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Plan of the talk
1. Heterogeneity w.r.t. what? Continuous cell functional phenotypes governing cell

population fate; plasticity w.r.t. one or more phenotypes defined as uncertainty
in the determination of phenotypes

2. The basic nonlocal logistic model in 1D: BV arguments or a Lyapunov functional

3. 1st example: a reaction-diffusion-advection model of cell differentiation in a
heterogeneous cell population with phenotype divergence; its interest in
representing bet hedging in cancer according to viability, fecundity, plasticity

4. 2nd example: a model of tumour-immune interactions with traits of malignancy
and of anti-tumour efficacy, with possible introduction of immune checkpoint
inhibitors to fight immunoediting by cancer cells

5. 3rd example: a model of optimal drug control of cancer growth taking into
account the two main pitfalls of cancer therapeutics: drug-induced drug
tolerance in cancer cell populations and toxic side effects in healthy cell
populations

6. Conclusion: In the framework of nonlocal Lotka-Volterra cell population models,
heterogeneity, i.e., biological variability within cell populations w.r.t. relevant
continuous traits, has been used to study adaptive dynamics of cell populations

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Heterogeneity with respect to what?

• Heterogeneity is just biological between-cell variability in cell populations.
Numerous continuous models of structured cell populations exist, using cell size,
cell cycle age, time since last neuronal fire, expression of drug resistance...

• Heterogeneity is meant here as structuring populations w.r.t. continuous cell
functional phenotypes governing cell population fate; it may be understood as
between-individual variability identified in phenotypic (not Cartesian) space.

• Chosen traits in a structured cell population model, aka cell phenotypes, are
assumed to be continuous and to characterise cells in the population in a way
that is relevant to a given biological question.

• They may be identified as linked to biological gene expressions and/or protein
concentrations, but more fundamentally (and abstractly in these mathematical
models) such traits are functional, supposed to govern cell population fate.

• They are adaptive, continuously changing according to changes in the
environment of the cell population; following their distribution (e.g., yielding
concentration on asymptotic phenotype values) allows to identify such
adaptation in the long run.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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What is meant by plasticity?
• In a representation of cell population behaviour by phenotype-structured

equations, phenotypes are adaptive towards environmental pressure, i.e., plastic.

• Plasticity w.r.t. one or more phenotypes may be thus defined as uncertainty in
the determination of phenotypes, which is naturally present in the reaction term
of continuous phenotype-structured equations, and may be also represented, in
models involving diffusion, as a Laplacian (second-order derivative w.r.t.
phenotypes); it may also impinge on an advection term, representative of
cellular stress due to environmental pressure.

• Biologically, it is related to non genetic, i.e., of epigenetic nature, uncertainty in
the differentiation status of cells governed by expression of genes. Gene
expression, controlled by epigenetic enzyme activity, is by nature continuous.

• In physiology, cell plasticity w.r.t. phenotype expression is present, strictly
organismically controlled from one phenotype to some other, in embryological
development, in wound healing and in tissue repair, such as regeneration of a
missing limb in Axolotl.

• In cancer, plasticity may be biologically defined as loss of organism control on
cell differentiation (de-differentiation and re-differentiation such as in
EMT-MET, or transdifferentiation, tumour-controlled). All cancer cells escape
organism regulation and are amenable to phenotype plasticity.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Where does environmental pressure impinge in the model
equations?

• Reaction terms in the equations may be diversely affected by external variables
representing the input from the cell population environment of local biophysical
or chemical densities on proliferation or death terms.

• Optional advection terms, standing for the velocity with which cells vary w.r.t.
their content in phenotypes, may be considered, affected by the same changes in
environmental settings.

• Optional diffusion terms may also be affected, e.g., by functions of the
environment multiplying them, adding or substracting uncertainty in the
determination of phenotypes.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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The basic reaction-[diffusion]-[advection] population model

The basic model for a density of cells n(t, z), at time t with phenotype z ∈ D, runs

∂tn = (r(z)− d(z)ρ(t))n,

where ρ(t) =
∫
D n(t, z) dz, r(z) and d(z) instantaneous growth and death terms.

If one adds an advection term ∇V (z).n and a diffusion term ∇(A(z)∇n), it runs

∂tn+∇(V (z).n − A(z)∇n) = (r(z)− d(z)ρ(t))n,

where V (z) is a real-valued vector and A(z) is a diffusion matrix.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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The simplest nonlocal logistic model in 1D

• Population dynamics in time t and in relevant phenotype x ∈ [0, 1]:

∂tn = (r(x)− d(x)ρ(t))n

• ‘Structure variable’ x ∈ [0, 1]: trait chosen as bearing the biological variability

• Variable : n(t, x) population density of individuals bearing trait x at time t

• (1) Evolution in mass of individuals constituting the population

t 7→ ρ(t) =

∫ 1

0
n(t, x) dx

• (2) Asymptotics of distribution of the trait in the population

x 7→ limt→+∞
n(t, x)

ρ(t)

• Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

• Cartesian space is not here a relevant structure variable, but it may added.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Non-local logistic 1D model: convergence in time
Convergence: plot of t 7→ ρ(t)

Firstly, it can be shown that: ρ converges to ρ∞ = max
[0,1]

r

d
, i.e., to the smallest value ρ

such that r(x)− d(x)ρ ≤ 0 on [0, 1].

