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A general framework to optimise cancer therapeutics:
designing mathematical methods along 3 axes

• Modelling the behaviour of growing cell populations on which anticancer drugs
act (the targeted cell populations): proliferating tumour and healthy cell
populations, including representing functional (not necessarily molecular) targets
for pharmacological control

• (When PK-PD models are available) Modelling the external control system, i.e.,
fate of drugs in the organism, at the level of functional targets (proliferation,
death, differentiation) in cell populations by functional, rather than molecular,
pharmacokinetics-pharmacodynamics (PK-PD)

• Optimising therapeutic controls: dynamically optimised control of theoretical
drug delivery flows representing time-dependent objectives and constraints,
making use of known or hypothesised differences between cancer and healthy
cell populations
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Choosing the constraint to be represented determines the
model of proliferation used to optimise drug delivery, aiming

to avoid the two main pitfalls of pharmacotherapy:

• Toxicity issues. Limiting toxic side effects to preserve healthy cell populations
leads to representing proliferating cell populations by ordinary differential
equations, or by age-structured models: physiologically structured partial
differential equations

• Drug resistance issues. Limiting emergence of drug-resistant cell subpopulations
in tumour tissues leads to using (evolutionary) phenotypic trait-structured
proliferation: physiologically structured evolutionary integro-differential
equations

• In fact, one should consider the two issues simultaneously, i.e., two similarly
structured cell populations, healthy and cancer, with different characteristics
w.r.t. to drug effects and to evolution towards resistance: phenotypic stability of
healthy cell populations vs. plasticity of cancer cell populations
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Modelling framework: structured population dynamics

• Description of evolution of a population in time t and in relevant trait x

• ‘Structure variable’ x : trait chosen as bearing the biological variability at stake

• Variable : n(x , t) population density of individuals bearing trait x at time t

• (1) Evolution in numbers of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(x , t) dx (if, e.g., x ∈ [0, 1])

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(x , t)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Space is not necessarily a relevant structure variable when studying drug control
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Introduction to IDEs: typical 1D IDE logistic model

Prototype model, where n(t, x) stands for the density of cells of phenotype x ∈ [0, 1]:

∂n

∂t
(t, x) =

(
r(x)− d(x)ρ(t)

)
n(t, x),

with

ρ(t) :=

∫ 1

0
n(t, x) dx and n(0, x) = n0(x).

We assume reasonable (C1) hypotheses on r and d , and n0 ∈ L1([0, 1])

[More general settings for the growth rate R(x , ρ(t)), here
(
r(x)− d(x)ρ(t)

)
, have

been studied in Benoît Perthame’s book Transport equations in biology (2007)]

Questions: what is the asymptotic behaviour of

• the total population ρ?

• the phenotypes in the population (i.e. possible limits for n(t, ·) in M1(0, 1))?
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Introduction to IDEs: convergence and concentration (1D)

Convergence: Plot of t 7→ ρ(t)

Firstly, it can be shown that: ρ converges to ρ∞, the smallest value such that

r(x)− d(x)ρ∞ ≤ 0 on [0, 1]. (Idea of proof: show that
∫ +∞

0

∣∣∣∣dρdt
∣∣∣∣
−
dt < +∞ and –

with additional hypotheses – that ρ is bounded; then convergence follows.)
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Introduction to IDEs: convergence and concentration (1D)
Concentration: Plot of x 7→ n(t, x) for different times t

Theorem
• ρ converges to ρ∞, the smallest value ρ such that r(x)− d(x)ρ ≤ 0 on [0, 1].
• n(t, ·) concentrates on the set

{
x ∈ [0, 1], r(x)− d(x)ρ∞ = 0

}
.

• Furthermore, if this set is reduced to a singleton x∞, then

n(t, ·) ⇀ ρ∞δx∞ in M1(0, 1).

