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Abstract 

To complete traditional time- and frequency-domain analyses, new methods derived from non-linear systems analysis have recently 
been developed for time series studies. A panel of the most widely used methods of heart rate analysis is given with computations on 
mouse data, before and after a single atropine injection. 
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1. Introduction 

Heart rate can be computed from an electrocardiogram 
(ECG): it is based on the RR series which represents the 
successive interbeat intervals. Within the same individual, 
important variations from the mean RR value are observed 
in every species studied, from man [l] (mean RR of 1 s) to 
mouse [2] (mean RR of 0.1 s). Heart rate variability (HRV) 
is defined as the fluctuations of the RR intervals around 
this mean value. HRV analysis assumes sinus rhythm and 
ectopic ventricular beats should be rejected. The influence 
of the Autonomic Nervous System (ANS) has long been 
recognized in these fluctuations, short-term variability be- 
ing mediated by the parasympathetic system, and long-term 
variability by both the sympathetic and parasympathetic 
pathways [3-71. 

Epidemiological studies, beginning in the late seventies, 
have shown that a decrease in HRV is one of the best 
predictors of arrhythmic events or sudden death after 
myocardial infarction [8-131. Search for better methods of 
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analysis has therefore more than an academic interest. 
HRV depends on various determinants including the 
baroreflex, cortical influences, but also, as recently sug- 
gested in our laboratory [1.5], the myocardial phenotype. 
The myocardial /3-adrenergic/muscarinic receptors ratio is 
modified during cardiac failure and experimental data have 
shown that these alterations parallel the decrease in HRV 
[ 14,151. To verify such a hypothesis, independently of any 
baroreflex influence, we have developed a model of trans- 
genie mice overexpressing P,-adrenergic receptors exclu- 
sively in atria [16]. Preliminary results reveal substantial 
alterations of sinus rhythm variability [2]. 

To illustrate a large panel of HRV analysis methods, we 
have purposely focussed our study on RR series obtained 
from the same young female mouse, before and after 
intraperitoneal (IP) injection of a single dose of atropine 
(100 mg/kg). Th e mouse is a model of growing interest 
because of the use of murine transgenic models in the 
cardiovascular domain [17-191. The ECGs were recorded 
by telemetry and the RR series were computed using 
DADISP software (DSP Development Corporation) and 
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Fig. 1. Effects of atropine on heart rate in a mouse. A: control. B: after 
injection of a single dose of atropine (100 mg/kg). Tachograms. Heart 
rate recording uses a biocompatible ETA transmitter (DataSciences Inc, 
St Paul, MN, USA) via a telemetric device on a non-anaesthetized and 
freely moving young female mouse (4 months old; body weight 22.3 g). 
Sampling frequency: 3 kHz. Such a frequency ensures R wave detection 
with an accuracy < 1 ms. Signal digitized on a PC-based system 
(Axotape) and stored for further analysis on a Unix workstation. RR 
series were obtained from the ECG recordings using DADISP software 
and a level cross method to detect the R waves. 

the effects of atropine injection are shown in Fig. 1A and 
B. 

In the present review, methods of HRV analysis will be 
presented, derived from both classical signal processing 
and non-linear dynamics. The review will focus on a few 
points: (a) time-domain, spectral and time-frequency anal- 
yses are not exclusive of non-linear analysis; (b) the use of 
non-linear methods should not be restricted to proven 
deterministic chaos 1201; Cc) a rather large panel of meth- 
ods has to be used to provide reasonable evidence of 
chaotic, or at least non-linear, behaviour. 

2. Methods of analysis of HRV 

2.1. Spectral and non-spectral methods of analysis 

Several articles have been published on this topic [4- 
6,21,22] and this section is a review of some of the 
classical methods in use. 

2.1.1. Time domain methods; Variability indexes 
Apart from the mean RR value, the effective calculation 

of the standard deviation gives a coarse quantification of 
the variability, without distinguishing between short-term 
and long-term fluctuations. In our example, the heart rate 
of the mouse is round 500 bpm, with a mean RR value of 
113 k 9 ms. Interestingly, atropine lowers the heart rate 
and increases the mean RR to 140 f 6 ms, instead of 
accelerating the heart rate as it does in most of the animal 
species, suggesting that mice have no vagal tone. Standard 
deviation was diminished from 9 to 6 ms. The calculation 
of the autocorrelation function is also instructive [correla- 
tion of the RR(i) with the RR(i + t), with varying t], 
which gives the standard deviation for t = 0. Furthermore, 
the autocorrelation function is periodic if the original 
series is periodic. 

