y}$ passe en y = 1 par un minimum absolu, égal à 3), et donc en posant $x = \frac{a}{b}, y = \frac{a}{c}$, on a bien comme annoncé: $\forall a > 0, \forall b > 0, \forall c > 0, \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$.

Pour chercher si ψ est bien contractante de $\overline{B}(0,1)$ dans $\overline{B}(0,1)$, calculons la norme $||J_{(x,y)}\psi||$ de la jacobienne de ψ : $J_{(x,y)}\psi=\frac{1}{2}\begin{bmatrix}y\cos xy & x\cos xy \\ -y\sin xy & -x\sin xy\end{bmatrix}$, d'où ${}^tJ_{(x,y)}\psi J_{(x,y)}\psi=\frac{1}{4}\begin{bmatrix}y^2 & xy \\ xy & x^2\end{bmatrix}$, qui a pour valeurs propres les racines de $\left(\frac{y^2}{4}-\lambda\right)\left(\frac{x^2}{4}-\lambda\right)-\frac{x^2y^2}{16}=\lambda\left(\lambda-\frac{x^2+y^2}{4}\right)=0$. Il s'ensuit que $||J_{(x,y)}\psi||=\sqrt{\frac{x^2+y^2}{4}}\leq \frac{1}{2}$ puisque $(x,y)\in\overline{B}(0,1)$. ψ est donc contractante de rapport $\frac{1}{2}$ de $\overline{B}(0,1)$ dans $\overline{B}(0,1)$. D'après le théorème du point fixe, ψ admet alors un unique point fixe $\overline{\xi}$ dans $\overline{B}(0,1)$, et d'après la méthode des approximations successives, $\overline{\xi}$ est obtenu comme limite de la suite $(\overline{x_n})_{n\in\mathbb{N}}$ définie par $\overline{x_0}$ quelconque, par exemple $\overline{0}$, et $\overline{x_{n+1}}=\psi(\overline{x_n})$, avec une vitesse de convergence vers $\overline{\xi}$ déterminée par $||\overline{x_n}-\overline{\xi}||\leq 2^{-n+1}||\overline{x_1}-\overline{x_0}||\leq 2^{-n+1}$. Il suffit alors de prendre n=11 pour obtenir que $||\overline{x_1}-\overline{\xi}||\leq 2^{-10}\leq 10^{-3}$. Le terme $\overline{x_{11}}$ de la suite ainsi définie est donc une valeur approchée de $\overline{\xi}$ à 10^{-6} près, le terme $\overline{x_{21}}$ de la suite conviendrait).

5. a/ La fonction $\varphi: \overrightarrow{x} \mapsto \varphi(\overrightarrow{x}) = ||\overrightarrow{x}||(1-||\overrightarrow{x}||) = ||\overrightarrow{x}||-||\overrightarrow{x}||^2$ a pour gradient (cf. cours) $|\overrightarrow{x}|| - 2\overrightarrow{x}| = \overrightarrow{x}\left(\frac{1}{||\overrightarrow{x}||} - 2\right)$ qui est défini partout sauf en $|\overrightarrow{0}|$, est n'est nul que si $||\overrightarrow{x}|| = \frac{1}{2}$. b/ $|\overrightarrow{0}|$ n'est pas un extremum global pour φ parce que $\varphi(|\overrightarrow{0}|) = 0$, alors que pour $||\overrightarrow{x}|| < 1$, $\varphi(|\overrightarrow{x}|) > 0$, tandis que pour $||\overrightarrow{x}|| \longrightarrow +\infty$, $\varphi(|\overrightarrow{x}|) < 0$. En revanche, pour tout $|\overrightarrow{x}||$ non nul dans $B(|\overrightarrow{0}|,1)$, $\varphi(|\overrightarrow{x}|) > 0$ alors que $\varphi(|\overrightarrow{0}|) = 0$, donc $|\overrightarrow{0}|$ est un minimum local *strict* pour φ . c/Aucun $|\overrightarrow{x}||$ tel que $|||\overrightarrow{x}|| = \frac{1}{2}$ ne peut être un extremum local *strict* pour φ puisque tout voisinage de tout $|\overrightarrow{x}|| = \frac{1}{2}$ contient une infinité de points (tous les points de la sphère d'équation $||\overrightarrow{x}|| = \frac{1}{2}$ qui sont dans ce voisinage) en lesquels φ a la même valeur qu'en $|\overrightarrow{x}||$. En revanche, puisque φ ne dépend que de $||\overrightarrow{x}||$ et que la fonction $||\overrightarrow{x}|| + ||\overrightarrow{x}|| + ||\overrightarrow{x}||$ ans $||\overrightarrow{x}||$ passe par un maximum,

égal à $\frac{1}{4}$ en $\frac{1}{2}$, tout \overrightarrow{x} tel que $r = ||\overrightarrow{x}|| = \frac{1}{2}$ est un maximum (d'ailleurs global aussi bien que local) pour φ , mais un maximum *non strict*.