[Proof: see Camille Pouchol’s internship report: “Modelling interactions between

tumour cells and supporting adipocytes in breast cancer”, UPMC, September 2015,

https://hal.inria.fr/hal-01252122]

https://hal.inria.fr/hal-01252122
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Drug effects on cell populations and their optimisation
Model with mutations, one cytotoxic drug: cancer cells
• x = level of expression of a drug resistance phenotype (to a given drug)
• nH(x , t), nC (x , t) densities of cell populations (H=healthy, C=tumour)

∂

∂t
nC (x , t) =

[ growth︷ ︸︸ ︷
(1− θC ) r(x)−

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µC (x)

]
nC (x , t)

+θC

birth with mutation︷ ︸︸ ︷∫
r(y)MσC (y , x)nC (y , t)dy

• r(x) = basic reproduction rate, d(x) = basic death rate; we assume
r(0) > d(0) > 0, r ′(·) < 0, r(+∞) = 0, d ′(·) > 0,
• 0 ≤ θH,C < 1 (θC > θH) is the proportion of divisions with mutations,
• µ[H,C ](x) (with µ′C (·) < 0) represents the phenotype-dependent response to
cytotoxic drug, with concentration u(t), designed to target cancer cells.
• Note: assumptions r(·) > 0, µC (·) > 0, µ′C (·) < 0 and r ′(·) < 0 (cost of resistance:
the higher is x , the lower is proliferation) represent an evolutionary double bind on
resistant cancer cell populations, i.e., an evolutionary trade-off between growing (thus
getting exposed) and keeping still (thus surviving)

(Lorz et al., M2AN 2013)
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Model with mutations, one cytotoxic drug: healthy cells

∂

∂t
nH(x , t) =

[ growth with homeostasis︷ ︸︸ ︷
1− θH(

1 + ρ(t)
)β r(x) −

death︷︸︸︷
d(x) −

drug effect︷ ︸︸ ︷
u(t)µH(x)

]
nH(x , t)

+
θH(

1 + ρ(t)
)β

birth with mutation︷ ︸︸ ︷∫
r(y)MσH (y , x)nH(y , t)dy ,

where the total population is defined as

ρ(t) = ρH(t) + ρC (t); ρH(t) =
∫∞
x=0 nH(x , t)dx ; ρC (t) =

∫∞
x=0 nC (x , t)dx .

• β > 0 to impose healthy tissue homeostasis,

• u(t) denotes the instantaneous dose (concentration) of chemotherapy. We assume
in this model that its effect is cytotoxic, i.e., on the death term only.

(Lorz et al., M2AN 2013)
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Model with mutations, one cytotoxic drug: illustrations (1)
[Sensitive cell population case: illustration of Gause’s exclusion principle]
Theorem: Monomorphic evolution towards drug sensitivity, illustrated here with
θH = 0, (no mutations) and µH = 0 (no drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-sensitive
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-sensitive population according to the drug resistance phenotype x .

(Lorz et al., M2AN 2013)
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IModel with mutations, one cytotoxic drug: illustrations (2)
[Resistant cell population case: Gause’s exclusion principle again]
Theorem: Monomorphic evolution towards drug-induced drug resistance, here with
θC = 0, µC (·) > 0, r ′(·) < 0, µ′C (·) < 0 (costly drug-induced resistance), u(t) = Cst

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug- resistant
population in the (t, x) plane. Right panel: asymptotic distribution of this
drug-resistant population according to the drug resistance phenotype x .

(Lorz et al., M2AN 2013)
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IDE model, no mutations: phenotype-structured non-local
Lotka-Volterra model with 2 drugs, cytotoxic u1(t),

cytostatic u2(t), bidimensional resistance phenotype (x , y)

∂

∂t
nC (x , y , t) =

[
rC (x , y)

1 + ku2(t)
− dC (x , y)IC (t)− u1(t)µC (x , y)

]
nC (x , y , t)

Environment: IC (t) = α
∫ 1
0
∫ 1
0 nC (x , y , t) dx dy + β

∫ 1
0
∫ 1
0 nH(x , y , t) dx dy

Sensitive cell population case:

Convergence toward total sensitivity

Resistant cell population case:

Convergence toward 2 resistant phenotypes

(Lorenzi & Lorz, unpublished)
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Same phenotype-structured non-local Lotka-Volterra model
with 2 drugs and one (scalar) resistance phenotype x

∂

∂t
nH(x , t) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx , u1 cytotoxic, u2 cytostatic drugs.