Many different variability indexes have been defined in 
various fields such as obstetrics [23] and cardiology [24] 
and some of them are widely used (Yeh’s indexes in 
obstetrics [23], and SDANN or SDNNSO [ 12,13,24] in 
cardiology). It is worth noting that most of the epidemio- 
logical studies demonstrating the prognostic value of a 
decrease in HRV after myocardial infarction have been 
based upon such indexes [ 131. 

2.1.2. Frequency domain methods; Spectral analysis 
Spectral analysis consists in converting information in 

the time domain into information in the frequency domain. 
The most widely used method for processing the studied 
signal is the Fast Fourier Transformation, PIT. The result 
of FIT is a complex number for each frequency; its 
squared modulus is the spectral power, and the set of all 
spectral powers for the different frequencies is the Power 
Spectral Density (PSD) function; its graph is the spectrum 
of the signal. Results are expressed in Power Spectral 
Density (PSD), the squared amplitude calculated for each 
frequency. The spectrum of the signal is the graph of the 
PSD function (y-axis) plotted against frequency (x-axis). 
Partitioning in High or Low Frequency variabilities, HF 
and LF, gives the short-term or long-term variability of the 
time series. The total HRV is obtained by calculating the 
total area under the PSD curve. Spectral analysis methods 
have been widely applied to both HRV and blood pressure 
variability. Nevertheless, spectral analysis presents intrin- 
sic limitations, especially in relation to the possible non- 
stationarity of the signals 1251. The FFT requires a station- 
ary signal: the statistical properties of the signal should be 
the same when their estimation is performed at different 
time intervals within the same recording. It also assumes 
that the recorded oscillations are symmetrical. 

Fig. 2 (left) gives the result of a spectral analysis of the 
RR series performed by FIT using a Hamming window, 
and shows apparent activity in various frequency bands: a 
I-IF band around 2.4 Hz, a LF band around 0.6 Hz, and a 
very low frequency band below 0.4 Hz. The spectrum is 
complex, and the’quantification difficult due to the ex- 
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treme variability of the heart rate in this animal species. In 
the presence of atropine, there is an overall decrease in 
HRV which is more pronounced in the LF range. 

2.1.3. Time-jkequency methods of analysis 
In order to be free from the stationarity assumption 

underlying spectral analysis, time-frequency methods have 
been developed. They evaluate the spectrum over moving 
windows, attributing a value of the PSD to each point in 
time and to each frequency, and produce instantaneous, or 
evolutionary, spectra. The most widely used time-frequency 
methods are the short-time Fourier transform and the 
Wigner-Ville transform [26,27]. 

The smoothed pseudo Wigner-Ville transform has been 
used in our laboratory to analyse HRV in mice because the 
heart rate of this animal species varies quickly [2]. The 
signal is analysed simultaneously in the time and in the 
frequency domains, with a third dimension on a horse 
representation representing the spectral power (Fig. 2 right). 
It is then also possible to determine two main frequency 
bands: a Low Frequency band, LF, centered at 0.6 Hz (one 
oscillation every 1.6 s), and a High Frequency band, HF, 
centered at 2 Hz (one oscillation every 0.5 s). Quantifica- 
tion is obtained by averaging the peak spectral power 
values at each instant in every band. Atropine decreases 
the spectral power in the two bands, but has a more 
pronounced effect on the Low Frequency oscillations than 
at high frequency (from 22 150 to 12 650 ms’/Hz for LF 
and from 3250 to 3000 ms*/Hz for I-IF). In this mouse, 
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atropine decreases mainly the LF part of the spectrum, in 
contrast to human RR recordings, in which atropine mainly 
erases the I-IF activity [6]. Whether this is a consequence of 
a peripheral effect of atropine, or an intrinsic difference in 
the regulation of heart rate by the ANS between mice and 
men, is an open question. 

2.2. Methods derived from fractal geometry 

The basic property of a fractal object is self-similarity 
or scale invariance; the details of the structure are similar 
when zooming at different resolutions. The fractal dimen- 
sion measures this irregularity. It can be estimated from 
the minimal number N(r) of (hype&&es with given edge 
length r, and in the case of a fractal object, this fractal 
dimension is a non-integer number. It is also called capac- 
ity, or box-counting dimension [28-301. 

