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A general framework to optimise cancer therapeutics:

designing mathematical methods along 3 axes

• Modelling the behaviour of growing cell populations on which anticancer drugs
act (the targeted cell populations): proliferating tumour and healthy cell
populations, including representing functional (not necessarily molecular) targets
for pharmacological control

• (When PK-PD models are available) Modelling the external control system, i.e.,
fate of drugs in the organism, at the level of functional targets (proliferation,
death, differentiation) in cell populations by functional, rather than molecular,
pharmacokinetics-pharmacodynamics (PK-PD)

• Optimising therapeutic controls: dynamically optimised control of theoretical
drug delivery flows representing time-dependent objectives and constraints,
making use of known or hypothesised differences between cancer and healthy
cell populations



1. Introducing weapons and targets in proliferation models	




Cancer therapeutics summed up���
	
•  Surgery: 	
    highly localised	


•  Radiotherapy:     localised, kills all renewing cells… including tumour cells	


•  Chemotherapy: - usually general, adapted to diffuse and metastatic cancers;	

	
 	
 	
    acts on all renewing cells at the subcellular level (degrading 

	
 	
    DNA, blocking phase transitions, inducing apoptosis), at the 
	
 	
    cell and tissue level (antiangiogenic drugs), or at the whole 
	
 	
    organism level	


	
 	
 	
   - but: new molecules = monoclonal antibodies (xxx-mab) 
	
 	
    directed toward tumours or tumour-favoring antigenic sites	


•  Immunotherapy: - injection of cytokines (interferon, interleukins) = boosters	

	
 	
 	
    - use of engineered macrophages or lymphocytes directed 

	
 	
      toward specific targets: future?	




Some pitfalls of cancer therapeutics	

•  Surgery: - (partly) blindfold	

	
 	
      - not feasible when tumour is adherent to vital blood vessels (liver)	


     To overcome these drawbacks: - radio-guided surgery, possibly using DTI	

	
 	
 	
 	
             - previous use of radio- or chemotherapy	


	

•  Radiotherapy: not enough localised or not enough energetic 	
    

Recently proposed: hadrontherapy = particle beam therapy (protons, neutrons 
and helium, carbon, oxygen and neon ions instead of photons): better 
localisation, possibility to deliver higher doses without unwanted damage 	


•  Chemotherapy: - toxic to all fast renewing tissues (including healthy ones: 	

	
    	
    gut and other digestive epithelia, skin, bone-marrow)	


	
 	
 	
   - induces development of drug resistance by selecting 	

	
   	
     resistant clones among cancer cells	


      Proposed: optimisation of treatment to reduce toxicity and drug resistance	

	

…..New molecules: xxx-mab, e.g. EGFR inhibitors (cytostatic drugs)	

	
 	
 	
 - monoclonal antibodies are mouse antibodies!-> HAMA	
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Examples of drugs and targets at the subcellular level: 
chemotherapy for liver, pancreatic or biliary cancers 

• 5-FU 
• MTX 
• OH-urea 

• CDDP 
• Oxaliplatin 
• CPM 

• Vinorelbine 
• Docetaxel, 
  paclitaxel 

• Irinotecan 

• Doxorubicin, epirubicin 

(Image thanks to F. Lévi, INSERM U776)	
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Cell cycle phases as targets for chemotherapy agents 
Antibiotics	


	


(Image thanks to F. Lévi, INSERM U776)	




Different viewpoints to represent tumour therapies	

1. At the molecular level:	

Hitting specific molecular targets in cancer cells by “targeted therapies”	

Presently the most popular point of view among cancer biologists	

Achievements: imatinib in chronic myelogenous leukaemia (CML),	

ATRA+anthracylins in acute promyelocytic leukaemia (APL)	

Problems: (often very) relative specificity; toxicity to healthy tissues;	

not taking into account emergence of drug resistance	

	

2. At the cell and molecular level:	

Taking into account all intracellular molecular pathways involved in proliferation,	

cell death and [de-]differentiation: a biocomputer scientist's point of view	

Problems: scores of reaction networks, hundreds of parameters to estimate,	

not taking into account emergence of drug resistance	

	

3. At the cell population level:	

Defining functional targets for drugs in qualitative population dynamics models	

with added external control: PDEs or IDEs (integro-differential equations). 	

