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Abstract. In order to better understand the dynamics of acute leukemia, and in particular to find
theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we inves-
tigate stability of a system modeling its cell dynamics. The overall system is a cascade connection
of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on
local asymptotic stability are improved by the analysis of the linearized system around the positive
equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and
nonlinear small gain criteria. The results are illustrated with numerical examples and simulations.
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1. Introduction
In this paper we consider a mathematical model of hematopoietic cell dynamics, developed in a
series of papers by Adimy et al., [2, 4, 5, 8], based on earlier models of Mackey and his colleagues,
[15, 23, 30, 34, 37, 38]. One of the most recent studies in this line of work is [5], where a system
with distributed delay is considered with applications to acute myelogenous leukemia (AML).

∗Corresponding author. E-mail: hitay@bilkent.edu.tr

203

Article published by EDP Sciences and available at http://www.mmnp-journal.org or http://dx.doi.org/10.1051/mmnp/20127109

http://publications.edpsciences.org/
http://www.mmnp-journal.org
http://dx.doi.org/10.1051/mmnp/20127109
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This is a nonlinear system consisting of several compartments connected in series. Equilibrium
conditions are studied and local stability analysis for different equilibria is done in [5], where
sufficient conditions for local asymptotic stability are obtained using earlier results of [8]. Later, in
[52] a necessary and sufficient condition is obtained for a particular choice of the distributed delay
kernel for the linearized system.

The main practical interest of studying such stability conditions is to investigate possible sta-
bilizing procedures that may offer guidelines for theoretical therapeutic drug infusion schedules in
AML. AML is characterized by uncontrolled proliferation together with a blockade of differenti-
ation. In the special case of promyelocytic acute leukemia (AML3 in the FAB classification), it is
known and universally used in the clinic that the combination of a cytotoxic drug and of a redif-
ferentiating agent, two drugs with completely different mechanisms, cures 80% of patients [28],
which unfortunately is not the case of other types of AML. Our goal is firstly to give theoretical, as
opposed to empirical, conditions under which this known treatment will be efficient, and secondly
to supply biomedical collaborators, who perform pharmacological experiments on leukemic cell
cultures, with a rationale to design new therapeutic schemes on various forms of AML. Indeed, one
may note that apart from promyelocytic leukemia [28], the pharmacological treatments of AML
have remained almost at a standstill in the past forty years [60], new targeted therapies being still
under investigation and the only sure way to cure AML being bone marrow transplant [33]. In
such context, there is reasonable room for theoretical methods to help better understanding of the
disease dynamics and possible therapeutic advances.

Various aspects of linear systems with distributed delays have been studied earlier, [26, 43,
45, 46, 64, 65]. In this paper, by using a frequency domain analysis, we improve the sufficient
conditions of [5, 52]. For this purpose, we study the gain margin for the linear models around the
“positive equilibrium.” There are many equilibria for this nonlinear system; here, we concentrate
on a particular one which gives non-zero cell count in each compartment of the model proposed by
[5]. In this sense, we extend our earlier work [52] to cover all possible cases of parameter values
in the linearized model.

The second part of our main results deals with stability analysis of the compartmental nonlinear
system. For delay systems with uncertain nonlinearity, primary tools of stability analysis have been
the nonlinear small gain condition, circle criterion and Popov criterion, [16, 29, 56, 58], see also
[10, 11, 48, 17] and their references. Here, we show that the system studied in [5] can be put within
the framework of these methods.

In Section 2. the mathematical model of cell dynamics is described. The main results are
presented in Section 3. Numerical examples and simulations are given in Section 4. Concluding
results are made in Section 5.
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2. Mathematical Model of Cell Dynamics in Leukemia

2.1. Biological Preliminaries
The formation of blood cells is called hematopoiesis. It is initiated in the bone marrow by the
hematopoietic stem cells (HSCs). HSCs can proliferate, self renew and differentiate into multiple
lineages. Proliferation is the cell cycle (growth phase). At the end of this cycle, cell division
occurs and two types of cells are produced: daughter cells with the same biological properties as
the parent (self-renewal), and progenitors; these are cells that are precursors of the three blood
lineages: red blood cells, white blood cells and platelets. When they have reached maturity, they
are released into the blood. The production of progenitors at cell division is called differentiation.
Progenitors can proliferate and differentiate (in some cases they may self renew or become stem
cells, see below for more discussion).

Similar to normal hematopoiesis, leukemia (also known as “blood cancer” characterized by un-
controlled proliferation of blood cells) is caused by leukemia stem cells (LSCs), whose progenitors
are capable of self renewal, see Figure 1, [32, 41]. There are both acute and chronic versions of
the myelogenous and lymphoblastic leukemia (AML, CML, ALL, CLL).

Figure 1: Hematopoiesis and Leukemia.

LSCs are discovered in humans in 1997, [13]. Since then, many other cancer stem cells (CSCs)
have been identified: breast cancer in 2003, brain tumor in 2004, and later, colon, prostate, lung
and liver CSCs have followed, [12]. Recently, it has been reported that, in some types of cancers,
progenitor cells may become stem cells (this is called plasticity), [27], but for the mathematical
model of cell dynamics in leukemia our basis will be Figure 1, which is a simplified version of
Figure 1 of [41], where further justifying references can be found.

In summary, in normal hematopoiesis and leukemia, there are at least three different popula-
tions of cells: (1) HSCs/LSCs, (2) Progenitors, and (3) Myeloid/Lymphoid/Leukemic cells. Cells
in population (i) are differentiating to give rise to cells in population (i + 1). This is the basis of
the “compartmental” dynamical model considered in the paper.

Identification of LSCs is possible by detection of cluster destination (CD) molecules CD34
and CD38 (these are certain types of cell surface proteins). In 1997, [13] have shown that a
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phenotype denoted by CD34+CD38- is the main feature of LSCs. Since then, more detailed studies
have been performed and other CD molecules have been determined to be important factors in
the identification of LSCs and leukemia progenitors, primarily CD123 (IL-3Rα), CD90 (Thy-1),
CD117 (C-Kit), CD135 (Flt-3) and CD33 (Siglec-3), see e.g. [31, 63, 69]. In certain types of
AML, one might characterize ([40]) the LSCs, progenitors and leukemia cells with the following
differentiation path:

CD34+CD38-CD33- → CD34+CD38+CD33- → CD34+CD38+CD33+

Hence, one might be able to identify the percentage of populations in three different compartments
by detecting these CD molecules. Of course, it is possible to increase the complexity level and the
number of compartments by including CD123, CD90 and other factors. In recent studies, different
stages of differentiation are discussed and model parameters are estimated: it is predicted that
at least 31 divisions occur between HSC and the circulating blood cells, [20], but for practical
purposes 4 to 8 compartment models are sufficient to diagnose CML in humans, [54].

