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We would like to thank the authors of the comments [1–5] for their interesting and stimulating ideas, as well as for 
discussing some issues that remained outside the scope of our review [6]. We agree with these comments and we will 
return to some of them in the discussion below.

1. Different modeling approaches

1.1. Model simplification

We share the opinion of Tommaso Lorenzi in his comment [5] about different modeling approaches. We advocate 
that the models to be used in improving cancer therapeutics, are minimal ODE- or PDE-based models, which seem to 
us preferable if one wants to propose optimization and optimal control methods. This comment has also been rightly 
underlined that continuous models based on structured PDEs are more soundly established when they have been 
derived from agent-based models (ABMs), which we mentioned, writing that passage to the limit in number and size 
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of cells is hard to justify, and that they should rely on mean-field representations of cellular dynamics, which we did 
not mention as such.

As it is stressed in the comment by Jack A. Tuszynski [1], modeling research is more often computational than 
analytical. Even though theorems in mathematical oncology are rare (but not absent), they are just the same the grail, 
and computational models - experimental mathematics, in some sense - are often what we must humbly content 
ourselves with, offering mathematical conjectures that may guide us towards proving theorems, and this is sometimes 
the case in studying asymptotic behavior of the systems at stake.

1.2. Model extension

The discussion of reduced and more complete models is continued in the comments by Heiko Enderling [2], 
Angélique Stéphanou [3] and Haralampos Hatzikirou [4]. Indeed, we chose minimal models for the above mentioned 
reasons, rather than models based on systems biology meant as relying on extended systems of equations represent-
ing intracellular gene regulatory networks (GRNs) and the main connections between them, represented by known 
excitatory or inhibitory molecular influences between the main genes at stake. This is another way of approaching the 
reality of intracellular dynamics, which we did not choose, as it needs a tremendous harvest of data to identify the 
numerous parameters of such models, which may possibly be helped by artificial intelligence (AI) and deep machine 
learning (ML), as advocated by so many biologists today. One of the comments suggests an integrated combination of 
Bayesian techniques applied to mechanistic models with ML in multiscale models [4]. Such descriptive methods, that 
require masses of data - that for sure biologists are eager to provide because most often they have them in stock and do 
not know how to deal with them - can indeed aid, e.g., in estimating parameter values and identifying crucial factors 
that need to be accounted for in reduced dynamical models. However, we contend that, a biological phenomenon 
being given with possible disruptive dynamics, such as tissue differentiation and proliferation perturbed in cancer, one 
should focus on a limited set of pathophysiological tracks that are likely to be at work in disease and amenable to 
theoretical therapeutic correction by action on precise terms in equations, representing physiological targets. Only by 
having such simple phenomenological systems at hand, that represent a given therapeutic action on a given disrupted 
biological system such as a cancerous cell population, can one propose improving, if not optimizing, therapeutic 
control.

It is not surprising, in this perspective, that comments advocating describing proliferation in health and in disease 
using big GRN systems [2] may consider our focus on optimization and optimal control in cancer therapeutics as too 
big a hurdle to provide the success stories that we are all awaiting to be able to convince oncologists of the utility 
of physically based mathematical models in therapeutics. Of course, such focus makes us introduce simplifications 
- which we always demand to be based on physiological bases - to represent the evolution of the systems at stake, 
in health and in disease, that many biologists will not accept, as too simplifying. However, reduction of physical 
reality by such simplifications is at the base of all physics, and it is on the other hand mandatory to have access to an 
improved understanding of the dynamics of the system at stake and of its possible correction. This goal, therapeutic 
optimization, determines our focus on minimal models, that is commended in one of the comments [1].

2. Interdisciplinarity and cancer theories

An important feature of our paper, stressed by one of the comments [3] as its main added value, is the importance 
of making precise, as much as possible, the underlying theories (“philosophy of cancer”) that are most often only 
implicit in the works of cancer biologists. Here we have indeed mentioned SMT, TOFT and the atavistic theory of 
cancer as scientific attitudes that determine choices of biological observations and experimentations in oncology, be 
the observers/experimenters conscious of it or not. We agree with this point of view emphasized by the comments.