Advantages: the right level to take into account population level effects	

(in particular emergence of drug resistance) and to design optimisation strategies	

Problems:  attributing specific functional effects to given drugs	




Examples: macroscopic models of the action of drugs	


(T. Jackson & H. Byrne, Math BioSci 2000)	


(JC Panetta, Math BioSci 2003)	


1. ODE with functional representation of pharmacodynamics for bone marrow toxicity 	


2. PDEs describing action of a drug (d) on proliferating (p) and quiescent (q) cells	


PBM, NBMi = bone marrow cells, N = circulating neutrophils, D = drug concentration	


p (resp. q) cells:	

high (resp. low)	

susceptibility to drug d	


“Functional’’=by designing targets related to those fates that are considered as relevant	

for cell and tissue behaviour in cancer: proliferation, cell death, [de-]differentiation	




3 detailed examples of molecular PK-PD modelling:	

Oxaliplatin, Irinotecan, 5-Fluorouracil	


Pharmacokinetic-pharmacodynamic (PK-PD) modelling	

 

“Pharmacokinetics is what the organism does to the drug,	

     Pharmacodynamics is what the drug does to the organism”	


	

	




1st example: Modelling PK-PD of cytotoxic drug Oxaliplatin	

(cytotoxic action exerted on DNA in all phases except M phase)  	


Decay of free DNA	


Input i =oxaliplatin infusion	

Plasma proteins	


Intracellular reduced glutathione	


oxaliplatin	

infusion	


oxaliplatin	

infusion	


(JC, O. Fercoq, submitted, 2016 and preprint https://hal.archives-ouvertes.fr/hal-01321536)	




Molecular PK of Oxaliplatin in plasma compartment	
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Hepatic synthesis activity of plasma proteins ωL tunes the period of the cycle of plasma proteins	


rL tunes the amplitude of the 
cycle of plasma proteins	


ε tunes the robustness of GSH oscillations, from harmonic to relaxation-like	


Plasma protein synthesis	

shows circadian rhythm	




Molecular PK of Oxaliplatin: tissue concentration	


Tissue concentration	


in free oxaliplatin (C=[DACHPt]) 

GST-mediated binding of reduced glutathione (G)     
to oxaliplatin (C), i.e., cell shielding by GSH	


Degradation of free DNA (F)  
by oxaliplatin (C)	


W = volume of 	

tissue in which	

the mass P of 	

free oxaliplatin	

is infused

“Competition” between free DNA [=F] and shield=reduced glutathione	

GSH [=G] to bind oxaliplatin [=C] in proliferating cells	




Molecular PD of Oxaliplatin activity in tissue	

Mass of free DNA	


DNA repair  function	


(θ1 < θ2 : activation and inactivation  thresholds; gR: stiffness) 
Mass of reduced     
glutathione in target          
cell compartment 

Activity of γ-Glu-cysteinyl ligase (GCS) 

Action of oxaliplatin on free DNA (F)	


Glutathione synthesis	

(  detoxification) in cells 
shows circadian rhythm	


ωG  tunes the period of the cycle	

of GSH synthesis by GCS	


Oxaliplatin cell concentration	


ρG tunes the amplitude of the cycle of GSH 
synthesis by GCS = γ-Glu-cysteinyl ligase	


δ tunes the robustness of GSH oscillations, from harmonic to relaxation-like	


1-F/F0 =DNA damage	

dN
dt

= −
ωL
2

ε
(L − L0 )



PD of Oxaliplatin on DNA and genetic polymorphism	

 of repair function in tumour cells: drug resistance or not	


…the same with stronger DNA repair function, ERCC2=XPD-determined:	


F (free DNA)	


F (free DNA)	


G (glutathione)	


S (GCS activity)	


(Diminished VGST binding to GSH / cellular uptake ξ, changed infusion peak time, lead to comparable results)	


F (free DNA)	




2nd example: cytotoxic drug Irinotecan (CPT11)	


(from Klein et al., Clin Pharmacol Therap 2002)	


Intracellular PK-PD model of CPT11 activity:	

	

•  [CPT11], [SN38], [SN38G], [ABCG2],	

   [TOP1], [DNA], [p53], [Mdm2]	

