Cell proliferation, circadian clocks and molecular pharmacokinetics-pharmacodynamics to optimise cancer treatments

Jean Clairambault

INRIA Bang project-team, Rocquencourt \& INSERM U776, Villejuif, France http://www-roc.inria.fr/bang/JC/Jean_Clairambault_en.html

European biomathematics Summer school, Dundee, August 2010

Outline of the lectures

- 0. Introduction and general modelling framework
- 1. Modelling the cell cycle in proliferating cell populations
- 2. Circadian rhythm and cell / tissue proliferation
- 3. Molecular pharmacokinetics-pharmacodynamics (PK-PD)
- 4. Optimising anticancer drug delivery: present and future
- 5. More future prospects and challenges

Circadian rhythm and cell / tissue proliferation

The circadian system (of mice and men)

The circadian system...

Central coordination

... is an orchestra of clocks with one neuronal conductor in the SCN and molecular circadian clocks in all peripheral cells

Figue 3|Per:tuciferase transgenes reveal a diversity of tissue-based circadian oscillators.

Circadian rhythms in the Human cell cycle

Example of circadian rhythm in normal (=homeostatic) Human oral mucosa for Cyclin E (control of $\mathrm{G}_{1} / \mathrm{S}$ transition) and Cyclin B (control of $\mathrm{G}_{2} / \mathrm{M}$ transition)

Sampling Time (Clock Hour)

Sampling Time (Clock Hour)

Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean \pm S.E.M. in oral mucosa samples from 6 male volunteers. Cosinor fitting, $\mathrm{p}<0.001$ and $\mathrm{p}=0.016$, respectively.

In each cell: a molecular circadian clock

Cellular rhythms

24 h-rhythmic transcription:
10% of genome, among which: 10% : cell cycle
2% : growth factors

The central circadian pacemaker: the suprachiasmatic (SCN) nuclei

20000 coupled neurons, in particular electrically (coupling blocked by TTX), each one of them oscillating according to a period ranging between 20 et 28 h

With entrainment by light (through the retinohypothalamic tract) for VL neurons

Oscillations in the central pacemaker result from interneuronal coupling and from integration of individual neuronal action potentials

Light entrains the SCN pacemaker but is not mandatory for its rhythmic firing

ODE models of the circadian clock

- Goodwin (1965): 3 variables, enzymatic reactions, one sharp nonlinearity
- Forger \& Kronauer (2002): Van der Pol-like model, 2 variables
- [Leloup \&] Goldbeter (1995, 1999, 2003): 3 (Neurospora FRQ); 5 (Drosophila PER); 10 (Drosophila PER+TIM); 19 (Mammal) variables
- Synchronisation of individual clocks in the SCN: Kunz \& Achermann (2003); Gonze, Bernard, Herzel (2005); Bernard, Gonze, Cajavec, Herzel, Kramer (2007)

All these models show (robust) limit cycle oscillations:

Simple mathematical models of the circadian clock

Modelling the SCN as a network of coupled oscillators:

 diffusive (electric?) coupling between neurons$$
\begin{aligned}
& \frac{d m R N A(i)}{d t}=V_{s} \frac{K^{n}}{K^{n}+Z(i)^{n}}-V_{m}(i) \frac{m R N A(i)}{K_{m}+m R N A(i)} \\
& \frac{d P E R(i)}{d t}=k_{s} m R N A(i)-V_{d} \frac{P E R(i)}{K_{d}+P E R(i)}-k_{1} P E R(i)+k_{2} Z(i)+K_{e} \sum_{j \neq i}[P E R(j)-P E R(i)]
\end{aligned}
$$

$$
\frac{d Z(i)}{d t}=k_{1} P E R(i)-k_{2} Z(i)
$$

$V_{s}: V_{s}=1.6(1+L \cos (2 \pi t / 24))$ target of entrainment by light $L ; K$: target of transcriptional inhibition (e.g. by cytokines); $V_{m}(i)$: the carrier of variabilility of the oscillatory period.

3 variables for the $i^{\text {th }}$ neuron that communicates with all other ($\mathrm{j} \neq \mathrm{i}$) neurons of the SCN through cytosolic PER protein, with coupling constant K_{e} : electric? gap junctions? VIP / VPAC 2 signalling?

A hue of stochasticity in the model: heterogeneity of endogenous clock periods to be represented by $V_{m}=0.505+$ dispersion . rand('normal')
(where $V_{m}=0.505->T=21 h 30$)
Example:

Plus entrainment by light: $\mathrm{L}=[0 / 1]$. light, and $V_{s}=1.6^{*}\left(1+L^{*} \cos (2 \pi t / 24)\right)$, hence entraining period $=24 h$; other: $\mathrm{K}_{\mathrm{e}}=0.01$, light $=0.5$, dispersion $=0.1$

Pathways from the SCN toward periphery

(messages suppressed by TTX blockade of interneuronal coupling in the SCN)

Neural messages (ANS), humoral messages (MLT, ACTH) toward periphery (and secretions: TGF α, prokineticin 2, giving rise to the rest-activity rhythm)

Representation of messages from the SCN to the periphery

$$
\begin{align*}
\frac{d U}{d t} & =k_{3} \overline{P E R(N S C)}-k_{4} U \tag{1}\\
\frac{d V}{d t} & =k_{4} U-k_{5} V \tag{2}\\
\frac{d W}{d t} & =\frac{a V}{b+V}-c W \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{U}=\text { intercentral messenger } \\
& \mathrm{V}=\text { hormonal messenger (e.g. ACTH) } \\
& \mathrm{W}=\text { tissue messenger (e.g., cortisol) }
\end{aligned}
$$

Individual peripheral circadian oscillators:

same model as in the SCN, without intercellular coupling of clocks but with entrainment by a common messenger from the SCN

($W=$ messager tissulaire)
...determining an average circadian oscillator in each peripheral organ or tissue, as peripheral clock PER averaged over individual clocks

Result $=$ a possibly disrupted clock: averaged peripheral oscillator 1) without central entrainment by light; 2) with; 3) without
les $\mathrm{M}=20$ cellules oscillantes peripheriques, moyennees

Circadian rhythm and tumour growth: challenging modelling and mathematical questions coming from biological experiments;

Circadian rhythm disruption in Man: Loss of synchrony between molecular clocks?

- Circadian desynchronisation (loss of rythms of temperature, cortisol, rest-activity cycle) is a factor of poor prognosis in the response to cancer treatment (Mormont \& Lévi, Cancer 2003)
- Desynchronising effects of cytokines (e.g. Interferon) and anticancer drugs on circadian clock: fatigue is a constant symptom in patients with cancer (Rich et al., Clin Canc Res 2005)
- ...effects that are analogous to those of chronic « jet-lag » (photic entrainment phase advance or delay) on circadian rhythms, known to enhance tumour growth (Hansen, Epidemiology 2001; Schernhammer, JNCI 2001, 2003; Davis, JNCI 2001, Canc Causes Control 2006)
- ...hence questions: 1) is the molecular circadian clock the main synchronising factor between phase transitions? And 2) do tumours enhance their development by disrupting the SCN clock?
- [...and hence resynchronisation therapies (by melatonin, cortisol) in oncology??]