The system we consider here comes from [5], where the mathematical model is based on ear-
lier studies [2]–[9], see also [15, 22, 30, 34, 39, 49, 57]. In the literature, there are many other
compartmental dynamical models looking similar to the model of [5]. Many of these do not con-
tain time delays (time spent in the growth phase) or consider point delays only (time spent in the
proliferation phase is the same for each cell in a compartment). One of the first mathematical
models of hematopoiesis is a single compartment system with a time delay, [37], which is further
refined in [38], separating the cell population of the single compartment into two: proliferating
cells (those in the growth phase) and quiescent (non-proliferating) cells. See also the earlier paper
[67]. Two compartment and four compartment delay-free models of leukemia dynamics can be
found in [19] and in [44], respectively. Two coupled delay differential equation model proposed
in [38] has been re-considered later by many scientists. Its parameters are estimated in [34] and
stability analysis is performed in [1, 68]. This model has been improved in [15] by considering two
additional compartments. Similar dynamical models are used for analyzing erythropoiesis (pro-
duction of red blood cells) [35], and for investigating therapeutic methods in acute lymphoblastic
leukemia (ALL), [47]; see also the review [24]. More recently, PDE based models of cell dynamics
in hematopoiesis have been studied in [3, 7, 36, 61].

2.2. Dynamical System Equations
Consider the compartmental classification of cell populations as discussed in Section 2.1. At
each compartment, cell population can be further categorized as proliferating and quiescent (non-
proliferating) cells. Let xi denote the quiescent cell population and yi denote the proliferating cell
population in compartment i. In leukemia, LSCs, progenitors and leukemic cells can self-renew.
Therefore, at the cell division in compartment i, some portion of daughter cells will be part of xi
(this is self-renewal; the newborn cells go to the quiescent phase, and at any given time, certain per-
centage of the quiescent cells move to the growth phase; this is determined by the “re-introduction
function”, [38]) and other daughter cells will contribute to xi+1 (differentiation). Let Ki be the
probability of differentiation, 0 < Ki < 1. So, the rate at which xi is increased, due to the division
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of cells in yi, is 2(1 − Ki) and the rate at which xi+1 is increased, due to the division of cells in
yi, is 2Ki. Recall that at each cell division two daughter cells are produced, hence the factor 2
multiplying (1−Ki) and Ki.

Let τi be the maximum possible time spent by a cell in proliferation in compartment i before it
divides. Some cells divide before τi. For example, in the erythropoiesis model of [35], time delay
ranges from 5h (abnormal fast differentiation) to 10 days (late differentiation), and the nominal
value is 2 days. In leukemia as well, we expect a non-uniform time delay. This justifies the
distributed delay model given below, see also [24] and its references.

Let δi denote the death rate for the quiescent cell population. Similarly, let γi denote death rate
for the proliferating cell population (certain cells in proliferation die before they have a chance to
divide, this is called apoptosis). Then, for each compartment i ∈ {1, . . . , n} the dynamical system
equations are in the form

ẋi(t) = −δixi(t)− wi(t) + 2Li

∫ τi

0

e−γiafi(a)wi(t− a)da (2.1)

+2Ki−1

∫ τi−1

0

e−γi−1afi−1(a)wi−1(t− a)da

ẏi(t) = −γi yi(t) + wi(t)−
∫ τi

0

e−γiafi(a)wi(t− a)da (2.2)

where, Li := (1−Ki), with K0 = 0,

wi(t) := βi(xi(t))xi(t) , (2.3)

βi(·) is the re-introduction function from quiescent subpopulation into the proliferative subpopu-
lation and fi is the mitosis (cell division) probability density. Note that mitosis occurs before the
age limit τi, and

fi(a) ≥ 0 for all a ∈ [0, τi] and

∫ τi

0

fi(a)da = 1.

The compartmental model is illustrated in Figure 2, and each compartment Σi is depicted in Fig-
ure 3, where ui−1(t) for t ≥ 0, and the initial conditions xi(a) for a ∈ [−τi, 0], are the inputs and
xi(t), yi(t), ui(t), for t > 0, are the outputs, with u0 = 0. The subsystem represented by the trans-
fer function Gi(s) is a linear time-invariant system with distributed delay, whose impulse response
is

gi(t) := e−γitfi(t) for t ∈ [0, τi] and gi(t) = 0 for t > τi, i.e.,

Gi(s) =

∫ τi

0

e−γitfi(t)e
−stdt. (2.4)

As noted in [5], distributed delay terms in (2.1) come from integration of partial differential
equations representing population dynamics. Moreover, the population of proliferating cells yi has
no impact on the dynamics of the resting cells. This fact is clearly observed in Figure 3: the internal
subsystem Σyi generating yi is a first order linear time invariant system which has no impact on
the remaining internal signals of Σi. In fact Σyi can be thought as a separate system with input
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Figure 2: Compartmental Representation of the System.

Figure 3: Internal Structure of the Compartment Σi.

(I −Gi)wi. Then, as long as γi > 0, the signal yi tracks (I −Gi)wi. Therefore, we concentrate on
stability analysis of the system represented by equations (2.1) and (2.3) only.

We make the following assumption, which implies that (2.1)–(2.3) admit unique non-negative
solution {xi(t), yi(t), wi(t)}, for i = 1, . . . , n; see e.g. [5, 8] and their references.
Assumption 1. The function βi(·) is a differentiable and uniformly decreasing function with
βi(0) > 0 and βi(x) → 0 as x → ∞. The function fi(·) is such that Gi is strictly proper,
i.e., Gi(s) → 0 as |s| → ∞. The initial condition xi(θ) is a continuous function of θ ∈ [τi , 0].

Typical selection of βi is in the form

βi(x) =
βi(0)

1 + bixNi
(2.5)

where βi(0) > 0, bi > 0 and Ni is an integer greater or equal to 2 (see [38], and also [15] and [24]
for biological justifications and further details).
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In this paper we are interested in a form of fi considered in [52]:

fi(a) =
mi

emiτi − 1
emia, a ∈ [0 , τi] mi > γi (2.6)

which leads to

Gi(s) = qi
1− e−τi(s−ri)

(s− ri)
(2.7)

where qi = mi/(e
miτi − 1) > 0 and ri = mi − γi > 0. Note that Gi ∈ H∞ and it does not have a

pole, in fact Gi(ri) = qiτi. Some of the results in the next section will be given for generic Gi(s)
satisfying Assumption 1, and some specific results will be given for the choice (2.7). We should
also note that Gi, (2.7), is a stable system whose impulse response is non-negative, therefore,

∥Gi∥∞ = sup
ω

|Gi(jω)| ≤ sup
ω

∫ ∞

0

|gi(t)| |e−jωt|dt =
∫ ∞

0

gi(t)dt = Gi(0) ≤ ∥Gi∥∞.

Thus Gi(0) = ∥Gi∥∞.
As mentioned in [52], the choice (2.6) corresponds to a truncated exponential term for the

mitosis function. In this model of mitosis, cells are authorized to divide with a probability that
increases exponentially with age in the division cycle (most of the division occurs just before the
age limit τi). Whereas in [5] this division probability is taken as a simple Dirac mass at the end
of the cycle, i.e. fi(t) = δ(t − τi), we have chosen in the present study to mimic this biological
behavior in a more continuous way, allowing thus cells to divide increasingly with age. Even
though this increase is very steep, it seems to us biologically more relevant than a Dirac mass.
Remark 1. When fo(t) := δ(t− τi) we have Go(s) = e−τi(s+γi) and hence Go(0) = e−γiτi . On the
other hand, when Gi(s) is in the form (2.7) we have

Gi(0) =
mi

mi − γi

e(mi−γi)τi − 1

emiτi − 1
.