•  Input=CPT11 intracellular concentration	

•  Output=DNA damage (Double Strand Breaks)	

•  Constant activities of enzymes CES and UGT1A1	

•  A. Ciliberto’s model for p53-Mdm2 dynamics	


(from Mathijssen et al., JNCI 2004)	


(CES)	


(from Pommier, Nature Rev Cancer 2006)	


Topoisomerase 1: the target	
Prodrug	


Drug	


Catabolite	




PD	


PK	


Intracellular PK-PD of Irinotecan (CPT11)	


(Luna Dimitrio’s Master thesis 2007; 	

A. Ballesta’s PhD work 2012)	




A. Ciliberto’s model of p53-Mdm2 oscillations	


(Ciliberto, Novak, Tyson, Cell Cycle 2005)	




PD of Irinotecan: p53-Mdm2 oscillations can repair 
DNA damage provided that not too much ���

SN38-TOP1-DNA ternary complex accumulates	


(Intracellular PK-PD of irinotecan and A. Ciliberto’s model of p53-MDM2 oscillations)	

(Luna Dimitrio)	




3rd example: PK-PD of cytotoxic drug 5-Fluorouracil ���
���

5-FU: 50 years on the service of���
colorectal cancer treatment	


[= Uridine]	


(NB : Uracil is found only in DNA) 	


(Methylation site blocked)	


Normally,!
methylation in 5!
by Thymidylate!
Synthase (TS) of !
dUMP into dTMP"

(5-FU will be later transformed into 
FdUMP instead of normal dUMP)	




PK-PD of 5-FU 	


Competitive	

inhibition	

by FdUMP of 
dUMP binding to 
target TS	


+	

[Stabilisation 
by CH2-THF of 
binary complex 
FdUMP-TS]	


Incorporation of 
FUTP instead of 
UTP to RNA 	


Incorporation of 
FdUTP instead of 
dTTP to DNA 	
(Longley, Nat Rev Canc 2003)	


RNA pathway	
 DNA pathway 
2 main metabolic pathways:	

 action on RNA and on DNA	




 Formyltetrahydrofolate (CHO-THF) = LV ���
a.k.a. Folinic acid, a.k.a. Leucovorin  

   Precursor of CH2-THF, coenzyme of TS, that forms with it and FdUMP 
a stable ternary complex, blocking the normal reaction"

	
 	
                         (Longley, Nat Rev Canc 2003)	


5,10-CH2-THF + dUMP + FADH2     dTMP +THF + FAD 
TS	


	
 	
Inhibition of Thymidylate Synthase (TS) by 5-FU and Leucovorin	


(TS affinity:	

FdUMP > dUMP)	




Plasma and cell pharmacokinetics (PK) of 5-FU	

•  Poor binding to  plasma proteins	


•  Degradation +++ (80%) by liver DPD	


•  Cell uptake using a saturable transporter	


•  Rapid diffusion in fast renewing tissues	


•  5-FU = prodrug; main active anabolite = Fd-UMP	


•  Fd-UMP: active efflux by ABC transporter ABCC11 = MRP8	

(Oguri, Mol Canc Therap 2007)	




5-FU catabolism: DPD ���
(dihydropyrimidine dehydrogenase)	


•  5-FU 	
DPD 	
5-FU H2, hydrolysable [           FβAlanin]	


•  DPD: hepatic +++	


•  DPD: limiting enzyme of 5FU catabolism 	


•  Michaelian kinetics	


•  Circadian rhythm of activity	


•  Genetic polymorphism +++ (very variable toxicity)	




Modelling PK-PD of 5-FU [with drug resistance] + Leucovorin	

(action exerted on thymidylate synthase only in the S-G2 phase) 	


(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)	




P = Plasma [5FU]	

	

F = Intracellular [FdUMP]	

	

Q = Plasma [LV]	

	

L = ‘Intracellular [LV]’=[CH2THF]	

	

N = [nrf2] efflux Nuclear Factor	

	

A = ABC Transporter activity	

	

S = Free [TS] (not FdUMP-bound)	

	

B = [FdUMP-TS] binary complex	

	

T = [FdUMP-TS-LV]  irreversible 
ternary complex (TS blockade)	


