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Abstract. We study proliferation in tissues from the point of view of physiologically structured partial differential models,
focusing on age synchronisation in the cell division cycle in cell populations and its control at phase transition checkpoints.

We show how a recent fluorescence-based technique (FUCCI) performed at the single cell level in proliferating cell
populations allows identifying model parameters and how it may be applied to investigate healthy and cancer cell populations.

We show how this modelling approach allows designing original optimisation methods for cancer chronotherapeutics, by
controlling eigenvalues of differential operators underlying proliferation dynamics, in tumour and in healthy cell populations.
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AGE-STRUCTURED MODELS FOR TISSUE PROLIFERATION AND ITS CONTROL

Tissue proliferation in living organisms always relies on the cell division cycle: one cell becomes two after a sequence
of molecular events that are physiologically controlled at each step of the cycle at so-called checkpoints[1]. This
process occurs in all renewing tissues, healthy or tumour, but in tumour tissues part of these control mechanisms are
inefficient, resulting in uncontrolled tissue growth which may be given as a definition of cancer.

Circadian clocks are known to physiologically control cell proliferation and their disruption has been reported to be
a possible cause of lack of control on tissue proliferation in cancer [2].

The representation of the dynamics of the division cycle in proliferating cell proliferations by physiologically
structured partial differential equations (PDEs), which dates back to McKendrick [3], is a natural frame to model
proliferation in cell populations, healthy or tumour. Furthermore, the inclusion in such models of targets for its
physiological and pharmacological control allows to develop mathematical methods of their analysis and therapeutic
control [4, 5], in particular for cancer chronotherapeutics when the drug control is made 24h-periodic to take advantage
of favorable times, due to circadian clocks.

Physiologically structured cell population dynamics models have been extensively studied in the last 20 years, see
e.g. [6, 7]. We consider here typically age-structured cell cycle models. If we consider that the cell division cycle is
divided into I phases (classically 4: G1,S,G2 and M), we follow the evolution of the densities ni(t,x) of cells having
age x at time t in phase i. Equations read :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ni(t,x)
∂ t + ∂ni(t,x)

∂x +di(t,x)ni(t,x)+Ki→i+1(t,x)ni(t,x) = 0,

ni+1(t,0) =
∫ ∞

0 Ki→i+1(t,x)ni(t,x)dx,

n1(t,0) = 2
∫ ∞

0 KI→1(t,x)nI(t,x)dx.

(1)

together with an initial condition (ni(t = 0, .))1≤i≤I . This model was first introduced in [8]. The particular case I = 1
has received particular attention from the authors [9, 10]. In this model, in each phase, cells are ageing with constant
speed 1 (transport term), they may die (with rate di) or go to next phase (with rate Ki→i+1) in which they start with
age 0. We write it in its highest generality. If we want to represent the known effect of circadian rhythms on phase
transitions [2], we will consider time-periodic coefficients di and Ki→i+1, the period being in this case 24h.
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BASIC FACTS ABOUT AGE-STRUCTURED LINEAR MODELS

One of the most important facts about linear models is the trend of their solutions to exponential growth. Solutions to
(1) satisfy (if the coefficients are time-periodic, or stationary) ni(t,x)∼C0Ni(t,x)eλ t [11], where Ni are defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Ni(t,x)
∂ t + ∂Ni(t,x)

∂x +λNi(t,x)+di(t,x)Ni(t,x)+Ki→i+1(t,x)Ni(t,x) = 0,

Ni+1(t,0) =
∫ ∞

0 Ki→i+1(t,x)Ni(t,x)dx,

N1(t,0) = 2
∫ ∞

0 KI→1(t,x)NI(t,x)dx,

Ni > 0, Ni(t +T, .) = Ni(t, .), ∑i
∫ T

0

∫ ∞
0 Ni(t,x)dxdt = 1.

(2)

with T−periodic coefficients. The study of the growth exponent, first eigenvalue of the system, is therefore crucial.
In this part, we focus on the case of stationary phase transition coefficients (Ki→i+1(t,x) = Ki→i+1(x)) and we do

not consider death rates. As shown in [8], the first eigenvalue λ is then solution of the following equation, which in
population dynamics is referred to, in the 1-phase case (I = 1) with no death term, as Lotka’s equation:

1
2
=

I

∏
i=1

∫ +∞

0
Ki→i+1(x)e

−
∫ x

0 Ki→i+1(ξ )dξ e−λx dx (3)

We recall that, integrating equation (1) along its characteristics, we can in the stationary case with no death rate derive
the formula: ni(t + x,x) = ni(t,0)e−

∫ x
0 Ki→i+1(ξ )dξ . This can be interpreted in the following way: the probability that a

cell which entered phase i at time t stay for at least an age duration x in phase i is given by P(τi ≥ x) = e−
∫ x

0 Ki→i+1(ξ )dξ .
The time τi spent in phase i is thus a random variable on [0,+∞[, with probability density function fi given by:

dPτi(x) = fi(x)dx = Ki→i+1(x).e−
∫ x

0 Ki→i+1(ξ )dξ dx, whence, equivalently, Ki→i+1(x) =
fi(x)

1−
∫ x

0 fi(ξ )dξ
.