Circadian rhythm disruption in mice

Body temperature

Filipski JNCI 2002, Canc. Res. 2004, JNCI 2005, Canc. Causes Control 2006

Circadian rhythm and cancer growth in mice

2. Circadian rhythm and tisssue growth

A question from animal physiopathology: tumour growth and circadian clock disruption

Observation: a circadian rhythm perturbation by chronic jet-lag-like light entrainment (8-hour phase advance every other night) enhances GOS tumour proliferation in mice

How can this be accounted for in a mathematical model of tumour growth? Major public health stake! (does shift work enhance the incidence of cancer in Man?)

Mathematical formulation of the problem, first approach

Circadian rhythm and tumour growth: How can we define and compare the λ s?

Instead of the initial eigenvalue problem with time-periodic coefficients:

$$
\begin{aligned}
& \frac{\partial}{\partial t} N_{i}(t, x)+\frac{\partial}{\partial x} N_{i}(t, x)+\left[d_{i}(t, x)+\lambda+K_{i \rightarrow i+1}(t, x)\right] N_{i}(t, x)=0 \\
& N_{i}(t, x=0)=\int_{\xi \geq 0} K_{i-1 \rightarrow i}(t, \xi) N_{i-1}(t, \xi) d \xi, \quad 2 \leq i \leq I \\
& N_{1}(t, x=0)=2 \int_{\xi \geq 0} K_{I \rightarrow 1}(t, \xi) N_{I}(t, \xi) d \xi, \quad \text { with } \sum_{i=1}^{I} \int_{\xi \geq 0} N_{i}(t, \xi) d \xi=1
\end{aligned}
$$

Define the stationary system with constant [w. r. to time t] coefficients:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial}{\partial x} \bar{N}_{i}(x)+\left[\left\langle d_{i}(x)\right\rangle_{a}+\lambda_{s t a t}+\left\langle K_{i \rightarrow i+1}(x)\right\rangle_{a}\right] \bar{N}_{i}(x)=0, \\
\bar{N}_{i}(x=0)=\int_{\xi \geq 0}\left\langle K_{i-1 \rightarrow i}(\xi)\right\rangle_{a} \bar{N}_{i-1}(\xi) d \xi, \quad 2 \leq i \leq I \\
\bar{N}_{1}(x=0)=2 \int_{\xi \geq 0}\left\langle{ }_{a} K_{I \rightarrow 1}(\xi)\right\rangle_{a} \bar{N}_{I}(\xi) d \xi, \quad \text { with } \sum_{i=1}^{I} \int_{x \geq 0} \bar{N}_{i}(x) d x=1
\end{array}\right. \\
& \left\langle K_{i \rightarrow i+1}(x)\right\rangle_{a}:=\frac{1}{T} \int_{0}^{T} K_{i \rightarrow i+1}(t, x) d t, \quad\left\langle d_{i}(t, x)\right\rangle_{a}:=\frac{1}{T} \int_{0}^{T} d_{i}(t, x) d t
\end{aligned}
$$

Comparing $\lambda_{\text {per }}$ and $\lambda_{\text {satar }}$: control on apoptosis d_{i} only

 (comparison of periodic versus constant $[=$ no] control with same mean)
Theorem (B. Perthame, 2006):

If the control is exerted on the sole loss (apoptosis) terms d_{i}, then $\lambda_{\text {per }} \geq \lambda_{\text {stat }}$
ı.e., λ (periodic control) $\geq \lambda$ (constant control)
if the control is on the d_{i} only
[Proof by a convexity argument (Jensen's inequality)]
... which is exactly the contrary of what was expected, at least if one assumes that

$$
\lambda_{\text {per }} \approx \lambda(L D 12-12) \text { and } \lambda_{\text {staf }} \approx \lambda(\text { jet-lag })!
$$

...But no such clear hierarchy exists if the control is exerted on the sole transition functions $K_{i>i+1}$
(JC, Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser I (Math), 2006; Proc. ECMIB Dresden 2005, Birkhäuser 2007)
2. Circadian rhythm and tisssue growth

Comparing $\lambda_{\text {per }}$ and $\lambda_{\text {stat }}$: control on phase transitions only

(comparison of periodic versus constant [=no] control with same mean)

Numerical results for the periodic control of the cell cycle on phase transitions

$$
\left(K_{i>i+1}(t, a)=\psi_{i}(t) \cdot 1_{\left\{a \geq a_{i}\right\}}(a)\right)
$$

Two phases, control ψ on phase transition $1->2$ only:
both situations may be observed, i.e., $\lambda_{\text {stat }}<$ or $>\lambda_{\text {per }}$
depending on the duration ratio between the two phases and on the control:
$\psi_{1}:$ G2/M gate open $4 \mathrm{~h} /$ closed 20 h
(G1-S-G2/M)

time ratio, ψ_{1}	(periodic)	(constant)
1	$\underline{0.2385}$	$\lambda_{\text {stat }}$
2	0.2260	$\underline{0.2350}$
3	0.2395	$\underline{0.3189}$
4	0.2722	$\underline{0.3331}$
5	0.3065	$\underline{0.3427}$
6	0.3305	$\underline{0.3479}$
7	0.3472	$\underline{0.3517}$
8	$\underline{0.3622}$	0.3546
10	$\underline{0.3808}$	0.3588
20	$\underline{0.4125}$	0.3675

ψ_{2} : G2/M gate open $12 \mathrm{~h} /$ closed 12 h
(G1-S-G2/M) (periodic) (constant)

time ratio, ψ_{2}	$\lambda_{\text {per }}$	$\lambda_{\text {stat }}$
1	0.2623	$\underline{0.2821}$
2	0.3265	$\underline{0.3448}$
3	\ldots	\ldots
4	\ldots	\ldots
5	\ldots	\ldots
6	\ldots	\ldots
7	0.4500	$\underline{0.4529}$
8	$\underline{0.4588}$	0.4575
10	$\underline{0.4713}$	0.4641
20	$\underline{0.5006}$	0.4818

Example: $\psi=1(16 \mathrm{~h})+.5(8 \mathrm{~h}) \mathrm{sq}$. wave vs. constant (=no) control

Two phases

Two phases

(Here: 2 cell cycle phases of equal duration, control exerted on $\mathrm{G}_{2} / \mathrm{M}$ transition)
2. Circadian rhythm and tisssue growth

Theorem (Th. Lepoutre, 2008): (control on mitotic transition, $d=0$)
No hierarchy can exist in general between $\lambda_{\text {per }}$ and $\lambda_{\text {statr }}$,
proof for a 1-phase model [illustrated here with control $\psi(\tau)=1+0.9 \cos 2 \pi t / T]$

(JC, S. Gaubert, Th. Lepoutre, MMNP 2009)
2. Circadian rhythm and tisssue growth

Details on crossing curves around $a_{I}=T$ (period of ψ) for different shapes of control ψ on mitosis ($\mathrm{G} 2 / \mathrm{M}$ transition)