  5-FU (+ drug-induced drug resistance) + Leucovorin	


Input = 5FU infusion flow 

Output = blocked 
Thymidylate Synthase 

Input = LV infusion flow	




5-FU and LV, plasma and intracellular PK:	

uptake, degrading enzymes, active efflux	


P=5FU	

(plasma)	

	

F=FdUMP	

(cell)	

	

Q=LV	

(plasma)	

	

L=LV (cell)	


5-FU cell uptake	
 5-FU DPD detoxication in liver	
FdUMP extracellular efflux	

(by ABC Transporter ABCC11)	


Binding of	

FdUMP to TS	

to form a reversible	

binary complex B	


Binding of LV to	

FdUMP-TS = B to	

form a stable 	

ternary complex	

	


i(t) = 5-FU	

infusion flow	


j(t) = LV	

infusion flow	




N=nuclear factor nrf2	

	

	

A=ABC transporter MRP8	


Resistance? Induction of ABC Transporter activity by	

FdUMP-triggered synthesis of nuclear factor nrf2	


FdUMP	

Nuclear factor	

(e.g., nrf2)	

ABC Transporter activity	

(ABCC11=MRP8)	




S=free TS	

	

B=binary 
complex	

	

T=ternary 
complex	

	


Targeting Thimidylate Synthase (TS) by FdUMP:	

Formation of binary and ternary TS-complexes	


        "

F + S 	
 	
F-S = B (FdUMP-TS 2-complex)	


B + L 	
 	
B-L = T (FdUMP-TS-LV 3-complex)	


k1"
k-1	
 k4	


TS blockade results in subsequent DNA damage	

	




Simulation: 5 sequences of 2-week therapy courses	

4 days of 5-FU+LV infusion,12 hours a day, every other week	

	

P = Plasma [5FU]	

	

	

F = Intracellular [FdUMP]	

	

	

Q = Plasma [LV]	

	

	

L = Intracellular [LV]	

	

N = [nrf2] 5FU-triggered 
Nuclear Factor	

	

A = ABC Transporter activity, 
nrf2-inducted	

	

S = Free [TS] (not FdUMP-
bound)	

	

B = [FdUMP-TS] reversible 
binary complex	

	

T = [FdUMP-TS-LV] 	
           
stable ternary complex	

	




Some features of the model: 	

a) 5-FU with/without LV in resistant cancer cells (=MRP8+ cells)	


With Leucovorin added in treatment	
 Without Leucovorin added	


TS	
 TS	


Cancer cells die	
 Cancer cells survive	


6.4	
2.5	

Binary	

complex	


Ternary	

complex	


Ternary	

complex	


42.6	


TS	

Binary	

complex	

Ternary	

complex	


6.4	


(42.9)	

Binary	

complex	


Ternary	

complex	


6.4	
2.5	




b) 5-FU+LV with/without MRP8 (cancer vs. healthy cells)	


Resistant cancer cells (=MRP8+)	
 Healthy or sensitive cells (=MRP8-)	


TS	
 TS	
2.5	
 0.8	


Cancer cells resist more than healthy cells, due to lesser exposure to FdUMP	


(actively effluxed from cells by ABC Transporter MRP8)	


TS	
 2.5	
 TS	




The sentinel protein p53 senses DNA damage	

due to cytotoxic drugs, induces cell cycle arrest and	

launches DNA repair or (in case of failure) apoptosis












Connecting DNA damage with cell cycle arrest at G1/S and G2/M checkpoints 
through inhibition by p53 of the activity of Cdks / cyclins at G1/S and G2/M	


(from You et al., Breast Canc Res Treat 2005)	




Modelling p53 cell dynamics ( L. Dimitrio’s, then J. Elias’s theses)	


Dimitrio et al. JTB 2012; further work by Elias et al. BBA Prot 2014, Phys Biol 2014, CSBJ 2014   	


Single-cell  intracellular reaction-diffusion oscillatory dynamics of p53 and Mdm2 	




2. Therapeutic control and its theoretical optimisation	




Optimising cancer therapy by drugs 	
	


•  Pulsed chemotherapies aiming at synchronising drug injections with cell cycle 
events to enhance the effect of drugs on tumours: e.g. optimal control of IL21 
injection times and doses Σ ui δ (t-ti) using variational methods (Z. Agur,IMBM, Israel)	