Simultaneous combinations of the 2 drugs, with increasing equal constant doses

Healthy cells: preserved Cancer cells: eventually extinct

‘Pedestrian’s optimisation”
(Lorz et al. M2AN 2013)
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What about space? Considering both a (1D) resistance
phenotype and (1D) space in a tumour spheroid: equations

We assume that the evolution of functions n, s (nutrients), c1 and c2 in a 1D radially
symmetric tumour spheroid (r ∈ [0, 1]) is ruled by the following set of equations:

∂tn(t, r , x) =

[
p(x)

1 + µ2c2(t, r)
s(t, r)− d(x)%(t, r)− µ1(x)c1(t, r)

]
n(t, r , x), (1)

−σs∆s(t, r) +

[
γs +

∫ 1

0
p(x)n(t, r , x)dx

]
s(t, r) = 0, (2)

−σc∆c1(t, r) +

[
γc +

∫ 1

0
µ1(x)n(t, r , x)dx

]
c1(t, r) = 0, (3)

−σc∆c2(t, r) +

[
γc + µ2

∫ 1

0
n(t, r , x)dx

]
c2(t, r) = 0, (4)

with zero Neumann conditions at r = 0 coming from radial symmetry and Dirichlet
boundary conditions at r = 1

s(t, r = 1) = s1, ∂r s(t, r = 0) = 0, c1,2(t, r = 1) = C1,2(t), ∂r c1,2(t, r = 0) = 0. (5)

For each t, we also define ρ(t, r) =

∫ 1

0
n(t, r , x) dx (local density at radius r) and

ρT (t) =

∫ 1

0
ρ(t, r)r2 dr (global density).

(Lorz et al. BMB 2015)
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Tumour spheroid: simulations with constant drug doses (1)

Evolution without drugs: towards sensitive phenotype (x → 0)

(Lorz et al. BMB 2015)
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Tumour spheroid: simulations with constant drug doses (2)

Cytotostatic c2 has almost no effect / Cytotoxic c1 clearly induces resistance

(Lorz et al. BMB 2015)
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Tumour spheroid (3): constant or bang-bang control?
Therapeutic strategies c1/c2: Constant/Bang-bang vs. Bang-bang/Constant

(Lorz et al. BMB 2015)
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“What does not kill me strengthens me”
• Note that in the representation of the drug targets on cancer cell populations in

the integro-differential equation, with the numerical values chosen for the target
functions µC and rC standing for the sensitivities to drugs u1 and u2,[

rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t),

the cytostatic drug u2 only slows down proliferation (softly slowing down
velocity in the cell division cycle), but does not arrest it, at least at low doses. . .

• . . . whereas the cytotoxic drug u1 kills the cells by increasing the death term,
hence it is actually a direct life threat to the cell population, that ‘defends itself’
(biological bases under assessment...) by increasing its resistance phenotype x

• This resistance-inducing killing effect should be avoided as long as possible. In
summary: limit proliferation but do not try too hard to kill cells, lest the cell
population should become resistant, but give cytotoxics only at high doses
(MTD) during a short interval of time only, thus avoiding to trigger resistance.

• An alternative to such use of MTD (maximum tolerated dose) towards the end
of the chemotherapy course is metronomics, that also prevents developing
resistance by giving low doses of cytotoxics... expecting that the population,
thwarted in its proliferation, will be kept in check by the immune system. This
has not been represented in an optimal control perspective thus far (however,

see Carrère JTB 2017 on metronomics).
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How to be deleterious by using constant doses of drugs
[We define the population of sensitive cancer cells by ρCS (t) :=

∫ 1
0 (1− x) nC (t, x) dx]

Simulation with u1(t) = Cst = 3.5 and u2(t) = Cst = 2, in time T = 10,
starting from the same medium phenotype x = 0.5 for both cell populations:

• Quite small effect of the drug pressure on the phenotype of healthy cells (nH)
• Cancer cells (nC ) quickly concentrate around a resistant phenotype
• Catastrophic effects on ρH , ρC and ρCS
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Optimal control algorithms to improve drug delivery in
cancer cell populations (with Emmanuel Trélat, LJLL)
Same phenotype-structured non-local Lotka-Volterra model, but instead of a
‘pedestrian’s optimisation’ (i.e., merely using grids), solving an optimal control
problem: determining control functions u1 and u2 in L∞(0,T ), satisfying the
constraints