(JC, S. Gaubert, Th. Lepoutre, MMINP 2009)

Nevertheless note also:
Theorem (S. Gaubert and B. Perthame, 2007):
The first result $\lambda_{p e r}>\lambda_{\text {stat }}$ holds for control exerted on both the d_{i} and the $K_{i \rightarrow i+1} \ldots$
...but provided that one uses for $\lambda_{\text {stat }}$ an 'arithmetico-geometric' mean for the $K_{i \rightarrow i}$

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x} \bar{N}_{i}(x)+\left[\left\langle d_{i}(x)\right\rangle_{@}+\lambda_{\text {stat }}+\left\langle K_{i \rightarrow i+1}(t, x)\right\rangle_{@}\right] \bar{N}_{i}=0, \\
\bar{N}_{i}(x=0)=\int_{\xi \geq 0}\left\langle K_{i-1 \rightarrow i}(t, \xi)\right\rangle_{(G)} \bar{N}_{i-1}(\xi) d \xi, i \neq 1, \\
\bar{N}_{1}(x=0)=2 \int_{\xi \geq 0}\left\langle K_{I \rightarrow 1}(t, \xi)\right\rangle_{⿹ 勹} \bar{N}_{I}(\xi) d \xi .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\left\langle d_{i}(x)\right\rangle_{@}=\frac{1}{T} \int_{0}^{T} d_{i}(t, x) d t, \quad\left\langle K_{i \rightarrow i+1}(t, x)\right\rangle_{@}=\frac{1}{T} \int_{0}^{T} K_{i \rightarrow i+1}(t, x) d t \\
\left\langle K_{i \rightarrow i+1}(t, x) \oint_{\varrho}=\exp \left(\frac{1}{T} \int_{0}^{T} \log \left(K_{i \rightarrow i+1}(t, x)\right) d t\right)\right.
\end{array}\right.
$$

JC, S. Gaubert, B. Perthame C. R. Acad. Sci. Ser. I (Math.) Paris, 2007; JC, S. Gaubert, Th. Lepoutre MMNP 2009
...which so far leaves open the question of accurately representing jetlag-like perturbed control of light inputs onto circadian clocks (most likely not by suppressing it!)
2. Circadian rhythm and tisssue growth But (new result that generalises the previous one):
Theorem (S. Gaubert , Th. Lepoutre):
Using an even more general model of renewal with periodic control of birth and death rates,

$$
\begin{aligned}
& \partial_{t} n_{i}(t, x)+\partial_{x} n_{i}(t, x)+d_{i}(t, x) n_{i}(t, x)=0, \quad 1 \leq i \leq I \\
& n_{i}(t, 0)=\sum_{j} \int_{0}^{\infty} B_{i j}(t, x) n_{j}(t, x) d x
\end{aligned}
$$

Then it can be shown that the dominant eigenvalue λ_{F} (F^{\prime} for Floquet) of the system is convex with respect to death rates and geomeirically conyex with respect to birth rates, i.e., (JC, S. Gaubert, T. Lepourre, MCM 2010)

Birth rates	Death rates	Dominant eigenvalue	Inequalities
$B_{j \rightarrow i}^{1}$	d_{i}^{1}	λ_{F}^{1}	
$B_{j \rightarrow i}^{2}$	d_{i}^{2}	λ_{F}^{2}	
$\left(B_{j \rightarrow i}^{1}\right)^{\theta}\left(B_{j \rightarrow i}^{2}\right)^{1-\theta}$	$\theta d_{i}^{1}+(1-\theta) d_{i}^{2}$	λ_{F}^{θ}	$\lambda_{F}^{\theta} \leq \theta \lambda_{F}^{1}+(1-\theta) \lambda_{F}^{2}$

(using Jensen's inequality, the previous theorem results from this one)

En passant: an application of this convexity result to theoretically justify cancer chronotherapeutics (Th. Lepoutre) by less toricity on healihy cells in the periodic control case:

Periodic drug delivery with time shift θ and action on death rates: replacing $d_{i}(t)$ by $d_{i}(t-\theta)$ will yield $\lambda_{F}(\theta)$ and if $\bar{\lambda}$ is the first eigenvalue corresponding to an averaged death rate, then:

$$
\bar{\lambda} \leq \frac{1}{T} \int_{0}^{T} \lambda_{F}(\theta) d \theta
$$

i.e., the toxicity of the averaged system (constant delivery) will be higher than the average toxicity of all periodic shifted schedules $(\theta=1, \ldots 24 \mathrm{~h})$

2 graphic examples:
Long base, weak advantage
(JC, S. Gaubert,
T. Lepoutre, MCM 2010)

Still searching for an explanation, following alternate tracks: Just what is disrupted circadian control?
Including more phase transitions in the cell cycle model? Hint: an existing model for $\mathrm{G}_{1} / \mathrm{S}$ and $\mathrm{G}_{2} / \mathrm{M}$ synchronisation (recalling the minimum mitotic oscillator (C, M, X) by A . Goldbeter, 1996, here duplicated to take into account synchronisation between $\mathrm{G}_{1} / \mathrm{S}$ and $\mathrm{G}_{2} / \mathrm{M}$ transitions)
$\mathrm{i}=1:$
$\mathrm{G}_{1} / \mathrm{S}$
$\mathrm{i}=2$:
$\mathrm{G}_{2} / \mathrm{M}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{i}}=\text { Cyclin } \\
& \mathrm{M}_{\mathrm{i}}=\text { CDK } \\
& \mathrm{X}_{\mathrm{i}}=\text { Protease }
\end{aligned}
$$

Changing the coupling strength may lead to:

Romond, Gonze, Rustici, Goldbeter, Ann NYAS, 1999

Hence a second approach: Numerical results with phase-opposed periodic control functions ψ_{ι} on transitions $\mathrm{G}_{1} / \mathrm{S}$ and $\mathrm{G}_{2} / \mathrm{M}$

Numerical simulations on a 3-phase model have shown that if transition control functions ψ_{1} on $\mathrm{G}_{1} / \mathrm{S}$ and ψ_{2} on $\mathrm{G}_{2} / \mathrm{M}$ are of the same period 24 h and are out of phase (e.g. 0 between 0 and 12 h , and 1 between 12 and 24 h for ψ_{1}, with the opposite for ψ_{2}), then the resulting $\lambda_{\text {per }}$ is always lower than the corresponding value $\lambda_{\text {stat }}$ for $\psi_{1}=\psi_{2}=0.5$, whatever the durations a_{1}, a_{2} of the first 2 phases (the third one, M , being fixed as 1 h in a total of 24 h for the whole cell cycle, with no control on M / G_{1}, i.e., $\psi_{3}=1$).

 λ (LD 12-I2) $=\lambda_{\text {тє } \rho}<\lambda_{\text {отат }}=\lambda$ (jet-lag) (jet-lag=desynchronisation between clocks?)