Remark: If drugs u1 (cytotoxic) and u2 (cytostatic) modify the net growth rate
∂tn

n
= r(x)− d(x)ρ to

r(x)

1 + u2
− d(x)ρ− µ(x)u1, then the new stationary value will

become ρ∞ = max
[0,1]

r1

d
, where r1(x) =

r(x)

1 + u2
− µ(x)u1.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Non-local logistic 1D model: concentration in trait x
But also: asymptotic concentration on a phenotype x∞

Plot of x 7→ n(t, x) for different times t:

Theorem
• ρ converges to ρ∞, the smallest value ρ such that r(x)− d(x)ρ ≤ 0 on [0, 1].
• n(t, ·) concentrates on the set

{
x ∈ [0, 1], r(x)− d(x)ρ∞ = 0

}
.

• Furthermore, if this set is reduced to a singleton x∞, then

n(t, ·) ⇀ ρ∞δx∞ in M1(0, 1).

Remark: In the same way, adding drugs u1 and u2 changes concentration in x to the

set
{
x ∈ [0, 1], r1(x)− d(x)ρ∞ = 0

}
, where r1(x) =

r(x)

1 + u2
− µ(x)u1. This is where

is induced phenotype adaptation.Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Non-local logistic 1D model: convergence (in mass ρ) and
concentration (in trait x) using a Lyapunov functional
Although in the 1D case a direct proof of convergence based on a BV hypothesis may
be obtained, from which concentration easily follows, it is interesting to note, as this
argument can be used in the case of 2 populations, that a global proof based on the
design of a Lyapunov function gives at the same time convergence and concentration:
choosing any measure n∞ on [0, 1] such that

∫ 1
0 n∞(x) dx = ρ∞ = max

[0,1]

r

d
, and for an

appropriate weight w(x) (= 1
d(x)

, P.-E. Jabin & G. Raoul, J Math Biol 2011), setting

V (t) =

∫ 1

0
w(x) {n(t, x)− n∞(x)− n∞(x) ln n(t, x)} dx ,

one can show that
dV

dt
= −(ρ(t)− ρ∞)2 +

∫ 1

0
w(x) {r(x)− d(x)ρ∞} n(t, x) dx ,

which is always nonpositive, tends to zero for t →∞, thus making V a Lyapunov
functional, and showing at the same time convergence and concentration. Indeed, in
this expression, the two terms are nonpositive and their sum tends to zero; the zero
limit of the first one accounts for convergence of ρ(t), and the zero limit of the second
one accounts for concentration in x (on a zero-measure set) of lim

t→+∞
n(t, x).

[See Pouchol et al., J Maths Pures Appl 2018]
Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Phenotype divergence: Bet hedging in tumours (1)
Bet hedging as a ‘tumour strategy’ to diversify its phenotypes in response to deadly
stress (cytotoxic drugs) Let D = Ω× [0, 1], where Ω := {C(x , y) 6 K} (a constraint
between traits x and y). The evolution of a plastic cell population n(z, t) structured in
a 3D phenotype z = (x , y , θ), where x=viability, y=fecundity, θ=plasticity is given by

∂tn +∇ ·
(
Vn − A(θ)∇n

)
= (r(z)− d(z)ρ(t))n,

with (Vn-A(θ)∇n
)
· n = 0 for all z ∈ ∂D; n(0, z) = n0(z) for all z ∈ D, where

Ω = {(x , y) ∈ [0, 1]2 : (x − 1)2 + (y − 1)2 > 1}, and the diffusion matrix

A(θ) =

a11(θ) 0 0
0 a22(θ) 0
0 0 a33

 , with a11 and a22 non-decreasing functions of θ,

influences the speed at which non-genetic epimutations occur, otherwise said, it is a
representation of how the internal plasticity trait θ affects the non-genetic instability
of traits x and y , by tuning the diffusion term ∇.{A(θ)∇n}; the advection term

∇.{V (t, z)n} = ∇.{(V1(t, z),V2(t, z),V3(t, z))n}

represents the cellular stress exerted by external evolutionary pressure on the

population, i.e., by changes in the environment; and ρ(t) =

∫
D

n(t, z)dz stands for the

total amount of individuals in the population at time t.