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2 , (6)

and minimising the cost functional

CT (u1, u2) =

∫ 1

0
nC (x ,T ) dx + γ1

∫ T

0
u1(t) dt + γ2

∫ T

0
u2(t) dt, (7)

where (nC (·, ·), nH(·, ·)) is the unique solution of the system of PDEs corresponding to
the controls u1 and u2, such that nH(0, ·) = n0H(·) and nC (0, ·) = n0C (·) and where the
trajectory t 7→ (nC (·, t), nH(·, t)) is subject to the dynamic state constraint

ρH(t)

ρH(t) + ρC (t)
≥ θHC . (8)

(in simulations, e.g., θHC = 0.4) We use a direct approach, discretising the whole

problem and then solving the resulting constrained optimisation problem with AMPL

(automatic differentiation) combined with IPOPT (expert optimisation routine)
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Numerical solution to this first optimal control problem

Distribution of populations according to phenotype (black: initial; red: final; blue:
intermediate steps of the optimisation algorithm)

Left and centre panels: optimal drug flows for u1(t) (cytotoxic) and u2(t) (cytostatic)

Right panel: satisfaction of dynamic constraint
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Introducing ‘adaptive therapy’, following Robert Gatenby

• Principle: keep alive an objective ally in
the enemy place

• Relies on competition for resources
between resistant (weakly proliferative)
and sensitive cancer cells in the tumour

• Aim: avoid extinction of sensitive tumour
cells, that are able to outcompete
resistant tumour cells provided that not
too high doses of a drug are delivered

• Method: deliver relatively low doses of
the drug to prevent thriving of too many
sensitive cells and limit emergence of too
many (unbeatable) resistant cells

• Objective: controlling total (sensitive +
resistant) tumour cell population

• Caveat: not necessarily applicable in the
case of fast growing tumours (e.g., acute
myeloblastic leukaemia)
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Second optimal control problem: same without L1 cost
Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx .

Same IDE model with evolution in phenotype x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(x , t) =

(
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(x , t)

∂

∂t
nC (x , t) =

(
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (x , t)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

minCT (u1, u2) = ρC (T ) =

∫ 1

0
nC (x ,T ) dx

under the additional constraints

ρH(t)

ρH(t) + ρC (t)
≥ θHC , ρH(t) ≥ θH .ρH(0)

(the last constraint, with, e.g., θH = 0.6, to limit damage to healthy cells)
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Note on this second optimal control problem
Note that we might add an “adaptive” constraint

ρCS (t)

ρC (t)
≥ θCS , where

ρCS (t) =

∫ 1

0
(1− x)nC (t, x) dx

may be seen as the total number at time t of tumour cells that are sensitive, and

ρCR(t) =

∫ 1

0
xnC (t, x) dx

as the total number at time t of tumour cells that are resistant.

However, such constraint seems superfluous, as we show - only numerically so far -

that, likely due to phenotype concentration in the first phase of the optimal control,

the ratio t 7→
ρCS (t)

ρC (t)
is, as long as u1(t) = 0, an increasing function of t without

imposing this “adaptive” constraint. Nevertheless, note that when u1(t) > 0, this is no

longer granted, and resistance effects (evidenced on decreasing ρCS ) always emerge.
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Second optimal control problem: theoretical results

Theorem
(Optimal control theorem)
Under these conditions, the optimal trajectory in large time T > 0 consists of 2 parts:
• a long-time part, with constant controls on [0,T1], at the end of which

populations have almost concentrated in phenotype (for T1 large)

• a short-time part on [T1,T ] consisting of at most three arcs, for T − T1 small:

1. a boundary arc, along the constraint
ρH(t)

ρH(t) + ρC (t)
= θHC ,

2. a free arc (no constraint saturating) with controls u1 = umax
1 and

u2 = umax
2 ,

3. a boundary arc along the constraint ρH(t) ≥ θH .ρH(0) with u2 = umax
2 .

(Proof: Camille Pouchol’s PhD thesis work)
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Simulations illustrating this theorem
Simulations with T = 30
(optimisation using AMPL-IPOPT)

Simulation with T = 60
(optimisation using AMPL-IPOPT)

Note that this strategy lets the cancer cell population ρC grow initially to an

equilibrium level, while increasing the ratio
ρCS

ρC
of drug-sensitive cancer cells, before

delivering u1 = umax
1 ; only then is the cytotoxic efficacy maximal.
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Interpretation
In a first approximation the optimal trajectory is made of two parts, the first one with
u1 = 0 and the second one with u1 = umax

1 , then u1 lower than umax
1 , and u2 = umax

2 .