Discussion of the interaction between modelers and clinicians was continued in the comment [2]. One can contend 
that it is not true that the lack of a common language limits the direct interactions between mathematicians - and 
physicists alike - and physicians, as double training programs are more and more proposed in various universities and 
institutions worldwide. Nevertheless, the reader should be attentive to the last paragraph of Section 5.1. A common 
language may exist, however if the oncologist just considers the mathematician as a math provider to solve the prob-
lems he has in mind, and if conversely the mathematician considers these problems as just food for thought, then such 
common language does not lead to shared understanding.
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One of the comments stress the fact that modelers may often fail to adequately communicate model assumptions 
and model uncertainties [2]. True. But do oncologists actually ask about such model limitations? In the collaborative 
experience of at least one of us, the goal of collaboration with mathematicians was presented as “allowing us [clin-
icians] to think cancer therapeutics differently”. A minimal step for sure, however not sufficient to take a maximal 
advantage of such interdisciplinary collaboration. To this goal, oncologists actually trained in maths at a high level, 
and mathematicians actually trained in clinical oncology are needed for both to be able to share a common spirit, and 
not only language, in conceiving new therapeutic tracks. And here the so-called “philosophy of cancer” can help both 
towards acquiring such spirit. By the word “spirit”, that may seem ostentatious to many, we mean not some spiritual 
common conception of life, but just a constant, insatiable, need to understand the ways of thinking of the other in such 
collaborative couples. A hard task indeed.

3. Methods of cancer treatment

3.1. Tumor treatment fields by alternating current

One of the important questions, which remained beyond the scope of our review [6], was brought to the discussion 
by J.A. Tuszynski in his comment [1]. It concerns tumor treatment by alternating electric current with specifically 
chosen frequency and voltage. The method of tumor treating fields (TTfields) was suggested by Kirson et al. in 
2004 [7] and then further developed in later works [8,9]. It was shown that alternating current with intermediate 
frequencies 100-300 kHz can delay or stop completely cell proliferation and lead to cell death. This effect is based 
on a subtle interaction between electric field and electrically charged biological molecules and organelles inside the 
cell. Remarkably, it acts on microtubule formation preventing normal functioning of mitotic spindle. The biophysical 
background of this complex phenomenon is minutely described in the review [10]. Besides, alternating current can 
destroy dividing cells before complete cell separation. Due to the interaction of nonuniform electric field near cleavage 
furrow and alternating current, dipole particles inside the cell move to the separation point and damage cell membrane. 
Animal studies and clinical trials show that TTfields slow down tumor growth and formation of metastases [9,11]. It 
is also important that the frequencies of TTfields depend on cell lines and can differ for normal and tumor cells, 
therefore, decreasing side effect of proliferating cell death. Combination of chemotherapy and TTfields is a promising 
avenue in cancer treatment.

We also agree with the comment in [1] that mathematical modeling and numerical simulations can be useful in the 
understanding of these biophysical phenomena and their quantitative assessments. The effect of alternating current on 
cell membrane and subcellular structures, including microtubules [10], provides an interesting example of complex 
phenomena where theoretical modeling can lead to important practical results related to cancer treatment.

3.2. Radiotherapy

Heiko Enderling in his comment [2] indicated two ongoing clinical trials founded on the results of mathematical 
optimization tasks. Another example of ongoing integration of theoretical results into practice is related to the work 
by Leder et al. [12], also mentioned in his comment – a protocol based on the one suggested in that work has recently 
been tested for safety in a clinical trial.

Therefore, the influence of mathematical optimization in radiotherapy becomes quite notable. The integration of 
mathematical modeling in radiobiology is dictated not only by a long history of using mathematics to quantify tumor 
control and adverse effect probabilities, as rightly pointed out by Heiko Enderling. Another factor is the potential 
outcome of such collaboration. Radiotherapy is administered to approximately half of the patients diagnosed with 
cancer, and given its wide use it was suggested by radiobiologists that optimization of radiotherapy should even be 
a more efficient way than exploiting newly developed drugs to achieve a comparable notable increase in the overall 
cure rate of cancer [13].

The now being tested in clinics concept of temporally feathered radiation therapy deals with a type of optimization 
that we have not accentuated in our review, namely, the spatial optimization of irradiation. Along with temporal 
fractionation, it is an option to increase the treatment efficacy and/or to reduce side-effects associated with the damage 
to the normal tissues. Spatiotemporal optimization of irradiation is therefore a significant problem, which solution can 
benefit from mathematical modeling. It is especially relevant, e.g., for intensity modulated radiotherapy and proton 
17
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therapy that allow flexible adjustment of the spatial distribution of irradiation. Generally, in practice the main goal 
is to reduce the dose of radiation administered to the normal tissue, while the tumor volume is generally uniformly 
irradiated. However, as was noticed in our review, the growing tumor has non-uniform radiosensitivity of its cells and 
this fact can be taken advantage of for treatment optimization. Notably, based on this fact, as early as in 2000 it was 
suggested that a non-uniform dose distribution or so-called dose staining based on information obtained by imaging 
methods could increase radiotherapy efficacy [14]. However, only a rather small number of related experiments have 
been performed and yet only a few theoretical works exist that consider such tasks.

Summarizing this discussion, we express our hope that new generations of researchers with interdisciplinary train-
ing and profound understanding of cancer theories and practice will contribute to the optimization of cancer treatment 
and to the development of new methods of treatment. Some possible directions of this important work are discussed 
above.
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