We claim that Gi(0) > Go(0) for all mi > γi and τi > 0. It is easy to check that the claim is true
if and only if

emiτi − eτiγi

emiτi − 1
>
mi − γi
mi

which is equivalent to
γi

eγiτi − 1
>

mi

emiτi − 1
. (2.8)

The condition (2.8) holds for all mi > γi and τi > 0 because the function x(eτx − 1)−1 is a
decreasing function of x when x > 0 and τ > 0. Thus,

Gi(0) > e−γiτi for all mi > γi and τi > 0 (2.9)

as claimed. The inequality (2.9) will allow us to compare stability results obtained by taking
fi = δ(t − τi) with the results obtained by the choice (2.6). Also, note that when mi → ∞ the
distribution (2.6) approaches to a Dirac mass at τi, and in this case Gi(0) → e−γiτi .
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Clearly, the origin is an equilibrium of the nonlinear system, defined by (2.1)-(2.3), that cor-
responds to death of all cells. Stability conditions for the case where the origin is the unique
equilibrium are obtained in [6]. In this paper we derive stability conditions for a “positive equi-
librium point,” [x̄1, . . . , x̄n]

T , where all x̄i are strictly positive. There are other equilibrium points
where some of the x̄i are zero and some are positive; for details see [5]. We now define

αi := 2Li

∫ τi

0

gi(t)dt− 1 = 2LiGi(0)− 1 (2.10)

and make the following additional assumptions.
Assumption 2. We have αi > 0 for all i = 1, . . . , n.
Remark 2. To justify this assumption, let us consider the minimal case for the source term β of the
proliferating compartment dynamics when only self-renewal is active with no actual input from a
non proliferating buffer compartment, and no loss term by differentiation. These are the minimal
conditions for actual proliferation, i.e. growth of the proliferative compartment. Then this minimal
dynamics is represented by the classical transport equation of population dynamics, structured in
age a (see, e.g., [55]; indeed, this equation dates back to McKendrick, see [42]):

∂n

∂a
(t, a) +

∂n

∂t
(t, a) + 2Lk(a)n(t, a) + γn(t, a) = 0

n(t = 0, a) = n0(a)

n(t, a = 0) = 2L

∫ +∞

0

k(y)n(t, y) dy

where k(a) is the rate of self-renewal. It is then classical (by integration along characteristics) in
population dynamics that the probability density function of mitosis is given by

f(a) = k(a)e
∫ a
0 k(y) dy,

and (by injection of the solution into the boundary condition) that the leading growth exponent λ
is the only positive real solution to Lotka’s equation

1 = 2L

∫ +∞

0

e−λa−γaf(a) da.

Saying that αi > 0 is then exactly saying that λ > 0, i.e., that the process is a growth process.
Assumption 3. For i = 1, we have β1(0) > δ1/α1.

Under Assumptions 1–3, a unique positive equilibrium exists, see e.g. [5]. It can be computed
from the following equations: x̄1 is such that

β1(x̄1) = δ1/α1 ; (2.11)

and for i ≥ 2, the equilibrium points x̄i are the unique solutions of

βi(x̄i) =
1

αi

(
δi −

1

x̄i

x̄i−1Ki−1(1 + αi−1)

Li−1

βi−1(x̄i)

)
. (2.12)
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When dealing with local asymptotic stability we consider linearized version of (2.1) around x̄i.
In particular, we define

µi :=
d

dx
x βi(x) |x̄i

. (2.13)

In Σi, if we use the approximation wi ≈ µixi then the feedback system obtained has the following
characteristic equation

s+ δi + µi − 2LiµiGi(s) = 0. (2.14)

Since Gi(s) is assumed to be strictly proper, the linearized system is stable if and only if all the
roots of (2.14) are in C−. As noted in [8], µi can take any values in R. Clearly, when µi = 0 the
system is locally asymptotically stable around the equilibrium x̄i, because δi > 0. Therefore, the
most interesting case is µi ̸= 0. Because the roots of (2.14) depend on µi, local stability conditions
of Section 3.1. are obtained in terms of this key parameter.

2.3. Earlier results and summary of contributions
In the remaining parts of the paper we drop the subscript i for notational convenience, whenever it
is clear from the context that we are dealing with the ith subsystem Σi. We will consider different
stability notions. First, local asymptotic stability means that x(t) → x̄ as t → ∞ provided that
the initial condition is in a neighborhood of x̄, i.e. sup−τ≤θ≤0 |x̄ − x(θ)| ≤ εo for some εo > 0.
This result does not say anything about how large the region of attraction, εo, is. In Section 3.2.3.
there is a well defined region around x̄ where a sector condition, either (3.34) or (3.34), is satisfied.
Absolute stability will imply that as long as the initial condition is within the region where sector
condition is satisfied, convergence to the equilibrium is guaranteed. In Sections 3.2.1. and 3.2.2.,
we will give conditions for global stability, where convergence to the equilibrium is guaranteed
with no restriction on the initial condition. Clearly, global stability implies absolute stability which
implies local stability.

Earlier results on stability of the system defined in Section 2.2. can be summarized as follows.

(a) In [5] it has been shown that the origin is locally asymptotically stable if βi(0) < δi/αi, for
all i, and it is unstable if βi(0) > δi/αi for some i.

(b) In [5, 8] it is claimed that x̄ > 0 is locally asymptotically stable if

(2LG(0) + 1)µ+ δ > 0. (2.15)

While this statement is correct for −δ < µ < 0, it becomes false under Assumptions 2 and 3,
when µ > 0 (see (c) below). For µ < −δ, (2.15) is only a necessary condition for local
asymptotic stability (see Section 3.1.2. for necessary and sufficient conditions, (3.9) and
(3.10)). Moreover, the condition (2.15) can be very conservative for −δ < µ < 0. In the
present paper we illustrate the level of conservatism for the particular choice of G in the
form (2.7).
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(c) In [52], for µ > 0, it is shown that all the roots of (2.14) are in C− if and only if µ < δ/α.
Note that for µ > 0 all positive values of δ satisfy (2.15), whereas the necessary and sufficient
condition of [52] impose a restriction on δ. In the present paper, methods similar to those of
[52] are used for the case µ < 0.

(d) Most recently, in [6] it is shown that (Theorem 2.1 of [6]) if the origin is the only equilibrium
and (2Gi(0)− 1)βi(0) < δi, for all i, then the origin is globally asymptotically stable.

(e) In [57], for the point delay version of the above model, conditions for global asymptotic sta-
bility of the origin (Theorem 6.4 of [57]) and instability of the positive equilibrium (Theorem
7.2 of [57]) are obtained in terms of the delay values.

The contributions of this paper are as follows:

(i) Stability conditions are obtained for the linearized system around the positive equilibrium
with µ < 0, using the Nyquist criterion.

(ii) A “small-gain” argument is applied to derive a global asymptotic stability condition for the
positive equilibrium.

(iii) Less restrictive conditions of stability, than (ii), are derived for a finite neighborhood of the
positive equilibrium. These are obtained from Popov and circle criteria.

3. Main Results
In this section we derive new stability conditions for the linearized system and for the nonlinear
system under Assumptions 1–3.

3.1. Stability of the linearized system
First we consider the linearized version of Σi around x̄i > 0 and improve the earlier results men-
tioned above, particularly for the case of µ < 0. But we begin with an observation on the case
µ > 0.