Several fractal measures of irregularity are applicable to 
heart rate. The fractal dimension of the RR series can be 
calculated, usually by box-counting, time being here irrele- 
vant [311. Another measure may be computed on the 
spectrum, with the help of the exponent /3 in the approxi- 
mate l/f B expression for the PSD 1321. In our example, 
on a mouse, performing such a log-log representation is 
not really advisable because of the shortness of the data 
sets. Let us nevertheless mention that the calculation gives 
for the atropine data sets a lower /3 exponent in the upper 
part of the spectrum, and no differences in the lower part. 

HRV may also be considered as a mixture of influences 

Fig. 2. Effects of atropine on heart rate in a mouse. Left: Fast Fourier Transform, performed with a Hamming window on 80 seconds of the same data, 
before and after (B) atropine injection. Right: Smoothed pseudo Wigner-Ville Transform applied to 80 seconds of the same data as in the fast Fourier 
transform. The input is a high-pass filtered version of the signal, to eliminate very low frequency noise ( < 0.4 Hz). The analysis was performed with 
Lary-C software (INRIA, Rocquencourt, France and TNI, Brest, France). High resolution was achieved by independent time and frequency smoothing 
using a moving 16point ( = 1.6 seconds) window (for time) and a 12%point window (for frequency). Evaluation of spectral power, in ms2/Hz was 
performed for each window by taking the maximal amplitude in both high and low frequency bands. In each band, the results were averaged over all time 
windows considered. 



314 P. Maker et al./Cardiovascular Research 31 (1996) 371-379 

2- Dimension 
It& 
In - 
IQ- 
ISI- 

Ml- 

II- 

IX- 

Ill- 

la- 

w 

CaO’ rl 
P) Pp la II7 IX If lM In 167 a IW 90 99 la II7 1% IIS ISI Iu I62 I71 

3- Dimension 

IN 

Fig. 3. Effects of atropine on heart rate in a mouse. Left panel: control. Right panel: after atropine. Phase portraits (scatterplots) in 2 or 3 dimensions. A: 
2D projection onto the principal factor plane. B, C: 3D projections on the other two factor planes. In the case of non-linear analysis procedures we used a 
raw RR signal with a non-equidistant sampling. 



P. Maker et al./Cardiovascular Research 31 (1996) 371-379 315 

from the ANS (“harmonic component”) and a remaining 
“fractal component”: calculation will then consist in ex- 
tracting this fractal part of the HRV in the spectrum, 
computing its relative importance in the spectrum (fractal 
percentage) and determining a fractal exponent from the 
remaining part of the spectrum [33-351. 

2.3. Methods of non-linear dynamics; Chaotic behaoiour 

Sets of differential or difference equations describing 
the evolution of a system can display solutions that are 
totally unpredictable in the long run, because of “sensitive 
dependence on initial conditions”, even though the trajec- 
tories remain in a bounded region of the space. In other 
words, the divergence between two initially close trajecto- 
ries of the system is such that any estimation of the 
position of one point at a given time is impossible. And yet 
the system has nothing to do with chance: it is theoreti- 
cally determined by its equations and a starting point 
[36-391. 

2.3.1. Attractors and chaos 
From a “dynamical” point of view, a discrete time 

series, such as an RR series, is seen as the projection on a 
line of one trajectory of an unknown discrete deterministic 
dynamical system in m-dimensional space. If this evolu- 
tion is not subject to abrupt changes induced by external 
factors, such a trajectory will converge to an attractor, i.e. 
a closed set of points in m-dimensional space which is a 
limit set for all trajectories of the system, and one trajec- 
tory is supposed to cover the attractor if the time series is 
long enough. Many deterministic dynamical systems pre- 
sent attractors, but not all of them are chaotic. A chaotic 
attractor is defined by sensitive dependence on initial 
conditions for the trajectories on them; if, furthermore, it is 
a fractal object, with a non-integer dimension, then it is a 
strange attractor and displays no simple geometric struc- 
ture [40,41]. Chaos occurs only in non-linear systems. 
Widely known examples of strange attractors are H&on’s 
and Lorenz’s attractors [36-391. 