(FE Alvarez, JA Carrillo, JC, J. Math. Biol. 2022)Jean Clairambault, ECC23 Bucharest, June 14, 2023



Heterogeneity and plasticity Basic model Phenotype divergence Tumour-immune Drug resistance Conclusion

Bet hedging as phenotypic divergence (2): numerics
The existence and unicity of solutions may be obtained by numerical methods showing
convergence of the algorithms used to discretise the model. Illustrations may be
obtained with instances of the functions used in the equations. For instance, to obtain
phenotypic divergence (which we take as the basis of both bet hedging in cancer and
of emergence of multicellularity in evolution) , we consider over the domain
D = Ω× [0, 1] an initial density given by the expression

n0(z) = a1{f (z)<1}e
− 1

1−f (z) ,

with f (z) = ‖z−z0‖2
(0.025)2 , where z0 = (0.25, 0.25, 0.5) and ‖ · ‖ is the euclidean norm. We

choose the value of a in such a way that ρ0 =
∫
D n0(z) = 1.

We set the growth rate and the death rate as

r(x , y , θ) = 1{y>x}e
−(0.1−x)2−(0.9−y)2 + 1{x>y}e

−(0.1−y)2−(0.9−x)2 ,

d(x , y , θ) =
1
2
.

We choose the diffusion matrix

A(θ) =

(θ + 1)10−6 0 0
0 (θ + 1)10−6 0
0 0 10−6

 , and

the advection term V (t, z)=10−3(−y ,−x ,−(x + y)) or 10−3θ(−y ,−x ,−(x + y)).

FE Alvarez, JA Carrillo, JC, J. Math. Biol. 2022Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Phenotypic divergence: illustration (first stages)
The “push” towards specialisation imposed by V is negatively proportional to the
current set of traits (individuals with traits (x , y) are specialising with a rate
proportional to (−y ,−x)). We see on the illustration below that initially the
population is concentrated around the phenotype z0 = (0.25, 0.25, 0.5), and gradually
differentiates while losing plasticity.

Initial stages of the population density for different values of θ: the differentiation process starts. At
around t = 250 (bottom left) most of the population has already concentrated around the plasticity level
θ = 0.4375 and around t = 300 (bottom right) we observe that the migration towards a less plastic
state continues. Around t = 500 most of the population has reached θ = 0.375 and at subsequent times
the migration continues.

FE Alvarez, JA Carrillo, JC, J. Math. Biol. 2022Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Phenotypic divergence: illustration (final stages)

Final stages of the population density for different values of θ (end): around t = 900 (bottom left) the
differentiation process is over and most of the population has reached the plasticity level θ = 0.25. At t
= 1000 (bottom right) we observe that the population concentrated around any other level of plasticity
is almost extinct, and only the one around θ = 0.25 survives.

FE Alvarez, JA Carrillo, JC, J. Math. Biol. 2022Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Immunoediting: elimination, equilibrium or escape

The cancer immunoediting process, after R. D. Schreiber, Science 2011, proceeds
according to three possible asymptotic situations: elimination, equilibrium or escape.

Jean Clairambault, ECC23 Bucharest, June 14, 2023
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A model of tumour-immune interactions
Structure variables for a population of tumour cells and a population of lymphocytes:
x , malignancy trait (adaptive, stemness-like, for de-differentiation in tumour cells)
y , anti-tumour aggressiveness trait (adaptive, in competent NK and T-lymphocytes)

n(t, x) cancer cells, `(t, y) competent lymphocytes at tumour site with ν(y) sensitivity
of NK/T-lymphocytes to weakening molecules (PD ligands) emitted by tumour cells,
p(t, y) sourcing lymphocytes produced in lymphoid organs, χ(t, y) APC-borne or
molecular identification message from tumour cells to lymphoid organs, ICI immune
checkpoint inhibitor therapy

∂n

∂t
(t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕλ(t, x)] n(t, x),

∂`

∂t
(t, y) = p(t, y)−

(
ν(y)ρ(t)

1 + hICI (t)
+ k1

)
`(t, y),

∂p

∂t
(t, y) = χ(t, y)p(t, y)− k2p

2(t, y).

with the total mass of cancer cells at time t: ρ(t) :=
∫ 1
0 n(t, x)dx ,

χ(t, y) =
∫ 1
0 ω(x , y)n(t, x)dx , ω(x , y) = 1

s
e−|x−y|/s and

ϕλ(t, x) =
∫ 1
0 Ψλ(x , y)`(t, y)dy , where Ψλ(x , y) =

(
(1− λ) + λ 1

v
e−|x−y|/v)ψ(y),

with immune mixing NK/T response parameter λ ∈ [0, 1] (λ = 0: nonspecific, innate
NK-cells only; λ = 1: specific, adaptive T-cells only), ψ nondecreasing function of y .
Parameters s and v tune the precision of tumour antigen detection (s) / targeting (v).