3.1.1. A remark on the case µ > 0

Recall that in this case the stability condition is

µ < δ/α . (3.1)

Proposition 1. The condition (3.1) holds true for all β in the form (2.5).
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Proof. Note that at the equilibrium point x̄ (for all the compartments, i = 1, 2, . . . , n), by (2.11)
and (2.12), we have β(x̄) ≤ δ/α. Also note that for β in the form (2.5) we have

µ =
∂

∂x
x β(x) |x̄ = β(x̄)

(
1−N +N

β(x̄)

β(0)

)
.

Since N ≥ 2 and β(x̄) < β(0) we have that(
1−N +N

β(x̄)

β(0)

)
< 1.

This inequality with β(x̄) ≤ δ/α implies that µ < (δ/α). Thus, when µ > 0, the system is locally
asymptotically stable whenever β is in the form (2.5).

Note that the selection of cell division probability density f plays an important role in (3.1),
since it determines G(0), which affects α = 2LG(0)− 1. As α increases the allowable δ

µ
(for local

stability) decreases. By the inequality (2.9) derived in Remark 1, we see that taking f in the form
(2.6) puts more restriction on the ratio of allowable (δ/µ) than taking f(t) = δ(t− τi).

3.1.2. Improved stability conditions for µ < 0

Consider the system whose characteristic equation is in the form (2.14) with µ < 0. Assume that
G(−(δ− |µ|)) ̸= 0 (which is satisfied for G(s) in the form (2.7) when δ > |µ|), then (2.14) can be
re-written as

1 + |µ| 2LG(s)

s+ (δ − |µ|)
= 0 . (3.2)

Alternatively, if we assume 2LG(−δ) ̸= 1 (which is generically satisfied), then (2.14) can be put
in the form

1 + |µ| H(s) = 0 . (3.3)

where

H(s) :=
(2LG(s)− 1)

(s+ δ)
. (3.4)

In this section we will use (3.2) for local stability analysis. The equation (3.3) will be used in the
next section when the circle and Popov criterion are applied to the nonlinear system.

Local stability conditions can be obtained by using the Nyquist criterion, (see, e.g.,[21, 51]),
on the system represented by (3.2) in two different cases: Case 1: δ > |µ|; and Case 2: δ < |µ|.

In Case 1, (3.2) is the characteristic equation of a feedback system formed by two stable sys-

tems 2LG(s) and |µ|/(s+(δ−|µ|)). Therefore, for local stability, the graph of
2LG(jω)|µ|
jω + (δ − |µ|)

, as

ω varies from 0 to ∞, should not encircle −1 in the complex plane. Consider G in the form (2.7):

G(s) = q
1− e−τ(s−r)

(s− r)
= G(0)

eτ̂e−τ̂ ŝ − 1

(eτ̂ − 1)(1− ŝ)
(3.5)
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where τ̂ = rτ and ŝ = s/r. In this case, the characteristic equation is

1 +
2L|µ|
δ − |µ|

G(0)
eτ̂e−τ̂ ŝ − 1

(eτ̂ − 1)(1− ŝ)(1 + ητ̂ ŝ)
= 0

where η := τ−1(δ − |µ|)−1. Let us define

G̃(s) := (1 + ητs)−1G(0)−1G(s) =
eτ̂e−τ̂ ŝ − 1

(eτ̂ − 1)(1− ŝ)(1 + ητ̂ ŝ)
. (3.6)

By analyzing the graph of G̃(jω), for ω ∈ R, we have local stability if and only if

2LG(0) <
δ − |µ|
|µ|

kmax (3.7)

where kmax := |G̃(jω1)|−1 with ω1 being the smallest ω > 0 such that ∠G̃(jω) = −π , where ∠
denotes the phase (angle) function.

Table 1: Values of kmax for different τ̂ (first row) and η (first column).
η � τ̂ 1/10 1 2 4 10 20
1/4 4.27 2.73 2.06 1.56 1.26 1.21
1 6.91 5.03 3.97 3.06 2.49 2.36
2 11.50 8.52 6.77 5.24 4.23 3.99
5 25.67 19.14 15.28 11.81 9.51 8.96

The numerical values of kmax for different τ̂ = rτ and η are shown in Table 1. Note that for
all values of η and τ̂ we have kmax > 1. On the other hand, when δ > |µ|, the sufficient condition
obtained earlier, (2.15), is equivalent to

2LG(0) <
δ − |µ|
|µ|

. (3.8)

Since kmax > 1, the condition (3.7) is less restrictive than (3.8). Moreover, the level of conser-
vatism in (2.15) can be determined from the values of kmax given in Table 1.

In Case 2, i.e. when |µ| > δ, the characteristic equation (3.2) becomes

1 +
2L|µ|
|µ| − δ

G(0)
eτ̂e−τ̂ ŝ − 1

(eτ̂ − 1)(1− ŝ)(ητ̂ ŝ− 1)
= 0.

with η := τ−1(|µ| − δ)−1. Note that the open loop system is unstable with one pole in the right
half plane. For stability of this system the Nyquist graph of k̂Ĝ(jω) should encircle −1 once in
the counter clockwise direction, where

k̂ :=
2L|µ|
|µ| − δ

G(0) , Ĝ(s) :=
eτ̂e−τ̂ ŝ − 1

(eτ̂ − 1)(1− ŝ)(ητ̂ ŝ− 1)
.
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This is satisfied if and only if the following three conditions are met

k̂ > 1; |Ĝ(jωp)| < 1/k̂;
d

dω
∠Ĝ(jω)

∣∣∣∣
ω=0

> 0

where ωp is the smallest ω > 0 such that ∠Ĝ(jω) = −π. The first condition means that k̂Ĝ(0) <
−1. The third condition means that k̂Ĝ(jω) moves towards the 3rd quadrant of the complex plane
as ω increases from zero to small positive values. The second condition implies that when the
imaginary part of k̂Ĝ(jω) becomes zero for the first time (as ω increases from 0) its magnitude is
less than 1. Thus the above three conditions is equivalent to having the graph of k̂Ĝ(jω) encircle
−1 once in the counterclockwise direction as ω increases from −∞ to +∞.

The third condition is equivalent to

η > (1− e−τ̂ )−1 − τ̂−1 (3.9)

and the first two conditions can be combined as

|µ| − δ

|µ|
< 2LG(0) <

|µ| − δ

|µ|
kmax,2, (3.10)

where kmax,2 = 1/|Ĝ(jωp)| can be computed numerically using Matlab or Scilab. The numerical
values of kmax,2 for different τ̂ and η are shown in Table 2 (here ⋆ indicates that for these values of
τ̂ and η the condition (3.9) is not satisfied).

Table 2: Values of kmax,2 for different τ̂ (first row) and η (first column).
η � τ̂ 1/10 4/10 1 2 5 10
0.8 2.21 2.01 1.70 1.38 ⋆ ⋆
0.9 2.66 2.41 2.04 1.65 1.18 ⋆
1.0 3.10 2.81 2.37 1.92 1.38 1.17

The analysis technique used in this section, namely Nyquist stability condition, gives exact
non-conservative results of the stability of the linearized system considered here. The same result
could have been obtained from other techniques used in the literature for delay systems, see for
example [14, 59] and their references.