Main idea:
1. Let the system naturally evolve to a phenotype concentration (long-time phase).

2. Then, apply the maximal quantity of drugs, during a short-time phase, in order
to eradicate as many tumour cells as possible.

The second short-time phase is all the more efficient as the phenotypes are more
concentrated (hence, as the time T is large).

We have two facts to prove: 1) convergence and concentration; 2) optimality of the
concentrated state to start the final drug delivery phase. We prove the first fact,
however the proof of the second fact is still elusive.

Looking for the proof of the theorem, beginning with the simpler case of constant
controls, we investigated different tracks. The first attempt failed, but its main
ingredients were used in the actual proof (with firstly constant, then piecewise
constant controls), which relies on the design of a Lyapunov functional.

I will show only the asymptotic behaviour (=constant controls). The optimal control
part relies of Pontryagin’s maximal principle and is technical (to be published soon).
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Constant controls: asymptotic behaviour
Lemma
Assume that u1 = Cst = ū1 and that u2(t) = Cst = ū2. Then there exist traits x∞H
and x∞C such that for some constants ρ∞H and ρ∞C , ∀(nH(·, 0), nC (·, 0))
nH(·, t) −→

t→+∞
ρ∞H δx∞

H
, nC (·, t) −→

t→+∞
ρ∞C δx∞

C
.

Proof. ∂

∂t
nH(x , t) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]
nH(x , t)

∂

∂t
nC (x , t) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]
nC (x , t)

where we recall that IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

and ρH(t) =
∫ 1
0 nH(x , t) dx , ρC (t) =

∫ 1
0 nC (x , t) dx . Firstly, we tried to show,

integrating in x and taking lower and upper bounds w.r.t. x , that (ρH(t), ρC (t))
satisfy integral inequalities with at each bound the solutions of a coupled system of
non-explosive Riccati equations (aka Lotka-Volterra with competition and coexistence)

ż1(t) = z1(t)(a1 − b11z1(t)− b12z2(t))

ż2(t) = z2(t)(a2 − b22z2(t)− b21z1(t)).

However, although this argument works in 1D [and in 2D in the case of mutualism,
not competition, it implies only the convergence of sub- and supersolutions].

... Thus this naïve ‘proof’ fails in our case!



Integro-differential models Optimisation

Asymptotic behaviour, (failed) attempt to the proof (1)
Indeed, even if we have such boundaries for the solutions, oscillatory behaviour
between boundaries cannot not be excluded! Note that if nevertheless convergence of
(ρH(t), ρC (t)) were granted, then concentration would then follow from the
exponential behaviour of nH(·, t) and nC (·, t), as we will show next.

1. Convergence towards what? Assume that u1(t) = Cst = ū1, u2(t) = Cst = ū2 and
that for any initial population of healthy and of tumour cells, convergence of
(ρH(t), ρC (t)) when t → +∞ is taken for granted. Then the equilibrium point
(ρ∞H , ρ∞C ) towards which (ρH(t), ρC (t)) converges can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

(∀x)
rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2. (1)

(Remark: for ū1, ū2 fixed, call RH,C (x0, a1,2) ≤ 0 the two inequalities above and
assume ab absurdo that ∀a ∈ R+, ∃x0 s.t. RH,C (x0, a) > 0, then by continuity, this
would be true on a whole interval around x0, hence there would be exponential
blow-up of the population, which is excluded by the convergence hypothesis.)

Then (ρ∞H , ρ∞C ) is the unique solution of the system (invertible as a consequence of the
fact that intraspecific competition is assumed higher than interspecific competition)

I∞H = aHHρ
∞
H + aHCρ

∞
C = a1,

I∞C = aCHρ
∞
H + aCCρ

∞
C = a2.
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Asymptotic behaviour, (failed) attempt to the proof (2)

2. Concentration. Furthermore, if AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) is the set of all
points such that equalities hold in (1), then the supports of the probability measures
νH(t) = nH (x,t)

ρH (t)
dx and νC (t) = nC (x,t)

ρC (t)
dx converge respectively to AH and AC . In

particular, if AH is reduced to a singleton x∞H , and if AC is reduced to a singleton x∞C
(cases of our simulations), then νH(t) and νC (t) converge for the vague topology
respectively to the Dirac masses δx∞

H
and δx∞

C
for some x∞H ∈ [0, 1] and x∞C ∈ [0, 1]

as t tends to +∞.