2.3.2. The case of heart rate 
Application to biological systems is relatively new and 

has been recently reviewed [42-441. The ECG may be 
viewed as a deterministic continuous dynamical system. 
The RR series is then considered as the sequence of “first 
return times” corresponding to the intersections of the 
trajectories with a fixed hyperplane, e.g. zero crossing for 
the action potential. In this respect, [RR, vs RR,, ,] plots, 
or [RR,, RR,, ,, RR n + 2 I plots [451 are not Poincare maps 
or first return maps but rather “first return time maps” of 
a continuous dynamical system; they are sometimes termed 
scatterplots [461, but the most widely used term is “phase 
portraits” [47]. Two- and three-dimensional phase portraits 
are shown in Fig. 3 for data obtained with a mouse. The 
control plots are geometrically ordered, in a cone-like 

structure, whereas the atropine plots are distributed in a 
less ordered aspect. 

2.3.3. Reconstructing a cardiac attractor from the RR 
series 

Let us assume that a dynamical system of unknown 
dimension m underlies the RR series. Packard, Ruelle and 
Takens showed that one-dimensional projected data were 
sufficient to reconstruct an original m-dimensional attrac- 
tor with the method of delays [48]. It consists in consider- 
ing the time series (RR( t>, t = 1,2,...N], as the projection 
on one coordinate axis of an m-dimensional series {RR, = 
[RR(t), RR(t + T), RR(t + 271,. . . , RR(t + (m - l)~], t 
=12 , , . . . , N], taken as a trajectory on an attractor. As far 
as the RR series are concerned, a time lag T = 1 seems to 
be the most reasonable choice, since longer lags may 
induce undue loss of spatial correlation between points. 
The dimension m of the space in which one thus embeds 
the trajectory is called the embedding dimension. If it is 
chosen large enough (one should take m > 2 d, + 1 1481, 
where d, is the correlation dimension, see below), then the 
geometrical properties of the trajectory and of the recon- 
structed attractor are conserved by this processing. Statisti- 
cal and geometrical invariants of the attractor, such as 
dimension, Lyapunov exponents and entropy, may then be 
computed. 

2.3.4. Measuring a cardiac attractor 

2.3.4.1. Dimension. The dimension of an attractor can be 
given by the fractal dimension d, obtained by box-count- 
ing, the information dimension d, obtained by computing 
the information entropy, and the correlation dimension d, 
obtained by the Grassberger-Procaccia algorithm [49-5 11 
or its variants [52]. If the experimental data are regularly 
distributed on the attractor, these three modes of calcula- 
tion give the same result. Such algorithms are limited by 
data length: 10d212 points are necessary to estimate di- 
mension d, [53]. For heart rate series, even a 24-h record- 
ing of heart rate (100 000 beats for a human heart, 700 000 
beats for a mouse) cannot allow any estimation of the 
correlation dimension over 10. Furthermore, such a pro- 
cessing assumes that the attractor has not changed during 
the recording period. Such limitation in the length of data 
implies in particular that only low-dimensional chaos may 
be evidenced by dimension computation. 

In the case of the mouse RR series, the atropine injec- 
tion induces an increase in the correlation dimension, 
regardless of the embedding dimension (Table 1) which 
clearly suggests that atropine enhances the “complexity” 
of the RR series (increased “complexity” simply meaning 
an increased dimension or number of degrees of freedom 
of a system). An embedding dimension of 3 is then 
apparently enough to estimate d,. In fact, we have also 
calculated d, for embedding dimensions up to 10, and 
have obtained a permanent decrease of d, after 5, instead 
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Non-linear analysis of HRV in a mouse. Effects of atropine. Correlation 
dimensions 
Embedding dimension 1 2 3 4 5 

Control 
Original data 0.88 1.42 1.46 1.37 1.30 
Surrogate data 0.97 1.82 2.29 2.31 2.42 
+ Atropine 
Original data 0.93 1.81 2.24 2.10 1.92 
Surrogate data 0.97 1.83 2.3 1 2.37 2.48 

Table 1 Table 2 
Non-linear analysis of HRV in a mouse. Effects of atropine. Lyapunov 
spectrum for embedding dimension 3. A is the sum of A, + h, + h, 

Lyapunov exponent A, A2 A3 A 

Control 
Original data 0.838 - 0.082 - 0.958 - 0.203 
Surrogate data 2.502 0.240 - 1.304 1.437 
+ Atropine 
Original data 0.95 1 - 0.038 - 0.930 -0.017 
Surrogate data 2.913 0.201 - 1.352 1.823 

of an increase which would have been expected with 
purely random data. 