Another track: a molecular connection between cell cycle and clock: Cdk1 opens G2/M gate; Wee1 inhibits Cdk1

More connections between the cell cycle and circadian clocks

1) The circadian clock gene Bmall might be a synchroniser in each cell between $\mathrm{G}_{1} / \mathrm{S}$ and $\mathrm{G}_{2} / \mathrm{M}$ transitions (Weel and p21 act in antiphase)
2) Protein p53, the major sensor of DNA damage ("guardian of the genome"), is expressed according to a 24 h rhythm (not altered in Bmal1 ${ }^{-/-}$mice)

Relating circadian clocks with the cell cycle: $\mathrm{G}_{2} / \mathrm{M}$

Recall A. Golbeter's minimal model for the $\mathrm{G}_{2} / \mathrm{M}$ transition:

$$
\begin{aligned}
\frac{\mathrm{d} C}{\mathrm{~d} t} & =v_{i}-k_{d} C-v_{d} X \frac{C}{K_{d}+C} \\
\frac{\mathrm{~d} M}{\mathrm{~d} t} & =v_{1} \frac{C}{K_{c}+C} \frac{(1-M)}{K_{1}+(1-M)}-V_{2} \frac{M}{K_{2}+M}, \\
\frac{\mathrm{~d} X}{\mathrm{~d} t} & =v_{3} M \frac{(1-X)}{K_{3}+(1-X)}-V_{4} \frac{X}{K_{4}+X} .
\end{aligned}
$$

$C=\operatorname{cyc} \operatorname{lin} \mathrm{B}, M=\operatorname{cyclin}$ dependent kinase $\mathrm{cdk} 1, X=$ degrading protease

Input: Per $=$ Wee 1; output: $\mathrm{M}=\mathrm{Cdk} 1=\psi$
Switch-like dynamics of dimer Cyclin B-cdk1 Adapted to describe $\mathrm{G}_{2} / \mathrm{M}$ phase transition
(A. Goldebeter Biochemical oscillations and cellular rhythms, CUP 1996)

Control on transition rate $\mathrm{G} 2 / \mathrm{M}$: Cdk1, entrained by Wee1

A. Goldbeter's model (1997), cdc[=Cdk1] entrained by 24 h-rhythmic Weel

Template: square wave 4 hx 1 and 20 hx zero

Same model, Wee 1=constant, coefficients set to yield 24 h period

Template: square wave
«LD 12-12-like»: $12 \mathrm{hx} 1,12 \mathrm{hx}$ zero
2. Circadian rhythm and tisssue growth

Hence a third (molecular) approach: a disrupted clock? peripheral averaged clock 1) without central entrainment by light; 2) with; 3) without
les $M=20$ cellules oscillantes peripheriques, moyennees

2. Circadian rhythm and tisssue growth

Clock perturbation and cell population growth

Weel oscillators synchronised or not in a circadian clock network model

Resulting $\lambda=0.0466$

Resulting
regular cell
population
Resulting
regular cell
population \longrightarrow
Resulting
regular cell
population \longrightarrow dynamics in M phase

Weel is synchronised
 at the central (NSC) level

Resulting $\lambda=0.0452$

Synchronised Wee1 (entrainment by light):
Control Cdk1= ψ with unperturbed clock

[^0]
Fourth approach: What if we had it all wrong from the very beginning?

Underlying hypothesis: loss of normal physiological control on cell proliferation by circadian clocks confers a selective advantage to cancer cells by comparison with healthy cells

LD12-12

Jet-lag
Possible explanation of E. Filipski's experiment (Th. Lepoutre):
Circadian disruption is complete in healthy cells (including in lymphocytes that surround the tumour), so that the natural advantage conferred to them by circadian influence is annihilated (by contradictory messages from the central clock to proliferating healthy cells)... whereas tumour cells, insensitive (or less sensitive) to circadian messages, just proliferate unabashed: ...a story to be continued!

[Temporary] Conclusion

- Searching for an explanation to the initial biological observation, we have come across different (and contradictory) reasons why it should be so.
- Biological evidence is still lacking to make us conclude in favour of one explanation or another (disrupted clock: a proliferative advantage or drawback? ...For which cell populations?).
- A 'by-product' of our quest is a new convexity result on the periodic control of a general renewal equation, that can also be interpreted in favour of the concept of chronotherapy as compared with classical constant infusion therapies in oncology.

Molecular pharmacokinetics-pharmacodynamics (PK-PD)

Molecular PK-PD modelling in oncology

"Pharmacokinetics is what the organism does to the drug, Pharmacodynamics is what the drug does to the organism"

- Input: an intravenous [multi-]drug infusion flow

Drug concentrations in blood and tissue compartments (PK)

Control of targets on the cell cycle in tissues (cell population PD)

- Output: a cell population number -or growth rate- in tumour and healthy tissues
- Optimisation $=$ decreasing proliferation in tumour tissues while maintaining normal proliferation in healthy tissues

1 st example: Modelling molecular PK-PD of Oxaliplatin: a model involving DNA damage, GSH shielding and repair

$$
\begin{align*}
& \frac{d P}{d t}=-[\xi+c l+\lambda L] P+i(t) \tag{1}\\
& \frac{d L}{d t}=-\lambda P L+\varepsilon\left(N-N_{0}-\frac{1}{3}\left(L-L_{0}\right)^{3}+r_{L}\left(L-L_{0}\right)\right) \tag{2}\\
& \frac{d N}{d t}=-\frac{\omega_{L}^{2}}{\varepsilon}\left(L-L_{0}\right) \tag{3}\\
& \frac{d C}{d t}=-V_{G S T} \frac{C\left(G-G_{0}\right)^{2}}{K_{G S T}^{2}+\left(G-G_{0}\right)^{2}}-k_{D N A} C F+\frac{\xi}{2} \frac{P}{\mathcal{W}} \tag{4}\\
& \frac{d F}{d t}=-k_{D N A} \mathcal{W} C F+k_{R} F \frac{F_{0}-F}{F_{0}} r e p a i r\left(g_{R}, \theta_{1}, \theta_{2}, \frac{F_{0}-F}{F_{0}}\right) \tag{5}\\
& \frac{d G}{d t}=-V_{G S T} \frac{\mathcal{W} C\left(G-G_{0}\right)^{2}}{K_{G S T}^{2}+\left(G-G_{0}\right)^{2}}+\delta\left(S-S_{0}-\frac{1}{3}\left(G-G_{0}\right)^{3}+r_{G}\left(G-G_{0}\right)\right) \tag{6}\\
& \frac{d S}{d t}=-\frac{\omega_{G}^{2}}{\delta}\left(G-G_{0}\right) \tag{7}
\end{align*}
$$

Molecular PK of oxaliplatin: plasma compartment

Mass of active oxaliplatin

Rate of transfer from plasma to
peripheral tissue (cellular uptake)
Mass of plasma proteins (albumin
or other hepatic proteins)
E tunes the robustness of GSH oscillations, from harmonic to relaxation-like
ρ_{L} tunes the amplitude of

$$
\frac{d L}{d t}=-\lambda \cdot P \cdot L+\varepsilon\left(N-N_{0}-\frac{1}{3}\left(L-L_{0}\right)^{3}+r_{L}\left(L-L_{0}\right)\right)
$$

Hepatic synthesis activity of plasma proteins $\quad \square \omega_{L}$ tunes the period of the cycle of plasma proteins