This theorem (that still remains to be proved) asserts that, under generic conditions

that are satisfied here with the numerical data that we have chosen and under a

constant drug treatment, the populations of healthy and of tumour cells concentrate

to some respective phenotypes that can be exactly computed.
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Asymptotic behaviour, (failed) attempt to the proof (3)
Indeed, by integration, we would have

nH(x , t) = n0H(x) exp
((

rH(x)

1 + αH ū2
− ū1µH(x)

)
t

− dH(x)

(
aHH

∫ t

0
ρH(s) ds + aHC

∫ t

0
ρC (s) ds

))
,

nC (x , t) = n0C (x) exp
((

rC (x)

1 + αC ū2
− ū1µC (x)

)
t

− dC (x)

(
aCH

∫ t

0
ρH(s) ds + aCC

∫ t

0
ρC (s) ds

))
.

Now, if convergence were granted, since for large t, we have
∫ t
0 ρH(s) ds ∼ ρ∞H t and∫ t

0 ρC (s) ds ∼ ρ∞C t, the asymptotic behaviour of nH(x , t) and of nC (x , t) depends on
the functions

bH(x) =
rH(x)

1 + αH ū2
− ū1µH(x)− dH(x)(aHHρ

∞
H + aHCρ

∞
C ),

bC (x) =
rC (x)

1 + αC ū2
− ū1µC (x)− dC (x)(aCHρ

∞
H + aCCρ

∞
C ),

whose maxima on [0, 1] may be shown to be both zero.The points at which these
maxima are attained (AH and AC , generically singletons x∞H and x∞C ) are the supports
of the announced Dirac masses.
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Actual proof of asymptotic behaviour: a Lyapunov functional
We follow an argument by P.-E. Jabin & G. Raoul (J Math Biol 2011) to prove at the
same time convergence and concentration by designing a Lyapunov functional.

Theorem
(Asymptotic behaviour theorem, no prior convergence assumed)
Assume that u1 and u2 are constant: u1 ≡ ū1, and u2 ≡ ū2. Then, for any positive
initial population of healthy and of tumor cells, (ρH(t), ρC (t)) converges to the
equilibrium point (ρ∞H , ρ∞C ), which can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2.

Then (ρ∞H , ρ∞C ) is the unique solution of the (invertible) system

I∞H = aHHρ
∞
H + aHCρ

∞
C = a1,

I∞C = aCHρ
∞
H + aCCρ

∞
C = a2.

Let AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) be the set of all points x ∈ [0, 1] such that equality
hold in one of the inequalities above. Then the supports of the probability measures

νH(t) =
nH(t, x)

ρH(t)
dx and νC (t) =

nC (t, x)

ρC (t)
dx

converge respectively to AH and AC as t tends to +∞.
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Basis of proof (constant controls): a Lyapunov functional

Firstly, the correspondence (a1, a2) 7→ (ρ∞H , ρ∞C ) being bijective and controls ū1, ū2
being constant and omitted in the sequel, one can write the two inequalities above as

∀x ∈ [0, 1], RH(x , ρ∞H , ρ∞C ) ≤ 0 and ∀x ∈ [0, 1], RC (x , ρ∞C , ρ∞H ) ≤ 0

with, furthermore

∀x ∈ AH , RH(x , ρ∞H , ρ∞C ) = 0 and ∀x ∈ AC , RC (x , ρ∞C , ρ∞H ) = 0

Then, for mH,C :=
1

dH,C

, define the Lyapunov functional V (t) := VH(t) +VC (t) where

VH,C (t) = λH,C

∫ 1

0
mH,C (x)

[
n∞H,C (x) ln

(
1

nH,C (t, x)

)
+
(
nH,C (t, x)− n∞H,C (x)

)]
dx .

where n∞H,C (x) are measures with support in AH,C such that
∫ 1

0
n∞H,C (x) dx = ρ∞H,C , the

positive constants λH and λC being adequately chosen to make V decreasing along
trajectories. The functional V yields simultaneously convergence and concentration.