2.3.4.2. Lyupunou exponents. They allow the quantification 
of sensitive dependence on initial conditions [48,54-581. 
On strange attractors, two points on distinct trajectories 
will see their distance after a time t multiplied by a factor 
exp(A,t) (with a positive A,, so that exp(A,t)> 1). This 
exponent A, is the first Lyapunov exponent of the system, 
but not the only one. If we consider a small volume 
element, the deformation of this volume element after a 
time t will vary according to the directions considered. It 
will be expanded if a multiplicative factor of the form 
exp(ht), A > 0, accounts for the deformation in this direc- 
tion, and shrunk in another direction when A < 0. Conse- 
quently, to accurately analyse the dynamical system, com- 
putation of the complete Lyapunov spectrum 
(44 2,. . . , A,,,, with A, > A, > . . . > A,,,,) is necessary. The 
first exponent A,, has to be positive for the system to be 
chaotic, but the following ones may be positive or nega- 
tive. The sum A = A, + A, + . . . + A,,, gives the exponen- 
tial rate A of contraction (if it is negative: exp( Ar) < l), 
or expansion (if the sum is positive: exp( At) > 1) of the 
volume. The system is said to be dissipative for A < 0, 
conservative for A = 0, and accretive for A > 0. These 
terms are related respectively to dissipation, conservation, 
or accretion of energy. 

probability distribution; in the case of a strange attractor 
where the measure considered is the counting measure on 
the trajectory, K, is lower than the sum of positive 
Lyapunov exponents [48]. Other definitions are available, 
particularly a topological entropy K, and a “correlation- 
like” entropy K,. Both K, and K, are computed by 
variants of the Grassberger-Procaccia algorithm. A variant 
of K, has been proposed by Pincus and co-workers: 
“ApEn”, for Approximate Entropy, which is likely to be 
less sensitive to noise and usable for short stationary time 
series [59,60]. 

In the case of our mouse, the injection of atropine 
results in an increase in ApEn (Table 3) which again 

Table 3 
Results of a panel of linear and non-linear methods applied to the analysis 
of HRV in a mouse. Effects of atropine 

In our example, in control conditions, the first Lya- 
punov exponent A, is positive, and the sum A is negative, 
which favours a deterministic dissipative chaotic system 
for the heart rate of our mouse. Atropine injection in- 
creases both A, and A and draws the sum A close to zero 
(Table 2). Such results are also in favour of an increased 
“complexity” in the presence of atropine. The Lyapunov 
spectrum was also calculated in embedding dimensions 4 
and 5, with comparable results, the first two exponents 
being positive, and not only the first one. A short data 
length is again a limiting factor in Lyapunov spectrum 
estimation: for an attractor of correlation dimension d,, a 
correct evaluation of A, ,A,, . . . , A, requires 10d2 points 
[53], a condition fulfilled by the present heart rate series. 

2.3.4.3. Entropy. K,, the information entropy, is a quan- 
tification of the information uniformity carried by the 

Control Atropme 

Heart rate 
Mean RR (ms) 113 140 
SD (ms) 9 6 
Visual observation of tachygram (Fig. 1) 

RR series more regular 
Fast Fourier transform (Fig. 2) 

IJ power all frequencies, 
IJ U Low Frequency 

Time-frequency analysis (Wigner-Ville Transformation, Fig. 3) 
HF peak (ms2/Hz) 3250 3000 
LF peak (ms2 /Hz) 22150 12650 
Phase portraits (Fig. 4) 

more compact 
Correlation dimension (Table 1) 
Form=3 1.46*0.13 2.24kO.19 
Lyapunov exponents (Table 2) 
Form=3 
4 0.838 0.95 1 
A - 0.203 -0.017 
ApEn a 

0.03 0.10 
Non-linear prediction (Fig. 5) 

worse 
Surrogate data: see Tables 1 and 2, Fig. 5. 
Correlation dimension: in favour of a non-linear component 
Lyapunov spectra: strongly in favour of a non-linear component 
ApEn: in favour of a non-linear component 
Non-linear prediction: in favour of a non-linear component 

a The ApEn statistic has been calculated for N = 1000 points, m = 2, 
r = 0.05 s.d. 
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Fig. 4. Effects of atropine on heart rate in a mouse. A: control. B: after 
atropine. Comparison between experimental and the surrogate series. 
Non-linear prediction by Sugihara and May’s method [61] in embedding 
dimension 3. Correlation coefficient between observed and predicted 
values, in number of beats as a function of the prediction time. The 
prediction is determined by using the first 500 points of the RR series, 
and the actually observed values are the following 500 points of the same 
series (total number of RR: 1000 points). Fkdictabiiity is defined by the 
the capacity to predict the RR value. The prediction lag is taken here as 
the number of beats. 

favours an increased “complexity” due to the drug, in the 
same time as variability decreases, showing that these two 
terms are not synonymous. 