Plasma protein synthesis shows circadian rhythm

$$
\frac{d N}{d t}=-\frac{\omega_{L}^{2}}{\varepsilon}\left(L-L_{0}\right)
$$

Molecular PK of oxaliplatin: tissue concentration

Tissue concentration

Degradation of free DNA (F)
by oxaliplatin (C)

GSH $[=G]$ to bind oxaliplatin in proliferating cells

Molecular PD of oxaliplatin activity in tissue

Mass of free DNA

$$
\begin{gathered}
\text { Action of oxaliplatin on free DNA (F) } \\
\frac{d F}{d t}=-k_{D N A} \mathcal{W} C F+k_{R} F \frac{F_{0}-F}{F_{0}} \operatorname{repair}\left(g_{R}, \theta_{1}, \theta_{2}, \frac{F_{0}-F}{F_{0}}\right)
\end{gathered}
$$

Mass of reduced
glutathione in target
DNA Mismatch Repair (MMR) function
cell compartment
$\left(\theta_{1}<\theta_{2}:\right.$ activation and inactivation thresholds; $g_{R}:$ stiffnes

Activity of γ-Glu-cysteinyl ligase (GCS)
ρ_{G} tunes the amplitude of the cycle of $G S H$
synthesis by GCS $=\gamma$-Glu-cysteinyl ligase
$\left[\omega_{\mathrm{G}}\right.$ tunes the period'of the cycle
\checkmark of GSH synthesis by GCS
Glutathione synthesis
(=detoxification) in cells shows circadian rhythm

$$
\frac{d S}{d t}=-\frac{\omega_{G}^{2}}{\delta}\left(G-G_{0}\right)
$$

Example: representing the action of oxaliplatin on DNA and ERCC2 polymorphism in tumour cells, to take drug resistance into account:

...the same with stronger MMR function (ERCC2 gene polymorphism):

Yet to be studied: p53 dynamics to connect DNA damage with cell cycle arrest, apoptosis and repair

Needed: a p53-MDM2 model (existing models by Ciliberto, Chickarmane) to connect DNA damage with cell cycle arrest at checkpoints by inhibition of phase transition functions ψ_{ι} and subsequent apoptosis or repair (NB: p53 expression is circadian clock-controlled)

$2^{\text {nd }}$ example: Drug $5-F U: 50$ years on the service of colorectal cancer treatment

(NB : Uracil is found only in DNA)

Pharmacodynamics (PD) of 5FU

RNA pathway

Incorporation of FUTP instead of UTP to RNA

Folate (F)

\square,

Formyltetrahydrofolate $(\mathrm{CHO}-\mathrm{THF})=\mathrm{LV}$

 a.k.a. Folinic acid, a.k.a. LeucovorinPrecursor of $\mathrm{CH}_{2}-\mathrm{THF}$, coenzyme of TS, that forms with it and FdUMP a stable ternary complex, blocking the normal biochemical reaction:
$5,10-\mathrm{CH}_{2} \mathrm{THF}+\mathrm{dUMP}+\mathrm{FADH}_{2} \xrightarrow{\square} \mathrm{dTMP}+\mathrm{THF}+\mathrm{FAD}$

Impact on the cell cycle via p53:

1.-junk RNA: by incorporation of FUTP
2.-junk DNA: by incorporation of dUTP and FdUTP
3.-TS blockade: resulting in A/T ratio unbalance
...Hence DNA damage and subsequent triggering of p53

Plasma and cell pharmacokinetics (PK) of 5FU

- Poor binding to plasma proteins
- Degradation +++ (80\%) by liver DPD
- Cell uptake using a un saturable transporter
- Rapid diffusion in fast renewing tissues
- 5-FU = prodrug; main active anabolite $=$ Fd-UMP
- Fd-UMP: active efflux by ABC transporter $\mathrm{ABCC1}=\mathrm{MRP8}$

5-FU catabolism: DPD
 (dihydropyrimidine dehydrogenase)

- 5-FU \longrightarrow DPD $-\mathrm{FU} \mathrm{H}_{2}$, hydrolysable $[\longrightarrow$ FßAlanin]
- DPD: hepatic +++
- DPD: limiting enzyme of 5FU catabolism
- Michaelian kinetics
- Círcadian rhythm of activity
- Genetic polymorphism ++++ (very variable toxicity)

Modelling PK-PD of 5FU (+ drug resistance) + Leucovorin

(1) $\frac{d P}{d t}=-k_{0} P-\frac{a P}{b+P}-l_{D P D} \frac{P}{m_{D P D}+P}+\frac{i(t)}{V^{\dagger}}$
(2)
(3)
(4)
(5)
(6)
(7)
(8)
$\frac{\overline{d t}}{d t} k_{1} F S-k_{-1} B-k_{4} B L \quad S=$ Free Thymidylate Synthase (TS)
(9)

where $l_{D P D}=l_{D P D _B A S E}\left\{1+\varepsilon \cos \frac{2 \pi\left(t-\varphi_{D P D}\right)}{24}\right\}$
and $\quad S_{0}=S_{0_{-} B A S E}\left\{1+\delta \cos \frac{2 \pi\left(t-\varphi_{T S}\right)}{24}\right\}$

$$
\stackrel{40}{40} \stackrel{1280}{120}=\text { Plasma }[5-F U] ; F={ }_{\text {Intracellular }}^{1800} \text { [FdUMP]; }
$$

$$
Q=\text { Plasma [LV]; L = Intracellular [MTHF]; }
$$

$$
N=5-F U \text {-triggered Nuclear Factor; } A=A B C
$$

Transporter activity, NuclearFactor-induced;

$$
S=\text { Free }[T S] \text { (not FdUMP-bound); }
$$

$$
B=[F d U M P-T S] \text { reversible binary complex; }
$$

$$
T=[F d U M P-T S-M T H F] \text { stable ternary complex }
$$

5FU (+ drug resistance) + Leucovorin

$$
\begin{aligned}
& P=\text { Plasma [5FU] } \\
& F=\text { Intracellular [FdUMP] } \\
& Q=\text { Plasma [LV] } \\
& L=\text { 'Intracellular [LV]'=[CH2THF'] } \\
& N=[n r f 2] \text { efflux Nuclear Factor } \\
& A=\text { ABC Transporter activity } \\
& S=\text { Free [TS] (not FdUMP-bound) } \\
& B=[F d U M P-T S] \text { binary complex } \\
& T=[F d U M P-T S-L V] \text { irreversibl } \\
& \text { ternary complex (TS blockade) }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d P}{d t} & =-k_{0} P-\frac{a P}{b+P}-l_{D P D} \frac{P}{m_{D P D}+P}+\frac{i(t)}{V} \\
\frac{d F}{d t} & =\frac{a}{\xi} \frac{P}{b+P}-\frac{A F}{c+F}-k_{1} F S+k_{-1} B \\
\frac{d Q}{d t} & =-k_{2} Q+\underbrace{j(t)} \sqrt{V} \\
\frac{d L}{d t} & =\frac{k_{2}}{\xi} Q-k_{3} L-k_{4} B L \\
\frac{d N}{d t} & =\frac{\kappa F^{n}}{\lambda^{n}+F^{n}}-\mu N \\
\frac{d A}{d t} & =\mu N-\nu A \\
\frac{d S}{d t} & =-k_{1} F S+k_{-1} B+\theta_{T S}\left(S_{0}-S\right) \\
\frac{d B}{d t} & =k_{1} F S-k_{-1} B-k_{4} B L \\
\frac{d T}{d t} & =k_{4} B L-v_{T} T
\end{aligned}
$$

where $\quad l_{D P D}=l_{D P D _B A S E}\left\{1+\varepsilon \cos \frac{2 \pi\left(t-\varphi_{D P D}\right)}{24}\right\} \quad$ and $\quad S_{0}=S_{0_{-B A S E}}\left\{1+\delta \cos \frac{2 \pi\left(t-\varphi_{T S}\right)}{24}\right\}$