•   Optimising [combined delivery of cytotoxic drugs and] immunotherapy 	
           
(L. de Pillis & A. Radunskaya Cancer Res 2005, JTB 2006, Frontiers Oncol 2013)	


•  Chronotherapy = continuous infusion time regimens taking advantage	

       of optimal circadian anti-tumour efficacy and healthy tissue tolerability	

       for each particular drug: has been in use for the last 15 years, with achievements for 

colorectal cancer treatment in human males (M.-C. Mormont & F. Lévi, Cancer 2003)	


•  Optimising combined delivery of cytotoxic and antiangiogenic drugs           	
        
(U. Ledzewicz et al. MBE 2011, H. Schättler and U. Ledzewicz’s Springer books 2013, 2015)	


•  Overcoming drug resistance +++: optimal control strategies to overcome the 
development of drug resistant cell populations, using combinations of different drugs	


(M. Kimmel & A. Swierniak, Springer LN Math 1872, 2006; Lorz et al. 2013, 2015; Pouchol et al., underway)	

	

	


	




Choosing the constraint to be represented may determine	

the model of proliferation used to optimise drug delivery,	

aiming at avoiding the two main pitfalls of pharmacotherapy:	


•  Toxicity issues. Controlling toxic side effects to preserve healthy cell populations 
leads to representing proliferating cell populations by ordinary differential equations, 
or by age-structured models: physiologically structured partial differential equations	


•  Drug resistance issues. Controlling emergence of drug-induced drug-resistant cell 
subpopulations in tumour tissues leads to using phenotypic trait-structured models of 
proliferation: physiologically structured evolutionary integro-differential equations	


Hereafter, we aim to minimise unwanted toxic side effects on healthy cells 	

	




Search for a difference between healthy and cancer cell populations: 
possible role of circadian rhythms?���

Mammalian physiology at the macroscopic level: control by 
circadian rhythms of the cell division cycle at checkpoints	

 Example of circadian rhythm in normal  Human oral mucosa: tissue concentrations 

in Cyclin E (control of G1/S transition) and Cyclin B (control of G2/M transition)	
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Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean ± S.E.M. in oral mucosa 
samples from 6 male volunteers. Cosinor fitting, p < 0.001 and p = 0.016, respectively.	
	


	
(from Bjarnason et al. Am J Pathol 1999)	
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Glucocorticoids	

      Food intake rhythm	


                   Autonomic nervous system	


Circadian chronobiology: the circadian system	


Lévi, Lancet Oncol 2001 ; Mormont & Lévi, Cancer 2003	


A system of molecular clocks	

that gives a 24 h rhythm to	

all cells in our organism	




•  Tolerance for anticancer drugs:	

  variation > 50% as a function of 	

  circadian timing	

	


•  Determinants:	

  rhythms in metabolism,	

  proliferation, apoptosis, repair	

	


•  Antitumour activity:	

  best near the time of best tolerance	


•  Combination of cytotoxic drugs	

  most effective following the delivery of each agent	

  near its time of best tolerance	


Lévi, Lancet Oncol 2001 ; Granda et Lévi, Chronobiology Int 
2002 

Chronotherapeutic principles, according to F. Lévi	


INSERM E 0354 

Gemcitabine	


R-Roscovitine	


Activity	
 Rest	


Experimental settings for laboratory rodents	


(M.-C. Mormont & F. Lévi, Cancer 2003	




Simple pharmacokinetics-pharmacodynamics (PK-PD)	

of a cancer drug acting on cell populations: 6 state variables	


Healthy cells (jejunal mucosa)	
 Tumour cells	


f(C,t)=F.Cγ/(C50
γ+Cγ).{1+cos 2π(t-ϕS)/T}	
 g(D,t)=H.Dγ/(D50

γ+Dγ).{1+cos 2π(t-ϕT)/T}	


(PK)	


(« chrono-PD »)	


(homeostasis=damped harmonic oscillator)	
 (tumour growth=Gompertz model)	


(JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)	

Aim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicity 	


Main work hypothesis: ϕT=ϕS+12  

 oxaliplatin infusion flow 	




Optimal control, step 1: deriving a constraint 	

function from the enterocyte population model	


Minimal toxicity constraint, for 0<τA<1 (e.g. τA =60%):	


Other possible constraints:	




Optimal control, step 2: deriving an objective 
function from the tumoral cell population model	


Objective function 1: Eradication strategy: minimize GB(i), where;	


Objective function 2: Stabilisation strategy: minimize GB(i), where;	


or else:	


or!