3.2. Stability analysis for the nonlinear system
In this section we discuss stability of the ith compartment Σi, whose structure is shown in Figure 3.
Under Assumptions 1–3, we have a positive equilibrium x̄i > 0. Let us define

x̃i(t) := xi(t)− x̄i and w̃i(t) := wi(t)− w̄i (3.11)
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where w̄i := βi(x̄i)x̄i. Under equilibrium conditions (2.11) and (2.12), the system (2.1) can be
transformed to

d

dt
x̃i(t) = −δix̃i(t)− w̃i(t) + 2Li

∫ τi

0

e−γiafi(a)w̃i(t− a)da+ ũi−1(t) (3.12)

where
ũi−1(t) := 2Ki−1

∫ τi−1

0

e−γi−1afi−1(a)w̃i−1(t− a)da. (3.13)

Using the new coordinates (3.11), the origin (i.e. x̃i = 0) is the equilibrium of the system (3.12),
whose feedback diagram is shown in Figure 4, where ψi is the static nonlinearity defined by
ψi(x̃i) = w̃i, more precisely

ψi(x̃i) = (x̃i + x̄i)βi(x̃i + x̄i)− x̄iβi(x̄i). (3.14)

Figure 4: Feedback system Σ̃i with equilibrium at the origin.

Let us now define the gain of the nonlinear block as

ρi := inf { R ∈ R : |ψi(x̃i)| ≤ R|x̃i| ∀ x̃i ∈ (−x̄i , ∞) }. (3.15)

Recall from the definition (2.13) that µi is the slope of the nonlinear block ψi(x̃i) at x̃i = 0;
whereas ρi is the least possible slope of all the lines which pass through the origin and stay above
ψi(x̃i) for all x̃i > 0 and under ψi(x̃i) for all x̃i < 0. So, we have ρi ≥ |µi| for both cases where
µi > 0 and µi < 0.

Considering the linear part of the system shown in Figure 4, we can write the solution x̃i(t) in
terms of the initial conditions and the external input as

x̃i(t) = e−δitx̃i(0) +

∫ t

−τi

e−δi(t−a)r̃i(a)da+

∫ t

−τi−1

e−δi(t−a)ũi−1(a)da (3.16)

where
r̃i(a) = 2Li

∫ τi

0

gi(θ)w̃i(a− θ)dθ − w̃i(a), for a > −τi (3.17)

and it is determined starting from the initial condition

w̃i(θ) = (x̃i(θ) + x̄i)βi(x̃i(θ) + x̄i)− x̄iβi(x̄i) for θ ∈ [−τi , 0]. (3.18)
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3.2.1. Analysis for the first compartment

For Σ̃1 shown in Figure 4 we have ũ0 ≡ 0. Note that, in (3.17), r̃i is obtained by passing w̃i

from the filter (2LG(s)− 1). So, (3.16) can be re-written as (dropping the subscript for notational
convenience)

x̃(t) = e−δtx̃(0) +

∫ t

−τ

h(t− a)w̃(a)da (3.19)

where

h(t) =

(
2L

∫ min{t,τ}

0

g(a)eδada− 1

)
e−δt for t ≥ 0 (3.20)

is the impulse response of the transfer function H(s) = (s+ δ)−1(2LG(s)− 1).
Using (3.15) we can find an upper bound for the magnitude of x̃(t) in (3.19) as

|x̃(t)| ≤ e−δt|x̃(0)|+ ρ

∫ t

−τ

|h(t− a)| |x̃(a)|da. (3.21)

Recall Assumption 1 (the part on the initial condition) and define

χk := max
(k−1)τ≤t≤kτ

|x̃(t)| (3.22)

hk(τ, δ, L, g) :=

∫ (k+1)τ

kτ

|h(t)|dt. (3.23)

By definition, we see that

h0 =

∫ τ

0

∣∣∣∣2L ∫ t

0

g(a)eδada− 1

∣∣∣∣ e−δtdt (3.24)

hk = α̃
(1− e−δτ )

δ
e−kδτ k ≥ 1, (3.25)

where

α̃ :=

(
2L

∫ τ

0

g(a)eδada− 1

)
.

From (3.21) we have

χk ≤ e−δτ(k−1)|x̃(0)|+ ρ

k∑
i=0

hiχk−i. (3.26)

If
ρh0 < 1 (3.27)

then (3.26) leads to

χk ≤
1

1− ρho

(
e−δτ(k−1)|x̃(0)|+ ρ

k∑
i=1

hiχk−i

)
. (3.28)
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Define a new variable ξk satisfying

ξk =
1

1− ρho

(
e−δτ(k−1)|x̃(0)|+ ρ

k∑
i=1

hiξk−i

)
for k ≥ 1 (3.29)

with the initial condition ξ0 = χ0. Clearly, we have χk ≤ ξk for all k ≥ 1. Note that (3.29) is a
discrete time linear system (see e.g. [50]) whose unit pulse response is

(1− ρh0)
−1ρα̃

(1− e−δτ )

δ
e−δτk , for k ≥ 1,

and excited by the input

(1− ρh0)
−1eδτ |x̃(0)|e−δτk , for k ≥ 1.

Therefore, we conclude that

max
(k−1)τ≤t≤kτ

|x̃(t)| = χk ≤ coe
−δτk + c1τke

−δτk for all k ≥ 1 (3.30)

for some constants co, c1 ∈ R, see [50].

Definition 2. We say that a bounded signal x̃(t) converges to zero exponentially at a rate λ > 0 if
there exist K > 0 and an integer m ≥ 0, such that |x̃(t)| ≤ K(1 + tm)e−λt for all t ≥ 0.

The above discussion can now be summarized as follows.

Proposition 3. Consider the system Σ̃1 shown in Figure 4, with ũ0 = 0. Suppose that ρ1 defined
in (3.15) is finite and let

h0(τ1, δ1, L1, g1) :=

∫ τ1

0

∣∣∣∣2L1

∫ t

0

g1(a)e
δ1ada− 1

∣∣∣∣ e−δ1tdt.

If
h0(τ1, δ1, L1, g1) < 1/ρ1 (3.31)

then x̃1(t) is bounded and converges to zero exponentially at a rate δ1. Since |w̃1(t)| ≤ ρ1|x̃1(t)|
and

r̃1(t) = 2L1

∫ τ1

0

g1(a)w̃1(t− a)da− w̃1(t)

we also have that w̃1(t) and r̃1(t) remain bounded and converge to zero exponentially at a rate δ1.
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3.2.2. Analysis for the kth compartment for k ≥ 2

For Σ̃2 the input ũ1(t) comes from the internal signals r̃1(t) and w̃1(t) of Σ̃1 as ũ1 = KL−1(r̃1 +
w̃1). Now using (3.16) we have

|x̃2(t)| ≤ e−δ2t|x̃2(0)|+ ρ2

∫ t

−τ2

|h2(t− a)| |x̃2(a)|da+
∫ t

−τ1

e−δ2(t−a)|ũ1(a)|da (3.32)

Note that under the condition (3.31) the signal ũ1 is bounded and converges to zero exponentially
at a rate δ1. Therefore

e−δ2t|x̃2(0)|+
∫ t

−τ1

e−δ2(t−a)|ũ1(a)|da

is a bounded signal converging to zero exponentially at a rate δ̃2 := min{δ1, δ2}. Now using
arguments similar to those (3.22)–(3.30) it is easy to see that if

h0(τ2, δ2, L2, g2) < 1/ρ2

then x̃2(t) is a bounded signal converging to zero at a rate δ̃2. Repeating this argument for succes-
sive compartments until Σ̃k we obtain the following result.