2.3.5. Non-linear determinism and randomness 
All these estimates derived from non-linear dynamics 

assume that the RR series is the output of a deterministic 
dynamical system. This assumption is naturally not to be 
taken for granted, and tests of non-linear prediction [61], as 
well as comparison tests with surrogate data [62], have 
been proposed to address this question. A surrogate series 
is a time series in which non-linear dependences have been 
wiped out by some “random shuffling procedure”, but 
which retains all linear characteristics of the original time 
series, including its spectrum. 

We have used non-linear prediction in our mouse, as an 
example. The predictability is shown in Fig. 4A and B. 
Before atropine, the prediction index, is better for the 
experimental series than for its surrogate series; by con- 
trast, after atropine injection, one no longer sees differ- 
ences between the original and the surrogate series. The 
same results were obtained using the correlation dimension 

(Table 1). Most important, in the case of the Lyapunov 
spectra, striking differences between original and surrogate 
series are obtained for both control and atropine data 
(Table 2). The results for surrogate series reveal an appar- 
ently stochastic behaviour with a very high first Lyapunov 
exponent A,, in an accretive system (A > 0). By contrast, 
the original series show a lower (but still positive) h,, in a 
dissipative (control) or at most conservative (anopine) 
system ( A zz 0). The ApEn values calculated for surrogate 
data are much higher than for the original series: 0.32, 
instead of 0.03 for the original RR series before atropine, 
and 0.53, instead of 0.10 for the original RR series under 
atropine. 

These differences between original and surrogate data 
are thus in favour of a non-linear, deterministic and chaotic 
dynamical system for the RR series under study. They are 
quite clear for all series on the Lyapunov spectrum (ob- 
tained by the public-domain program DLIA [56], following 
Eckmann-Ruelle’s algorithm) and on ApEn values, but 
remain clear only for the control series on correlation 
dimension calculations (public-domain program SCOUNT 
[51], completed by the scientific programs package 
SCILAB, developed at INRIA), as well as on non-linear 
prediction. This illustrates the necessity of a large panel of 
analysis techniques, rather than a single one, to investigate 
time series. 

3. Concluding remarks 

Numerous methods of analysis, derived from classical 
signal processing or non-linear dynamics, are available and 
no single measure is more appropriate than the others for 
physiological research or clinical practice (Fig. 5). There- 
fore, and following Drazin [39], we propose to use a panel 
of measures, as presented in Table 3. The detailed analysis 
that we had performed on our mouse case allowed us to 
conclude that an atropine injection is likely to result in an 
increased complexity of an assumed heart rate attractor. 

Non-linear indexes 

* fractal dimension 

El 

* Entropy 

‘[Cl 

* Lyapunov exponents 
* non linear prediction 
* comparison with surrogate data 

Fig. 5. Qualitative illustrations and quantitative indexes which may be 
obtained from experimental time series. 
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The existence of a cardiac strange attractor which would 
have as output the RR series is as yet far from being fully 
demonstrated. Although explicit equations are presently 
lacking to fully justify these techniques, we do not have 
any real argument to reject them. Whether they rely on 
sound theoretical grounds or not may even appear irrele- 
vant to pragmatists, provided they allow clear distinction 
between physiologically distinct groups of subjects [20]. 

The ApEn statistic is advocated by Pincus and co- 
workers [63,64] and is independent of the assumption of a 
cardiac strange attractor. ApEn is a product of the work 
achieved in the last ten years in non-linear dynamics: the 
original idea of ApEn, even if it now relies on other 
theoretical grounds, was first an approximation to the 
entropy of an invariant measure on an attractor [48]. And 
one may expect still other interesting parameters, coming 
from non-linear systems analysis, to be helpful in physio- 
logical research or clinical practice. 
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