FUCCI (CELL CYCLE) REPORTERS TO IDENTIFY MODEL PARAMETERS

FIGURE 1. Graphic method used to determine the durations of the whole cell cycle and of G1 phase. The duration of phase
S/G2/M was deduced by subtracting the duration of phase G1 from the duration of the cell cycle.

FUCCI is a recent cell imaging technique that allows tracking progression within the cell cycle of an individual
cell [12]. We used FUCCI data, that consisted in time series of the intensity of red and green fluorescence emitted by
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individual NIH 3T3 cells (mouse embryonic fibroblasts) within an in vitro homogeneous population proliferating in a
liquid medium. This allowed us to measure the time an individual cell spent in the G1 phase and in the phases S/G2/M
of the cell cycle. Our data consisted of cell cycle phase durations from 55 proliferating cells. A graph representing a
time series from an individual cell and the method used to record phase durations is presented on Figure 1.

We used these experimental data to identify the parameters of our model by fitting shifted Gamma distributions

f (x) = ρ−k(Γ(k))−1(x−a)k−1e−
(x−a)

ρ on [a,+∞[ to recorded G1 and S/G2/M durations, and compared the solutions
of the system with cell recordings, that had previously been synchronised by hand. The result is shown on Figure 2.

FIGURE 2. Time evolution of the percentages of cells in the phases G1 (deep grey) and S/G2/M (light grey) from biological
data (dashed line) and from numerical simulations (solid line). Our model results in a reasonably good fit to biological data.

OPTIMISING EIGENVALUES AS OBJECTIVE AND CONSTRAINT FUNCTIONS

We then used combined time-independent data on phase transition functions, obtained from model identification,
with cosine-like functions representing the periodiic control on these transitions by circadian clocks, together with
free-running drug infusion regimens that were optimised using a projected gradient method, aiming at decreasing the
growth rate in a cancer cell population (objective) while preserving the same in a healthy cell population (constraint).

FIGURE 3. Daily mean growth rates for cancer (solid line) and healthy cells (dashed line) when starting drug infusion at time 0.
After a 10-day transient phase, the drug-forced biological system stabilizes towards the expected asymptotic growth rate
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Transitions from one phase to the other are described by the transition rates Ki→i+1(t,x). We took them with the form
Ki→i+1(t,x) = κi(x)ψi(t)(1−gi(t)) where κ(x) is the transition rate of the cell without circadian control identified in
the previous section, ψi(t) is the natural circadian control modelled by a cosine and gi(t) is the effect at the cell level
of the drug infusion at time t on the transition rate from phase i to phase i+ 1. No drug corresponds to gi(t) = 0, a
transition-blocking infusion corresponds to gi(t) = 1.

The result of an optimised drug infusion regimen gi, i = 1,2 on both growth rates is shown on Figure 3. On this
figure, it can be seen that the asymtotic growth rate of cancer cells, initially positive and higher than the one of healthy
cells, has been made negative by the periodic treatment exerted on transition rates while the new growth rate of healthy
cells, though moderately affected by the treatment, remains positive.

CONCLUSION AND FUTURE PROSPECTS

Taking advantage of quantitative measurements obtained by performing recent image analysis techniques of the cell
division cycle in individual cells inside a population of proliferating cells of the same healthy lineage, we have focused
in this paper on age synchronisation of cells with respect to cell cycle phases and periodic control on phase transitions.

The proliferation dynamics of this cell population is well approximated by Gamma distributions for cycle phase
durations, for which the growth exponent λ , first eigenvalue of the system, can be computed and controlled.

Assuming a multiplicative combination for both temporal controls, physiological (circadian) and pharmacological,
on cell cycle phase transitions in a 2-phase McKendrick model of proliferation, we propose a new therapeutic optimi-
sation scheme under a toxicity constraint to control growth exponents in both cancer and healthy cell populations.

By using this combination of physiologically based modelling of proliferation, mathematical analysis methods,
cell imaging and statistical parameter identification techniques, and original optimisation algorithms using eigenvalue
control of growth processes, we propose a rationale for therapeutic optimisation in oncology at the molecular level in
cell populations, healthy and tumour.

By using more FUCCI data on both cancer and healthy cell populations in the future, we should be able to compare
synchronisation and control in different settings in these two situations. In this way, using the methodology described
in this study, we should be able to examine the part played by circadian clocks in synchronisation of cells in a given
population, and to propose new therapeutic tracks in oncology, in particular in cancer chronotherapeutics.
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