Proposition 4. Consider the system Σ̃k shown in Figure 4. Suppose ρ1, . . . , ρk defined in (3.15)
are finite and let

h0(τi, δi, Li, gi) :=

∫ τi

0

∣∣∣∣2Li

∫ t

0

gi(a)e
δiada− 1

∣∣∣∣ e−δitdt for i = 1, . . . , k.

If
h0(τi, δi, Li, gi) < 1/ρi ∀ i = 1, . . . , k (3.33)

then x̃k(t), w̃k(t), r̃k(t) remain bounded for all times and they converge to zero exponentially at a
rate δ̃k := min{δ1, . . . , δk}.

3.2.3. Application of the circle and Popov criteria

The result given above depend on the small gain condition (3.33), where ρi satisfy (3.15). An
alternative result can be found by putting the system of Figure 4 into the framework of the circle (or
Popov) criterion. For this purpose, let us consider the first compartment, Σ̃1; recall the definitions
(3.11) and assume that (suppressing the subscript) there exists ρ̃ > 0 satisfying the sector condition

for µ > 0 : 0 < ψ(x̃)x̃ < ρ̃x̃2 ∀ x̃ ̸= 0, and x̃ ∈ (−x̄ , xr) =: X+ (3.34)

where xr is the unique point which makes w̄ > w for all x > xr; and

for µ < 0 : 0 < (−ψ(x̃))x̃ < ρ̃x̃2 ∀ x̃ ̸= 0, and x̃ ∈ (−x̄+ xℓ , ∞) =: X− (3.35)

where xℓ is the unique point which satisfies the condition w̄ > w for all 0 < x < xℓ. In general,
ρ ≥ ρ̃ ≥ |µ| for both cases µ > 0 and µ < 0.
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Definition 5. Inspired by the discussion in [66] (p. 361), we say that the system Σ̃i, with ψ
satisfying (3.34) (or (3.35)), is absolutely stable if x̃, ˙̃x ∈ L2[0,∞) for all inputs satisfying
ũi−1, ˙̃ui−1 ∈ L2[0,∞) and all initial conditions x̃(θ) ∈ X+ (for µ > 0) or x̃(θ) ∈ X− (for
µ < 0).

Note that when x̃, ˙̃x ∈ L2[0,∞), we have x̃ ∈ L∞[0,∞), and x̃ is continuous with x̃(t) → 0
as t → 0, see [18] (p. 186). Moreover, for the system shown in Figure 4, x̃, ˙̃x ∈ L2[0,∞) implies
w̃, ˙̃w ∈ L2[0,∞) and r̃, ˙̃r ∈ L2[0,∞), because ψ is a static nonlinearity and 2LG(s) is a stable
system whose impulse response is restricted to [0, τ ]. This observation will be used in the next
section (Section 3.2.4.) when we discuss absolute stability of systems with non-zero inputs.

The system Σ̃1 shown in Figure 4 with ũ0(t) = 0 is obtained by putting the linear time invariant
systemH(s) = (s+δ)−1(2LG(s)−1) in feedback with the static nonlinearity ψ. Note thatG(s) is
a system whose impulse response is of finite duration. Hence H(s) is stable with impulse response
h(t), which satisfies

|h(t)| ≤
{

2LG(0) + e−δt t ≤ τ
e−δt(eδτ2LG(0) + 1) t > τ

and

|ḣ(t)| ≤
{
δ(2LG(0) + e−δt) + 2Lg(t) t ≤ τ
δe−δt(eδτ2LG(0) + 1) t > τ

So, h, ḣ ∈ Lp[0,∞) for all p ≥ 1. Thus Σ̃1 satisfies all the conditions required for application of
the circle and Popov criterion, see e.g. [16, 17, 66] and their references.

Applying the circle criterion, [16], for the case µ > 0, we see that with x̃(θ) ∈ X+ for all
θ ∈ [−τ , 0], the feedback system is absolutely stable if (1− ρ̃H(s)) is strictly positive real, which
is equivalent to having

ℜ{H(jω)} < 1/ρ̃ ∀ ω ∈ R. (3.36)

The condition (3.36) is in general less restrictive than the small gain condition

∥H∥∞ < 1/ρ̃ , (3.37)

which also implies that (1− ρ̃H(s)) is strictly positive real. Note that when H(0) = ∥H∥∞, (3.36)
and (3.37) are equivalent, and in this case they reduce to

α

δ
< 1/ρ̃. (3.38)

Clearly, this is a stronger condition than the local asymptotic stability condition, (3.1). On the
other hand, if ρ̃ = µ, then (3.1) and (3.38) are identical.

Now consider the case for µ < 0 and let us apply the Popov criterion, [16, 17, 56, 58] on the
system shown in Figure 4 with ψ replaced by −ψ satisfying the sector condition (3.35). In this
case, with the initial condition x̃(θ) ∈ X− for θ ∈ [−τ , 0], the system is absolutely stable if there
exists η̃ ≥ 0 such that η̃ is not a pole of H(s) and

ℜ{ρ̃−1 + (1 + jωη̃)H(jω)} > 0 ∀ ω ∈ R . (3.39)
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Choosing η̃ = δ−1 + ϵ for ϵ > 0 and letting ϵ→ 0 we see that (3.39) becomes

min
ω∈R

ℜ{G(jω)} > −δ − ρ̃

2Lρ̃
. (3.40)

Note that, typically the left hand side of (3.40) is negative in the form

min
ω∈R

ℜ{G(jω)} = −K̃−1
G G(0) (3.41)

where K̃G > 0 depends on the parameters ofG(s). Therefore, (3.40) can be satisfied only if δ > ρ̃.
In conclusion, for the case µ < 0 and δ > ρ̃, absolute stability condition obtained from the Popov
criterion is

2LG(0) <
δ − ρ̃

ρ̃
K̃G (3.42)

where

K̃G =

∣∣∣∣min
ω∈R

ℜ{G(jω)}
G(0)

∣∣∣∣−1

. (3.43)

With other choices of η̃ in (3.39) one may obtain a less conservative result, but the above particular
selection gives a simple result (3.42) which allows easy comparison with local stability condition.
More precisely, for the case ρ̃ = |µ|, we can compare (3.42) and (3.7): the left hand sides are
identical, and in general

K̃G ≤ komax (3.44)

where komax is the value of kmax for η → 0 in (3.6). ForG in the special form (2.7), for small values
of rτ , we have equality in (3.44) as illustrated in Figure 5.

3.2.4. Application of the circle and Popov criterion to the ith compartment for i ≥ 2

Now consider the second compartment Σ̃2 with input ũ1(t), which is generated by Σ̃1. As discussed
above, when Σ̃1 is absolutely stable, we have ũ1, ˙̃u1 ∈ L2[0,∞). Note that Σ̃2 is obtained by
putting H(s) in feedback with the static nonlinearity ψ; and in this case the external input is
ũ1(t) filtered by the stable system whose transfer function is (s + δ)−1. Now, if H satisfies the
condition (3.36) when µ > 0 (respectively (3.42) when µ < 0) then Σ̃2 is absolutely stable. See
for example [16] (Chapter 3, in particular Section 3.12 and Exercises 3, 5 and 9), [18] (Chapter VI,
section 6) and [66] (Section 6.6.2) for the extension of circle and Popov criteria to the class of
infinite dimensional systems considered here with static nonlinearity and non-zero external inputs,
see also [17] and references therein.