Simulation: 5 series of 2-week therapy courses $i(t)=i_{0}\left[1+\sin \left\{2 \pi\left(\mathrm{t}-\varphi_{5 F U^{+}}+9\right) / 12\right\}\right]$ and $j(t)=j_{0}\left[1+\sin \left\{2 \pi\left(\mathrm{t}-\varphi_{L V}+9\right) / 12\right\}\right.$, then zero for 12 hours 4 days of 4 FU+LV infusion, 12 hours a day, every other week

$P=$ Plasma [5FU]
$F=$ Intracellular [FdUMP]
$Q=$ Plasma [LV]
$L=$ Intracellular [LV]
$N=$ [nrf2] 5FU-triggered
Nuclear Factor
$A=A B C$ Transporter activity, nrf2-inducted
$S=$ Free [TS] (not FdUMPbound)
$B=[F d U M P-T S]$ reversible binary complex
$T=[F d U M P-T S-L V]$ stable ternary complex

5FU and LV: plasma and intracellular PK

FdUMP extracellular efflux
(by ABC Transporter ABCC11)

5FU cell uptake 5FU DPD detoxication in liver

Binding of
FdUMP to TS
to form a reversible binary complex B

Binding of LV to FdUMP-TS = B to
form a stable
ternary complex

Assuming induction of ABC Transporter activity by FdUMPtriggered synthesis of a nuclear factor [nrf2?]

$$
\frac{d F}{d t}=\frac{a}{\xi} \frac{P}{b+P}-\frac{A F}{c+F}-k_{1} F S+k_{-1} B
$$

$$
\begin{array}{ll}
\frac{d N}{d t}=\frac{\kappa F^{n}}{\lambda^{n}+F^{n}}-\mu N & \text { Nuclear factor } \\
\frac{d A}{d t}=\mu N-\nu A & \\
\text { ABC Transporter } \\
\text { (ABCC11=MRP8) }
\end{array}
$$

$$
N=\text { nuclear factor nrf2 }
$$

$$
A=A B C \text { transporter } M R P 8
$$

Targeting Thimidylate Synthase (TS) by FdUMP: Formation of binary and ternary TS-complexes

$$
\begin{aligned}
\frac{d S}{d t} & =-k_{1} F S+k_{-1} B+\theta_{T S}\left(S_{0}-S\right) \\
\frac{d B}{d t} & =k_{1} F S-k_{-1} B-k_{4} B L \\
\frac{d T}{d t} & =k_{4} B L-v_{T} T
\end{aligned}
$$

$F+S \frac{k_{J}}{\overline{k_{-l}}} F^{\prime}-S=B$ (FdUMP-TS 2-complex)
$B+L \xrightarrow{k_{-1}} k_{k_{d}} B-L=T$ (FdUMP-TS-LV 3-complex)

Some features of the model:
a) 5 FU with/without LV in cancer cells ($=$ MRP8+)

With Leucovorin added in treatment

Cancer cells die

Without Leucovorin added

Cancer cells survive

b) 5 FU with/without LV in healthy cells (=MRP8-)

... But adding LV also kills more healthy cells:

With Leucovorin added in treatment

Without Leucovorin added

c) 5 FU+LV with/without MRP8 (cancer vs. healthy cells)

Cancer cells (=MRP8+)

TS

Healthy cells (=MRP8-)

Cancer cells resist more than healthy cells, due to lesser exposure to FdUMP
(actively effluxed from cells by ABC Transporter MRP8)
d) $5 \mathrm{FU}+\mathrm{LV}$ with chronotherapeutics:

Infusion phase differences in cancer cells (MRP8+)

DPD and 5FU in phase

Cancer cells die
[The same behaviour can be shown in healthy cells]

DPD and 5FU out of phase

Cancer cells die even more (more 5FU in plasma, more FdUMP in cells)

$3^{\text {rd }}$ example: Drug Irinotecan (CPT11)

(from Mathijssen et al., JNCI 2004)

(from Klein et al., Clin Pharmacol Therap 2002)

Intracellular PK-PD model of CPT11 activity:

- [CPT11], [SN38], [SN38G], [BCGA2 (PGP)], [TOP1], [DNA], [p53], [MDM2]
- Input=CPT11 intracellular concentration
- Output=DNA damage
- Constant activities of enzymes CES and UGT 1A1
- A. Ciliberto's model for p53-MDM2 dynamics

(from Pommier, Nature Rev Cancer 2006)

Intracellular PK-PD of Irinotecan (CPT11)

$$
\begin{aligned}
& \frac{d[C P T 11]}{d t}=\operatorname{In}(t)-k_{1} \frac{[C E S][C P T 11]}{K_{m 1}+[C P T 11]}-k_{t 1} \frac{[A B C G 2][C P T 11]}{K_{t 1}+[C P T 11]} \\
& \frac{d[S N 38]}{d t}=k_{1} \frac{[C E S][C P T 11]}{K_{m 1}+[C P T 11]}-k_{t 2} \frac{[\text { ABCG2 }][\text { SN38 }]}{K_{t 2}+[S N 38]}-k_{2} \frac{[U G T 1 A 1][S N 38]^{n}}{K_{m 2}^{n}+[S N 38]^{n}} \\
& -k_{\text {compl }}[S N 38][T O P 1]\left[A D N_{\text {libre }}\right]+k_{\text {compl }}^{1}[C C] \\
& \frac{d[S N 38 G]}{d t}=k_{1} \frac{[U G T 1 A 1][S N 38]^{n}}{K_{m 1}^{n}+[S N 38]^{n}}-k_{d 1}[S N 38 G] \\
& \frac{d[A B C G 2]}{d t}=k_{t 2}[A B C G 2]\left(\frac{[S N 38]}{K_{t 2}+[S N 38]}+k_{t 1} \frac{[C P T 11]}{K_{t 1}+[C P T 11]}\right)+-k_{d 2}[A B C G 2] \\
& \operatorname{PD}\left\{\begin{aligned}
\frac{d[T O P 1]}{d t} & =k_{\text {top } 1}\left(1+\varepsilon \cos \left(\frac{2 \pi(t-\varphi)}{24}\right)\right)-k_{\text {compl }}[S N 38][T O P 1]\left[A D N_{\text {libre }}\right]+k_{\text {compl }}[C C]-k_{d t o p 1}[T O P 1] \\
\frac{d\left[D N A_{\text {libre }}\right]}{d t} & =-k_{\text {compl }}[S N 38][T O P 1]\left[A D N_{\text {libre }}\right]+k_{\text {compl }}[C C]+\operatorname{repairDNA([p53_{tot}],[CC_{irr}])} \\
\frac{d[C C]}{d t} & =k_{\text {compl }}[S N 38][T O P 1]\left[A D N_{\text {libre }}\right]-k_{\text {compl }}[C C]-k_{\text {irr }}[C C] \\
\frac{d\left[C C_{\text {irr }}\right]}{d t} & =k_{\text {irr }}[C C]-\operatorname{repairDNA([p53_{\text {tot}}],[CC_{\text {irr}}])}
\end{aligned}\right.
\end{aligned}
$$