(Part of PhD thesis work by Camille Pouchol, to be submitted soon as an article)
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About the ‘cooking recipes’ used in the simulations (1)

In this version of the simulations (used throughout in the sequel)

rH(x) =
1.5

1 + x2
, rC (x) =

3
1 + x2

,

dH(x) =
1
2

(1− 0.1x), dC (x) =
1
2

(1− 0.3x),

umax
1 = 3.5, umax

2 = 7,

and the initial data are

nH(0, x) = C0 exp(−(x − 0.5)2/ε), nC (0, x) = C0 exp(−(x − 0.5)2/ε),

with ε > 0 small (typically, we will take either ε = 0.1 or ε = 0.01), and where

ρH(0) = 2.7, ρC (0) = 0.5
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About the ‘cooking recipes’ used in the simulations (2)

The closer to 1 is the variable x , the more resistant are the tumour cells. The choice
done in Lorz et al. 2013 (where no optimal control is considered) is

µH(x) =
0.2

0.72 + x2
, µC (x) =

0.4
0.72 + x2

.

Note that, with this choice of functions, if we take constant controls u1 and u2, with

u1(t) = Cst = umax
1 = 3.5, u2(t) = Cst = 2,

then we can kill all tumour cells (at least, they decrease exponentially to 0), and no
optimisation is necessary - not clinically realistic, so that the function µC was modified
to be zero for x close to the maximum value of the drug resistance phenotype (i.e., 1),

becoming µC (x) = max
(

0.9
0.72 + 0.6x2

− 1, 0
)
:

µC thus decreases to zero and is zero from ' 0.83 to 1, i.e., the sensitivity µC (x) to

the cytotoxic drug is constantly nil for 0.83 ≤ x ≤ 1 in the cancer cell population.
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About the ‘cooking recipes’ used in the simulations (3)
On the figure below, the former function µC is in blue, and the new one is in red.

This new function µC is nonnegative and decreasing on [0, 1], and vanishes identically

on the subinterval [0.83, 1]. This reflects a saturation phenomenon of the sensitivity

function µC : once cancer cells have acquired total resistance, increasing the doses has

no effect any more.
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About the ‘cooking recipes’ used in the simulations (4)
Comparison between the two choices for µC with constant controls
Simulations with u1(t) = Cst = 3.5 and u2(t) = Cst = 2, in time T = 10. At the top,
left and middle: evolution in time of the curves x 7→ nH(t, x) and x 7→ nH(t, x), with
the initial conditions in black, and the final ones in red. At the right, top and bottom:
graphs of t 7→ ρC (t) and of t 7→ ρH(t). At the bottom, left and middle: graphs of
t 7→ ρH (t)

ρH (t)+ρC (t)
and of t 7→ ρCS (t)

ρC (t)
. Note that with the value u1 6= 0 chosen, the ratio

of sensitive cells is constantly decreasing (“What does not kill me strengthens me”).

With the first (non realistic) function µC With the new function µC
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About the ‘cooking recipes’ used in the simulations (5)
The environment variables I[H,C ](t) defined by

IH(t) = aHHρH(t) + aHCρC (t),

IC (t) = aCHρH(t) + aCCρC (t),
(2)

and

ρH(t) =

∫ 1

0
nH(x , t) dx , ρC (t) =

∫ 1

0
nC (x , t) dx .

have been chosen (with αH = 0.01, αC = 1) such that

aHH = 1, aCC = 1, aHC = 0.07, aCH = 0.01,

which means in particular that in the limiting logistic terms in the model, intraspecific

competition is overwhelmingly higher than interspecific competition, i.e., cell growth is

mainly limited by access to resources, and very little by frontal competition between

cancer and healthy cells, a choice done on biological grounds (cancer cells and healthy

cells are not thriving on the same metabolic niche, e.g., aerobic vs. glycolytic

metabolisms). As a consequence, as in classical Lotka-Volterra models with

competition, the choice of these parameters will lead in the simulations to asymptotic

coexistence of the two species, healthy and cancer, in a non trivial equilibrium state.
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Comparison with “almost periodic” therapeutic strategies

We mimic actual clinical settings: as long as
ρH

ρH + ρC
> θHC , we follow the ‘drug

holiday’ strategy by choosing u1 = ū1 = 0, u2 = ū2 = 0.5. Then, as long as

ρH > θH .ρH(0), we use the maximal amount of drugs. As soon as ρH = θH .ρH(0),

back to the drug holiday strategy. Results (note stabilised ρC and increasing ρCS ):
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Comparison with “almost periodic” therapeutic strategies
1) Mimicking the clinic; 2) the same with saturation of the constraint ρH = θH .ρH(0)