Optimal control problem (eradication): defining a Lagrangian:	


then:	


If GB and FA were convex, then one should have:	


…and the minimum would be obtained at a saddle-point	

    of the Lagrangian, reachable by an Uzawa-like algorithm	




…but GB and FA need not be convex functions of infusion flow i!!	

	

	

	

Yet it may be proved using a compacity argument that	

the minimum of GB under the constraint FA≤0 actually exists:	

	

	

FA and GB  are weakly continuous functions of i, from L2([t0,tf]) to  H2([t0,tf]) since 
i->A(t,i) and i->B(t,i) are continuous by integration of the initial system:	


Investigating the minima of the objective 
function: a continuous problem	


and the constraint set {i, 0 ≤ i ≤ imax, FA(i) ≤ 0} is weakly compact in L2([t0,tf])	

	


hence also are	

C,D,A,B as 
functions of i	




Investigating the minima of the objective 
function: a differentiable problem	


     Moreover, A and B are C 2  as functions of time t  (by integration of the initial system)	

	

	

     The minimum of A being attained at tA(i), i.e., FA(i) = τA-A(tA, i)/Aeq, it can be proved, 

assuming that ∂2A(tA(i),i) / ∂t2 > 0 and using the implicit function theorem, that tA is  a 
differentiable function of i	


	

	

     In the same way,  tB , defined by GB(i)=maxt B(i,t)=B(i,tB(i)), is, provided that 
∂2B(tB(i),i) / ∂t2 < 0,  a differentiable function of i	


	

     Hence, the infusion flow optimatisation problem is liable to differentiable optimisation 

techniques, and though the problem is not convex, so that searching for saddle points of 
the Lagrangian will only yield sufficient conditions,	


	

      We nevertheless can define a heuristics to obtain minima of the objective function GB 

submitted to the constraint FA≤0, based on a Uzawa-like algorithm with a nonlinear 
conjugate gradient	


	

	

	




Optimal control: results of the tumour stabilisation strategy 
using this simple one-drug  PK-PD model	


(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)	
	

	


Objective: minimising the maximum 
of the tumour cell population	


Constraint : preserving the jejunal mucosa 
according to the patient’s state of health	


(C. Basdevant, JC, F. Lévi, M2AN 2005; JC Adv Drug Deliv Rev 2007)	


Solution : optimal infusion flow i(t) adaptable to the patient’s state of health 
(according to a tunable parameter τA: here preserving τA=50% of enterocytes) 	


i	
 B	
 A	




Physiologically and pharmacologically controlled model:	

age-structured PDE model for the cell division cycle	


(here only linear models are considered, but nonlinear models with feedback are possible)	


(from B. Basse et al., J Math Biol 2003)	


In each phase i, a McKendrick linear model:	


di , Ki->i+1 constant or periodic	

 w. r. t. time t (1≤i≤I, I+1=1)	

	


ni:=cell population density in 
phase i ; di:=death rate;	

vi :=progression speed;	


Ki-1->i:=transition rate	

(with a factor 2for i=1)	


Death rates di: (“loss”), “speeds” vi and phase transitions Ki->i+1 are model targets	

for physiological (e.g., circadian) or therapeutic (drug) control ψ(t)	

[ψ(t): e.g., clock-controlled CDK1 or intracellular output of drug infusion flow]	

(Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892,  2003;  recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009, 2011)	




 General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form	

 of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue λ and, 	

 if                                           ,  Ni , bounded solutions to the problem (here vi(a)=1) :	


(the weights ϕi being solutions to the dual problem); this can be proved by using 
an entropy principle (GRE). Moreover, if the control (di  or Ki->i+1) is constant, or 
if it is periodic, so are the Ni , with the same period in the periodic case.	

	


with a real number ρ such that the asymptotics of 	
 	
 	
       follow:	


Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005 	
      
JC, Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006; Proc. ECMTB Dresden 2005, Birkhäuser 2007	

	


   ρ.	