repair $D N A\left(\left[p 53_{t o t}\right],\left[C C_{i r r}\right]\right)=-k_{d D N A}\left[p 53_{t o t}\right] \frac{\left[C C_{i r r}\right]}{J_{D N A}+\left[C C_{i r r}\right]}$ (Luna Dimitrio's Master thesis 2007)

A. Ciliberto's model of p53-mdm2 oscillations

$$
\begin{aligned}
& \frac{d\left[p 53_{t o t}\right]}{d t}=k_{s 53}-k_{d 53}\left[p 53_{t o t}\right]-k_{d 55}[p 53 U U] \\
& \frac{d[p 53 U]}{d t}=k_{f}\left[M d m 2_{\text {nuc }}[p 53]+k_{r}[p 53 U U]-[p 53 U]\left(k_{r}+k_{f}\left[M d m 2_{\text {nuc }}\right]\right)+-k_{d 5^{3}}[p 53 U]\right. \\
& \frac{d[p 53 U U]}{d t}=k_{f}\left[M d m 2 _ { n u c } \left[[p 53 U]-[p 53 U U] k_{r}-[p 53 U U]\left(k_{d 53^{\prime}}+k_{d 53}\right)\right.\right. \\
& \frac{d\left[M d m 2_{n u c}\right]}{d t}=V_{\text {ratio }}\left(k_{i}\left[M d m 2 P_{c y t}\right]-k_{0}\left[M d m 2_{n u c}\right]\right)-k_{b i f}\left[M d m 2_{n u c}\right] \\
& \frac{d\left[M d m 2_{c y t}\right]}{d t}=k_{s 2^{\prime}}+\frac{k_{s 2}\left[p 53_{t o t}\right]^{3}}{J_{s}^{3}+\left[p 53_{t o t}\right]^{3}}-k_{d 2^{2}}\left[M d m 2_{c y t}\right]+k_{d e p h}\left[M M d m 2 P_{c y t}\right]-\frac{k_{p h}}{J_{p h}+\left[p 53_{t o t}\right]}\left[M d m 2_{c y t}\right] \\
& \frac{\left[M d m 2 P_{c y t}\right]}{d t}=\frac{k_{p h}^{s}}{J_{p h}+\left[p 53_{t o t}\right]}\left[M d m 2_{c y t}\right]-k_{d e p h}\left[M d m 2 P_{c y t}\right]-k_{i}\left[M M d m 2 P_{c y t}\right]+k_{0}\left[M d m 2_{n u c}\right]-k_{d 2}\left[M M d m 2 P_{c y t}\right]
\end{aligned}
$$

PD of Irinotecan: 1) p53-MDM2 oscillations can repair DNA

 damage provided that not too much SN38-TOP1-DNA ternary complex accumulates
(Intracellular PK-PD of irinotecan and A. Ciliberto's model of p53-MDM2 oscillations)
2) A single infusion of Irinotecan, out of phase with TOP1 circadian rhythm, creates reversible damages: DNA damage is repaired after a few oscillations of p53

3) A single infusion of Irinotecan, in phase with TOP1 circadian rhythm, creates irreversible damages: p53 oscillations cannot repair the damage to DNA

IRINOTECANiniections:CPT11(DARKGREEN), SN38(BLACK), SN38-G(BLUE) and TOP1(VIOLET)

4) Doubled activity of degrading enzyme UGT1A1 [known

 way of resistance to CPT11]: 3 infusions do not kill the cell

5) Lower production and weaker periodic forcing =downregulation of TOP 1 [another way of resistance to CPT11]: DNA damage is repaired

More on Irinotecan: experimental identification of model parameters in nonproliferative cell cultures (from Annabelle Ballesta's PhD work)

- No interaction with the cell cycle: confluent populations of CaCo 2 cells
- Pharmacodynamics: measurement of DNA double strand breaks
- Circadian clocks synchronised by seric shock (fetal bovine serum)
- Activation / degradation enzyme expression, concentration and activity
- Transmembrane exchanges by ABC transporters (active efflux pumps)

What must be in the PK-PD model

+Impact of circadian clocks

Mathematical Modelling

PK-PD model: 8 ODEs, 18 parameters

$$
\begin{align*}
& \frac{d\left[C P T 11_{\text {out }}\right]}{d t} \frac{V_{\text {out }}}{V_{\text {in }}}=-k_{\text {uptCPT }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[C P T 11_{\text {out }}\right]+\frac{V_{\text {effCPT }}[A B C B 1]\left[C P T 11_{\text {in }}\right]}{K_{\text {eff } C P T}+\left[C P T 11_{\text {in }}\right]} \tag{1}\\
& \frac{d\left[C P T 11_{\text {in }}\right]}{d t}=k_{\text {uptCPT }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[C P T 11_{\text {out }}\right]-\frac{V_{\text {eff } C P T}[A B C B 1]\left[C P T 11_{\text {in }}\right]}{K_{\text {eff } C P T}+\left[C P T 11_{\text {in }}\right]}-\frac{V_{C P T-S N}\left[C P T 11_{\text {in }}\right]}{K_{C P T-S N}+\left[C P T 11_{\text {in }}\right]} \tag{2}\\
& \frac{d\left[S N 38_{\text {out }}\right]}{d t} \frac{V_{\text {out }}}{V_{\text {in }}}=-k_{\text {uptSN }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[S N 38_{\text {out }}\right]+\frac{V_{\text {eff } S N}[A B C G 2]\left[S N 38_{\text {in }}\right]}{K_{\text {eff } S N}+\left[S N 38_{\text {in }}\right]} \tag{3}\\
& \frac{d\left[S N 38_{\text {in }}\right]}{d t}=k_{\text {uptSN }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[S N 38_{\text {out }}\right]-\frac{V_{\text {eff } S N}[A B C G 2]\left[S N 38_{\text {in }}\right]}{K_{\text {eff } S N}+\left[S N 38_{\text {in }}\right]}+\frac{V_{C P T-S N}\left[C P T 11_{\text {in }}\right]}{K_{C P T-S N}+\left[C P T 11_{\text {in }}\right]} \\
& -\frac{V_{g l u}[U G T]\left[S N 38_{i n}\right]}{K_{g l u}+\left[S N 38_{i n}\right]}-k_{f C}[T O P 1]\left[S N 38_{i n}\right]\left(\text { DNA } A_{t o t}-[C O M P L]\right)+k_{r C}[\text { COMPL }] \tag{4}\\
& \frac{d\left[S N 38 G_{\text {out }}\right]}{d t} \frac{V_{\text {out }}}{V_{\text {in }}}=-k_{\text {uptSNG }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[S N 38 G_{\text {out }}\right]+\frac{V_{\text {effG }}[A B C G 2]\left[S N 38 G_{\text {in }}\right]}{K_{\text {eff } S N}+\left[S N 38 G_{\text {in }}\right]} \tag{5}\\
& \frac{d\left[S N 38 G_{\text {in }}\right]}{d t}=k_{\text {uptSNG }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[S N 38 G_{\text {out }}\right]-\frac{V_{\text {effG }}[A B C G 2]\left[S N 38 G_{i} n\right]}{K_{\text {eff } G}+\left[S N 38 G_{\text {in }}\right]}+\frac{V_{\text {glu }}[U G T]\left[S N 38_{\text {in }}\right]}{K_{\text {glu }}+\left[S N 38_{\text {in }}\right]} \tag{6}\\
& \frac{d[C O M P L]}{d t}=k_{f C}[T O P 1]\left[S N 38_{i n}\right]\left(D N A_{t o t}-[C O M P L]-[D S B]\right)-k_{r C}[C O M P L]-k_{D S B}[C O M P L] \tag{7}\\
& \frac{d[D S B]}{d t}=k_{D S B}[C O M P L] \tag{8}
\end{align*}
$$