Hence, applying the circle, or Popov, criterion sequentially we see that if Σ̃1, . . . , Σ̃i−1 are
absolutely stable and Σ̃i satisfies the sufficient condition (3.36) when µ > 0 (or (3.42) when
µ < 0), then Σ̃i is absolutely stable.

At this point we should note that stability analysis of Σ̃i for i ≥ 2 can also be done by applying
the input-to-state-stability technique, [62], to systems with distributed time delays. In that ap-
proach, we seek a Lyapunov function to guarantee input-to-state dynamical stability (see e.g. [25])
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Figure 5: kmax versus rτ for various (δ − |µ|); and KG versus rτ .

of each Σi whose inputs are known to satisfy certain boundedness condition. In fact, with the help
of such a Lyapunov function, one might be able to determine a convergence rate for x̃i(t) → 0.
However, this requires a separate detailed study, which is beyond the scope of the present paper.

Also note that, in this section, stability conditions do not say anything about the norms ∥x̃i∥2,
∥ũi∥2; it may be possible that these are increasing functions of i. These may be analyzed using
the concept of “string stability” where the ratio ∥x̃i∥2

∥x̃i−1∥2 is investigated. We leave this as an open
problem for future studies. Nevertheless, we should point out that bounds on ∥x̃2∥2 and ∥ũ2∥2
can be obtained from the inequalities (3.30) and (3.32), determined in the non-linear small gain
approach.

4. Numerical Examples and Simulation Results
In what follows we take d to be the unit of time (typically, one day is the time scale of hematopoietic
processes, see e.g. [24]). Hence the time delay τ is in d and the rates δ, γ and β are in d−1. All
the other parameters are normalized to have no unit. The parameter value sets do not come from
a biological data; they have been chosen in such a way to illustrate instances of the different cases
studied and discussed in Section 3.
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4.1. Example 1
As the first example we take a single compartment system with δ = 0.2, τ = 0.66, γ = 0.04,
m = 10, N = 2, b = 1, L = 0.9, and β(0) = 1. We find that x̄ = 1.67, µ = −0.125, α = 0.63 and
kmax = 39.12. In this case the sufficient condition of local stability (2.15) is not satisfied, but the
necessary and sufficient condition (3.7) is satisfied.

4.2. Example 2
Now we consider a system with three compartments each having Li = 0.9; βi(0) = 1; bi = 1, and
the other parameters as indicated in Table 3. The resulting equilibrium point and computed values
of µ, α and other variables are shown in the second part of the same table.

i δ τ γ m N

1 0.5 1.0000 0.04 10 2
2 0.2 0.6325 0.04 10 2
3 0.3 0.8100 0.50 9 3

i x̄ µ α kmax ρ ρ̃ h0 K̃G

1 0.6876 0.2431 0.7364 - 0.679 0.679 0.5421 -
2 1.9824 -0.1206 0.7620 39.1 0.203 0.124 14.5287 1.1498
3 0.7730 0.0357 0.2707 - 0.684 0.684 1.7291 -

Table 3: Parameters of Example 2

For i = 1 and i = 3 we see that µ > 0 and the local stability condition µi < δi/αi is satisfied.
For i = 2, µ < 0, and in this case too, the local stability condition (3.7) is satisfied (note that
2LG(0) = α + 1). On the other hand, the global stability condition, ρh0 < 1, is satisfied only
for the first compartment. For i = 1, 3 the condition for absolute stability, (3.36), is satisfied
with xr = 1.45 for the first compartment and xr = 0.81 for the third one. As for the second
compartment xℓ = 0.5, but the absolute stability condition (3.42) is not satisfied. Nevertheless,
starting from initial conditions [x1(θ), x2(θ), x3(θ)]

T = [1.0, 1.3, 1.0] for all θ ∈ [−1 , 0], the
simulations show convergence to the positive equilibrium, Figure 6.

4.3. Example 3
In this example we have two compartments with positive equilibrium; the parameters are L1 =
0.985, L2 = 0.9; b1 = b2 = 1; β1(0) = 7, β2(0) = 1 and as shown in Table 4.

In this example we have µ < 0 with |µ| < δ. The necessary and sufficient condition for
local stability, (3.7), is not satisfied for the first compartment and it is satisfied for the second one.
Absolute stability and global stability conditions are not satisfied for both compartments.
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Figure 6: Simulation results for Example 2.

i δ τ γ m N

1 2.1 2.81165 0.095 1 3
2 0.2 0.6325 0.04 10 2

i x̄ µ α kmax ρ ρ̃ h0 K̃G

1 1.0363 -1.922 0.634 6.194 3.3128 2.2429 0.3309 1.66
2 1.9664 -0.121 0.762 39.3456 0.2055 0.1239 14.5287 1.15

Table 4: Parameters of Example 3

As shown in the simulation, Figure 7, x1(t) does not converge to the equilibrium. Since u1(t)
(which is the input for Σ2) does not converge, x2(t) does not converge either (with small oscilla-
tions around the equilibrium).

4.4. Example 4
In this example we take two compartments and illustrate that the assumption αi > 0 is not nec-
essary for i ≥ 2, in order to have a positive equilibrium. The first compartment has a positive
equilibrium. The second compartment does not satisfy Assumption 2, i.e. if it was the first com-
partment, then the origin would be the equilibrium, but since the first one has a positive equilibrium
which is globally stable, then the input to the second compartment is non-zero hence x̄2 ̸= 0. The
parameters of this example are Li = 0.9, bi = 1, βi(0) = 1 for i = 1, 2 and the rest are given
in Table 5. Note that the global stability condition, ρh0 < 1, holds for both compartments. Time
domain response shown in Figure 8 illustrates the convergence to the equilibrium.
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Figure 7: Simulation results for Example 3.

i δ τ γ m N

1 0.5 1 0.04 10 2
2 0.9 1.5 0.7 8 2

i x̄ µ α xr ρ ρ̃ h0

1 0.688 0.243 0.74 1.45 0.68 0.68 0.54
2 0.075 0.98 -0.31 13.4 0.99 0.99 0.8

Table 5: Parameters of Example 4

4.5. Remarks on simulation results
In the above examples we have seen that when the system satisfies the local stability condition,
then the graph of xi(t) converges to x̄i, regardless of the satisfaction of the global (or absolute)
stability conditions. We tried to find an example where this convergence is dependent on the initial
condition. More precisely, we would be interested in finding examples where we can make the
following observations. Let x̄ > 0 be the equilibrium point of a single compartment system.

• When the system is locally stable and the initial condition is in a neighborhood X0 of x̄,
then we have convergence of x(t) to x̄. But when this system does not satisfy the absolute
stability condition, if the initial condition is outside X0, then x(t) does not converge.

• When the system satisfies absolute stability condition, but not the global stability condition,
if the initial condition is inside of a set X1, which includes X+ (or X−), then x(t) converges
to x̄, but when the initial condition is outside X1, then x(t) does not converge.

Finding such examples and the corresponding X0 and X1 seems to be a difficult task. Many tries
we have made with different numerical values turned out to be futile.
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H. Özbay et al. Stability Analysis of Cell Dynamics in Leukemia

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 time

 

 

x
1
(t)

x
2
(t)

Figure 8: Simulation results for Example 4.