In summary: proof of the existence of a unique growth exponent λ, the same for all 
phases i, such that the                                       are bounded, and asymptotically 
periodic if the control is periodic	


Example of control (periodic control case): 2 phases, control on G2/M transition by 
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)	


 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)	

	

  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period	


  	


λ: a first eigenvalue governing the cell population behaviour	


time t 

“Surfing on the 
exponential growth curve”	

	

(= the same as adding	

an artificial death term	

+λ to the di)	


Main output of this age-structured PDE model	




Experimental measurements to identify transition kernels Ki_i+1	


(and simultaneously experimental evaluation of the first eigenvalue λ)	

In the simplest model with d=0 (one phase with division) and assuming K=K(x)	

(instead of indicator functions              , experimentally more realistic transitions):	


Interpreted as: if τ is the age in phase at division, or transition:	

	


With probability density (experimentally identifiable):	


with	


Whence (by integration 	

along characteristic lines):	


i.e.,	




(from You et al. 2005, Breast Canc. Res. Treat. 2005)	


Circadian rhythms and physiological control of the cell cycle:	

Known connections between the cell cycle and circadian clocks 	


So, what if we add circadian clock control??	

i.e., what if we put K(t,x) = κ(x).ψ(t)	

with κ = FUCCI-identified and ψ = a cosine?	

[cosine: in the absence of a better identified clock thus far!] 	

	


At the molecular level (Bmal1 and Per2 are 
constituents of the circadian clock):	

	

Bmal1 controls Wee1 and Cyclin B-Cdk1	

	

Per2 controls p21 and Cyclin E- Cdk2	

	

Wee1 and p21 act in antiphase	

	

The circadian clock (Bmal1, Per2) might thus	

be a synchroniser in control of cell populations 	

between G1/S and G2/M transitions 	

	

	




(a 12 h delay between the two cosines was determined as the one that maximised the λ) 	


Circadian control on phase transitions: two cosines for ψ1 and ψ2 	


Resulting evolution of the clock-controlled cell population: λ=0.024 h-1 (<0.0039 h-1)  	

  	


λ=0.024 h-1 	


Adding theoretical circadian control on phase transitions	


Here we put	

K(t,x) = κ(x).ψ(t)	

with κ = FUCCI-identified	

and ψ = cosine-like function	

	

[cosine: in the absence of a	

better identified clock thus far] 	

 

SG2M to G1 gating	
G1 to SG2M gating	


Gate open	


Gate closed	


Gate open	


Gate closed	




Phases: asynchronous cell growth	
 Global: sheer exponential cell growth	


[Agreement between	

model and data on	

the first division] 	


F. Billy	




Steep synchronisation within the cell cycle	
 Stepwise cell population growth	


F. Billy	


(1) Healthy        	

cell population	


(=sharp gating by 	

circadian clock)	


‘Healthy gating’	




Loose synchronisation within the cell cycle	
 Stepwise cell population growth	


F. Billy	


(2) cancer cell	

population	


(=lazy gating by 	

circadian clock)	


Main work hypothesis	

(difference from healthy cells)	


‘Cancer gating’	




F. Billy	


Healthy control case ψ	
 Cancer control case ψ	
 No control	




Theoretical chronotherapeutic optimisation of a first 
eigenvalue (cancer growth exponent) under the constraint of 
preserving another first eigenvalue (for healthy tissue growth)	


-  McKendrick’s model of cell population proliferation	

-  Control of proliferation by blocking Ki_i+1 using theoretic periodic drug delivery:	

 K(t,x)=[1-g(t)].ψ(t).κ(x) where: g(t) is a periodic external control (chronotherapy)    

	
 	
 	
         ψ(t) is a circadian clock control on the cell cycle
	
 	
 	
         κ(x) is an [only] age-dependent transition rate	


	

-  Objective function to be minimised: λ1, 1st eigenvalue of cancer cell population	

-  Constraint function to be preserved: λ2 [≥Λ], 1st eigenvalue of healthy cell population	

-  Design of an augmented Lagrangian by combining λ1 and λ2-Λ (with penalty)	

- Arrow-Hurwitz (or Uzawa) algorithm to track saddle points of the Lagrangian	

-  …thus obtaining only suboptimality (necessary to obtain critical points) conditions	


	


i.e., what if now we add a drug control, setting K(t,x) = κ(x).ψ(t).[1-g(t)]?	