First (unsatisfying) periodic strategy: stabilisation of ρC only. Second strategy: same, but with added

arc following the constraint ρH = θH .ρH (0), with u2 = umax
2 , and control u1 obtained from the equality

dρH

dt
= 0 (saturation of the constraint) and back to the drug holiday strategy u1 = 0 as ρC starts

increasing again: we see that ρC can be brought arbitrarily close to 0 (eradication of the tumour?).
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Limitations of this optimisation procedure, owing to the fact
that the trait represents resistance to only one drug
• The model assumes one trait of resistance corresponding to one cytotoxic drug.

• However, overcoming resistance using such strategy may not be successful if
too many types of resistance coexist, due to high phenotype heterogeneity.

• Phenotype heterogeneity (e.g., multiclonality) within the tumour may reduce
such strategy to nothing, unless a multidimensional phenotype is considered.

• ... Unless also one could act very early to avoid the development of transient
drug-resistant cell clones by epigenetic drugs or metabolism-modifying strategies.

(AML relapse, cf. Ding et al.Nature 2012)
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A possible extension: adding phenotype instability
As done in Chisholm et al. Cancer Resear Research 2015, we may in a more realistic
way than in sheer IDE Lotka-Volterra-like models, introduce non-genetic instability in
a PDE model for evolution in phenotype x due to effects of cytotoxic drug u1(t) with
second order terms:

∂

∂t
nH(x , t) =

(
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(x , t) + D

∂2nH

∂x2
(x , t)

∂

∂t
nC (x , t) =

(
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (x , t) + E

∂2nC

∂x2
(x , t)

We might in this way allow for the possibility of evolution towards stable coexistence
of stationary concentrated phenotypes, which may be closer to the actual behaviour of
tumours, assuming that phenotype polyclonality precedes genotype polyclonality.

Also, of course, phenotypes accounting for drug resistance might be more realistically
multidimensional. We are exploring with biological partners (F. Vallette’s team about
resistance of GBM to TMZ) gene expression changes triggered by exposure to drugs,
with the hope to elicit functionally defined gene expression clusters that could
ultimately be interpreted as phenotypes accounting for the evolution towards
heterogeneity (with possible stochastic bet hedging?) in drug-resistant cancer cell
populations.
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Extension of the IDE model: tumour micro-environment
Breast cancer cell line MCF7 in symbiosis with adipocytes (work 2015)

	  

A mutualistic model with control by drugs: cytostatic vr (t), cytotoxic vd (t),
plus blockade of receptors to intercellular soluble factors ϕA(t), ϕC (t) by other drugs,
e.g., oestrogen receptor blockers wsC (t), antiinflammatory molecules wsA(t)

∂

∂t
nC (u, t) =

[
rC

1 + vr (t)
+ ϕA(t)

sC (u)

1 + wsC (t)
− (1 + vd (t))dC (u)ρC (t)

]
nC (u, t),

∂

∂t
nA(x , t) =

[
rA + ϕC (t)

sA(x)

1 + wsA(t)
− dAρA(t)

]
nA(x , t).

(Camille Pouchol’s PhD thesis 2015-. . . )
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Other possible extensions: representing the immune response

• Remarkable recent and longlasting therapeutic results have been obtained in
various cancers by using immune checkpoint inhibitors (anti-CTLA-4, anti-PD1,
anti-PDL1), monoclonal antibodies that inhibit inhibition of immune effector
cells, see, e.g., Naidoo et al. in Br J Cancer 2014

• However, remarkable though they are, these results remain limited, long
survivors (18 months) in melanoma passing from 0 to 25-40 % in the best cases
(Nivolumab in melanoma without BRAF mutation, C. Robert NEJM 2015)

• Using chemotherapies to decrease cancer cell populations, not to eradicate
them, but to make them amenable to be kept in check by the immune system,
raises reasonable hopes to increase these (already remarkable) results

• This calls for models of the immune response in cancer to optimise cancer
treatments by combining chemo- and immunotherapies...

• ... Keeping in mind the urge by Charles Lineweaver, Paul Davies and Mark
Vincent (Bioessays 2014) to target cancer’s weaknesses (not its strengths) by
triggering the adaptive immune response
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