Mathematical modelling

Zoom on equation for [CPT11 out $]$:

$\frac{d\left[C P T 11_{\text {out }}\right]}{d t} \frac{V_{\text {out }}}{V_{\text {in }}}=-k_{\text {uptakeCPT }} \frac{V_{\text {out }}}{V_{\text {in }}}\left[C P T 11_{\text {out }}\right]+\frac{V_{\text {effCPT }}[A B C]\left[C P T 11_{\text {in }}\right]}{K_{\text {effCPT }}+\left[C P T 11_{\text {in }}\right]}$	
Change over time	CPT11 cell uptake
(passive)	CPT11 cell efflux
(active $=$ Michaelis-	
Menten kinetics)	

- $\left[C P T 11_{\text {out }}\right]=$ CPT11 extracellular concentration
- $\left[\right.$ CPT11 $\left.1_{\text {in }}\right]=$ CPT11 intracellular concentration
- $V_{\text {out }}=$ volume of extracellular medium
- $V_{\text {in }}=$ volume of intracellular medium
- $k_{\text {uptakeCPT }}=$ speed of CPT11 uptake
- $V_{e f f i c P T}, K_{\text {efff }}=$ Michaelis Menten parameters for CPT11 efflux

Experimental results on Caco2 cells: kinetic study

Exposure of Caco2 cells to CPT11 ($115 \mu \mathrm{M}$) during 48H, preincubated or not with Verapamil $100 \mu \mathrm{M}$ (inhibitor of ABCB 1), measurement of [CPT11] and [SN38] by HPLC
$>$ CPT11 Bioactivation into SN38
$>$ ABCB1 involved in CPT11 efflux but not in SN38 efflux

Experimental results on Caco-2 cells: circadian clocks

- Seric shocks (ie. exposing cells to a large amount of nutrients during 2 hours) synchronise the circadian clock of the cells which subsequently oscillate in synchrony
- Three clock genes (RevErb- α, Per2, Bmal1) oscillate in Caco-2 cells -> circadian clocks work properly

mRNA Curve Fitting:

$$
[m R N A](t)=R+S e^{\lambda t}\left(1+\epsilon \cos \left(\frac{2 \pi}{T}+\phi\right)\right)
$$

mRNA measurement by quantitative RT-PCR

Optimising exposure to Irinotecan in CaCo 2 cell cultures

Irinotecan exposure optimisation in nonsynchronised cells (assumed to represent cancer cells)

For a fixed cumulative dose of Irinotecan, optimal exposure duration of 3.6 hours, independently of the dose

Irinotecan exposure optimisation for synchronised cells (assumed to represent healthy cells)

$>$ Trivial exposure scheme of short duration (no toxicity but no efficacy either)
$>$ Advantage of choosing the right circadian time increases with scheme efficacy (difference between best and worst circadian times of exposure for durations between 4 and 6 hours)

Optimal control for Irinotecan exposure:

 Maximizing efficacy under constraint of toxicity

$>$ Optimal dose increases linearly with maximal allowed toxicity
$>$ Optimal CT between CT 1.5 and 1.8, optimal duration 6 to 8 hours

Conclusion of this experimental identification work

- A mathematical model for CPT11 molecular PK-PD and its control by the circadian clock has been designed and fitted to experimental data on Caco2 cells
- Optimal control stategy for a fixed cumulative dose: optimal exposure starting around CT1.6, during 6 to 8 hours, depending on allowed toxicity
- Future work:
- CES, UGT1A1 and ABC transporters circadian activities (work in progress)
- Update optimal exposure schemes and validate them experimentally

Minimal whole body mathematical model in mice
$>$ A whole body physiologically based mathematical model for mice, supplemented with basic cell cycle model
$>$ Each organ contains the tissue level mathematical model built from the cell culture study

Summary and future work

- Optimisation of exposure on cell cultures
$>$ Built the mathematical model at tissue level

> Detailed parameter estimation
$>$ Validation of the mathematical model and of theoretically optimal exposure scheme
- Optimisation of administration in mice
> Built a whole-body PK-PD model for mice
$>$ Parameter estimation (starting from cell culture values): one set of parameter for each one of 3 different mouse strains
$>$ Validation of mathematical model and of theoretically optimal administration schemes
- Future: optimisation of administration to patients
$>$ Adaptation of the whole-body model.
$>$ Parameter estimation : one set of parameter for each class of patients (e.g. men, women) or patient
$>$ Validation of theoretically optimal administration scheme

Toward whole body physiologically based PK-PD ("WBPBPKPD") modelling and model validation

Controlling cell proliferation for medicine in the clinic is a multiscale problem, since drugs act at the single cell and cell population levels, but their clinical effects are measured at a single patient (=whole organism) and patient population levels

1. Drug detoxification enzymes, active efflux, etc.: molecular PK-PD ODEs, with validation by biochemistry data collection and in vitro experiments
2. Drug effects on cells and cell populations: averaged molecular effects on cell proliferation PDE models, with validation by measures of growth in cell cultures
3. Drug effects at the organism level: WBPBPKPD modelling: compartmental ODEs, with validation by tissue measurements: animal experiments, clinical trials
4. Interindividual variations (genetic polymorphism): discriminant and cluster analyses on populations of patients (populational PK-PD to individualise therapies)
5. Optimisation of treatments: optimisation methods, with validation by clinical trials

[^0]: Still a general mathematical formalism to describe and analyse circadian disruption is wanted...