The above discussion leads to the following conjecture. Let x̄ > 0 be the equilibrium point of a
single compartment system. If the system is locally stable and all solutions remain bounded, then
it is globally stable too.

Recently, it has been proven that (here we give the single compartment version of the result
from [6]), when the origin is the only equilibrium, it is locally asymptotically stable if and only if

(2LG(0)− 1)β(0) < δ i.e. β(0) < δ/α.

Moreover, the origin is globally asymptotically stable if

(2G(0)− 1)β(0) < δ.

Note that in a single compartment model we have K = 0 (none of the divided cells go to the next
compartment) and L = 1, hence, local asymptotic stability condition is the same as the sufficient
condition for global stability. For the multiple compartment case of the lumped delay version of
this system, see [57], where it has been shown that

β1(0) <
δ1
α1

is a sufficient condition for global asymptotic stability. The conjecture stated above deals with the
extension of these results to the case x̄ > 0.

5. Conclusions
In this paper, stability conditions are obtained for a nonlinear system with distributed delays, rep-
resenting a mathematical model of cell dynamics in leukemia, that has been the subject of many
earlier works [1]–[9] and [15, 22, 30, 34, 39, 49, 57, 68]. Local asymptotic stability conditions are
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obtained from the Nyquist stability criterion. Global exponential stability conditions are derived
from the nonlinear small-gain type of arguments, and absolute stability conditions are obtained via
the circle and Popov criteria.

All the stability conditions are expressed in terms of the parameters of the linear part, namely
α, δ, τ , h0, kmax, K̃G, and the gain of the nonlinear block xβ(x), i.e., µ, ρ, ρ̃. By adjusting
some of these parameters, equilibrium and stability conditions can be changed. That can be done
by taking some therapeutic actions (e.g. death rates can be adjusted by medication). Of course,
periodic medications will make the system parameters vary in time; analysis of such a time varying
nonlinear system with distributed delays requires a separate study. Nevertheless, for certain forms
of time-varying nonlinearity, some of the analysis techniques used here remain valid, see e.g. [10].
By some other types of external intervention one may be able to reduce the leukemic stem cell
(LSC) population suddenly; this corresponds to changing the initial conditions in the mathematical
model. That may help bring the system within the absolute stability region near the equilibrium.
This is useful when the system is absolutely stable, yet it does not satisfy the global stability
condition.

Although leukemia is the best understood cancer, as far as dynamical modeling is concerned,
there are still practical difficulties in determining the parameters of the mathematical model con-
sidered here. Nevertheless, stability analysis performed here can explain certain medical data.
For example, it can be concluded that decreased γi leads to instability; more precisely, decreased
γi leads to increased Gi(0) and that may lead to violation of the inequalities (3.1), or (3.38), or
(3.42). A similar observation has been made in [23] by analyzing biological data published in
earlier literature on chronic myelogenous leukemia.

Other lines of future work include consideration of different types of (possibly higher order)
cell division rate fi, and experimental justification of the model using real data (e.g. from a tumor
bank). We do think, and are actively and practically supported in this by medical collaborators (see
Acknowledgments and references to J.P. Marie), that an interactive approach of the problem con-
sisting in proposing, according to a physiopathologically based rationale, dynamical experiments
in cell cultures, with or without added drugs, to investigate diseased cell dynamics, will result in
medical advances towards understanding the disease and possibly improving its treatment. Con-
versely, of course, such (presently ongoing) experiments will help us identify model parameters,
possibly also modify the model itself, in a more realistic way.
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Appendix: Basic Definitions from System Theory
For the readers who are not familiar with certain basic terms from system theory, we provide a
brief background material in this Appendix. Detailed treatment of these topics can be found in,
e.g., [21, 50, 51, 66].

Consider the following first order differential equation with x(t) ∈ R and u(t) ∈ R

ẋ(t) :=
d

dt
x(t) = Ax(t) +Bu(t) (5.1)

where A ∈ R and B ∈ R are constant coefficients. Suppose that the initial condition is zero, i.e.,
x(0) = 0, and u(t) satisfies u(t) = 0 for t < 0. In this case, the solution x(t) is

x(t) =

∫ t

0

eAτBu(t− τ)dτ , t ≥ 0. (5.2)

Therefore, x(t) for t ≥ 0 can be seen as the output due to the given input u(t) for t ≥ 0. We call
such an input-output relation a system. In terms of the integration and multiplication operators the
system defined by (5.1) can be represented by the block diagram shown in Figure 9.

Figure 9: Block diagram representation of the system defined in (5.1).

For a given system let xk(t) be the output due to the input uk(t) for k = 1, 2; then, the system is
linear if the output satisfies x(t) = c1x1(t)+c2x2(t) whenever the input is u(t) = c1u1(t)+c2u2(t)
for arbitrary constants c1, c2 ∈ R. Let x(t) be the output due to the input u(t) and define uo(t) =
u(t − σ), for some fixed σ ∈ R. We say that the system is time invariant if the output xo(t) due
to input uo(t) satisfies xo(t) = x(t − σ) for any arbitrary σ ∈ R. In this sense, linear differential
equations with constant coefficients can be seen as linear time invariant systems.

Note that when the Dirac delta function (also called the unit impulse) δ(t) is applied as the
input (i.e., u(t) = δ(t)), in (5.1) then the corresponding output in (5.2) is x(t) = eAtB, t ≥ 0. In
this sense, h(t) := eAtB, t ≥ 0, is called the impulse response of the linear time invariant system
represented by (5.1). Generalizing this definition to all linear time invariant systems, we can write

x(t) =

∫ t

0

h(τ)u(t− τ)dτ , t ≥ 0 (5.3)

(whenever initial conditions are zero and u(t) = 0 for t < 0) where h(·) is the impulse response.
The Laplace transform of h is defined as H(s) =

∫∞
0
h(t)e−stdt , s ∈ C, is called the transfer
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function of the system. For example, when h(t) = eAtB, t ≥ 0, we have H(s) = (s + A)−1B.
Note that, in this example, the inverse is undefined at s = −A: this point in the complex plane is
called a pole of H(s). In general, when H(s) = (sI +A)−1B (i.e. A is a matrix) the poles are the
eigenvalues of (−A). In terms of the Laplace transform of (5.1) we have (s + A)X(s) = BU(s).
We define (s + A) = 0 as the characteristic equation, its roots give the poles of the system. We
say that H is proper if lim|s|→∞ |H(s)| < ∞ and it is strictly proper if lim|s|→∞ |H(s)| = 0. If
H(s) is a bounded analytic function in C+, then we write H ∈ H∞ and in this case we define
∥H∥∞ = ess supω |H(jω)| where j :=

√
−1. When H(s) is a rational function H ∈ H∞ if and

only if all its poles are in C−. All these definitions extend to a class of irrational transfer functions,
including systems with distributed delays as considered in Section 3.1.

There are many different definitions for the stability of a system. For the nonlinear system dealt
in Section 3.2 please see Definition 2 and Definition 5. For the local stability analysis (analysis of
the linearized system around the equilibrium) considered in Section 3.1, we say that the system is
stable if its transfer function H(s) is in H∞.
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H. Özbay et al. Stability Analysis of Cell Dynamics in Leukemia

[50] A. V. Oppenheim, A. S. Willsky, H. Nawab. Signals & Systems 2nd ed., Prentice Hall, New
Jersey, 1997.
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