 



Results: circadian + 24h-periodic drug control on transitions	

K(x,t) = κ(x).ψ(t).g(t): κ FUCCI-identified, ψ clock, g optimal drug effect on S-phase 	


green and red gating: ψ	

(circadian clock control	

without drug)	

	

blue: [1-g].ψ	

(drug + circadian control)	

g here numerical solution	

to the optimisation problem	

	


healthy case:	

sharp ψ gating	


cancer case:	

lazy ψ gating	


G1/S	


G1/S	


M/G1	


M/G1	


F. Billy et al. Math Comp Simul 2012,	

Math Biosci Eng 2012, DCDS-B 2012, 	

JC Springer book chapters 2013, 2014	




Evolution of the two populations: cancer (blue), healthy (green)	


Circadian control,	

no drug infusion	


Circadian control,	

added drug infusion	


(F. Billy et al. 2013, 2014)	




Numerical solution to the optimal infusion problem	

(Uzawa) and effect on eigenvalues, healthy and cancer 	

Infusion scheme g(t)	


Target eigenvalues:	

Cancer (blue)	

Healthy (green)	


In favour of this approach:	

- characterises long-term                	

   trends with one number,	

- easily accessible	

   target for control	

- fits to physiologically	

  structured growth models	


Its drawbacks:	

-  deals with asymptotics,	

not with transients	

-  assumes a linear model	

 for proliferation	

- assumes periodic control	

 by drugs (but the period	

 can be infinitely long)	




Introducing pharmacological effects on death rates with repair	

(rather than on phase transitions): extension of the model	


+  PK-PD added models: cytotoxic (death rates) effects 	


(JC, O. Fercoq, MMNP 2017 and preprint https://hal.archives-ouvertes.fr/hal-01321536)	




Pharmacokinetics-pharmacodynamics (PK-PD) of oxaliplatin	

(cytotoxic action exerted on DNA in all phases except M phase)  	


Decay of free DNA	


Input i =oxaliplatin infusion	

Plasma proteins	


Intracellular reduced glutathione	


oxaliplatin	

infusion	


oxaliplatin	

infusion	


(JC, O. Fercoq, MMNP 2017 and preprint https://hal.archives-ouvertes.fr/hal-01321536) 



PK-PD of 5FU [with drug resistance] + Leucovorin	

(action exerted on thymidylate synthase only in the S-G2 phase) 	


(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)	




Solution to the chronotherapeutic combined drug delivery optimisation problem 	


Here, only	

cytotoxic	

drugs acting	

on death rates 	


Leucovorin	


5FU	


Oxaliplatin	


(JC, O. Fercoq, MMNP 2017 and preprint https://hal.archives-ouvertes.fr/hal-01321536) 



Effects of this optimised periodic drug delivery regimen on growth rates 	


Target eigenvalues:	

Cancer (blue)	

Healthy (green)	


(JC, O. Fercoq, MMNP 2017 and preprint https://hal.archives-ouvertes.fr/hal-01321536) 



Evolution of the two cell populations, without, then with cytotoxic drugs	


(JC, O. Fercoq, MMNP 2017 and preprint https://hal.archives-ouvertes.fr/hal-01321536) 

A result not as good as in the previous case, when drugs were applied on	

transition rates... hence the suggestion of a cytotoxic+cytostatic treatment	

(e.g., 5FU+oxaliplatin+cetuximab): a story to be continued	


(Here, drugs acting on death rates and not on transition rates ) 	




+Modelling effects of cytostatics (CDKIs, TKIs, ...) acting	

on cell cycle phase transition rates [and boundary conditions]	


Control on inputs from G0 phase may be represented by a multiplicative factor in the	

 first (G1) boundary condition (which is the same as modifying the first transition rate);	

for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):	


New mitosis term 	


New ‘death’ term	

(=death + escape	

 towards G0) 	
f: target of 	


cytostatic drug,	

sending cells to	

quiescence	

(measurable)	


Optional (not done, to be added)	




Next: tackling the question of	

drug resistance in cancer cell populations	