with Z. Kaid and C. Pouchol, 2023 submittedJean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (1)

Numerical simulation of the solution in complete absence of immune response (e.g.,
setting ψ(y) = 0). Left panel, plots of cell densities n(t, ·) at different times up to
T = tf = 1000 (in red): the phenotype x evolves towards more and more malignancy
(i.e. de-differentiated status). Right panel, dynamics of the total density of tumour
cells ρ(t). The black dashed line highlights a numerical estimation of the tumour cell
carrying capacity ρ? , with ρ(0) = 1.

with Z. Kaid and C. Pouchol, 2023 submittedJean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (2)

Precision of detection parameter s vs. precision of targeting parameter v in the
innate-adaptive case (i.e., λ = 0.5): Heatmap representation of the contribution of the
two localisation kernel parameters s and v to the final relative density ρ∞

ρ?
of total

tumour cells at the end of simulations (where ρ? is the tumour carrying capacity), in
the case without treatment by ICIs. Of note, relatively wide s values (up to 0.3) for
the detection of the malignancy phenotype, whatever the targeting precision v , clearly
yield good immune efficacy. The case λ = 1 (T-cells only) would give similar results.

with Z. Kaid and C. Pouchol, 2023 submittedJean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (3)

Case of eradication: mixed innate/adaptive case (λ = 0.5). Simulations with
(s, v) = (1, 0.1) for T = 500.

with Z. Kaid and C. Pouchol, 2023 submittedJean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (4)

Case of equilibrium: mixed innate/adaptive case (λ = 0.5). Simulations with
(s, v) = (1, 0.5) for T = 500. Note that the malignancy phenotype x concentrates
onto a phenotype close to 0.

with Z. Kaid and C. Pouchol, 2023 submitted
Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (5)

Case of escape: mixed innate/adaptive case (λ = 0.5). Simulations with
(s, v) = (1, 1) for T = 500. Note that the malignancy phenotype x concentrates onto
a phenotype close to 1.

with Z. Kaid and C. Pouchol, 2023 submitted
Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (6)
Increasing levels of ICIs: here, ICI = 0

Figure: Escape. Simulation with ICI = 0.

Simulations with λ = 1 (only T-cells), (s, v) = (1, 2) and increasing levels of ICI s, up
to time T = 500. The black dashed line stands for the tumour carrying capacity ρ?.

with Z. Kaid and C. Pouchol, 2023 submittedJean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (7)
Increasing levels of ICIs: here, ICI = 1

Figure: Equilibrium. Simulation with ICI = 1.

Simulations with λ = 1, (s, v) = (1, 2) and increasing levels of ICI s, up to time
T = 500. The black dashed line stands for the tumour carrying capacity ρ?.

with Z. Kaid and C. Pouchol, 2023 submittedJean Clairambault, ECC23 Bucharest, June 14, 2023
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Tumour-immune interactions: simulation results (8)
Increasing levels of ICIs: here, ICI = 10

Figure: Eradication. Simulation with ICI = 10.

Simulations with λ = 1, (s, v) = (1, 2) and increasing levels of ICI s, up to time
T = 500. The black dashed line stands for the tumour carrying capacity ρ?.

with Z. Kaid and C. Pouchol, 2023 submitted
Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Non-local Lotka-Volterra model of treatment for 2 cell
populations, 2 different drugs and a resistance phenotype x

(Healthy cells H)
∂

∂t
nH(t, x) =

[
rH(x)

1 + kHu2
− dH(x)IH(t)− u1µH(x)

]
nH(t, x)

(Cancer cells C)
∂

∂t
nC (t, x) =

[
rC (x)

1 + kCu2
− dC (x)IC (t)− u1µC (x)

]
nC (t, x)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(t, x) dx , ρC (t) =

∫ 1
0 nC (t, x) dx , u1 cytotoxic, u2 cytostatic drugs.

Simultaneous combinations of the 2 drugs, with increasing equal constant doses

Healthy cells: preserved
[A kernel integral has been added for epimutations]

Cancer cells: eventually extinct

Proof of concept, or here “Pedestrian’s
optimisation” Lorz et al. M2AN 2013Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Asymptotic behaviour with constant controls
Following an argument by P.-E. Jabin & G. Raoul (J Math Biol 2011) we prove at the
same time convergence and concentration by using a Lyapunov functional of the form∫

w(x) {n(t, x)− n∞(x)− n∞(x) ln n(t, x)} dx

Theorem
(Asymptotic behaviour theorem, generalising to 2 populations the 1D case)
Assume that u1 and u2 are constant: u1 ≡ ū1, and u2 ≡ ū2. Then, for any positive
initial population of healthy and of tumour cells, (ρH(t), ρC (t)) converges to the
equilibrium point (ρ∞H , ρ∞C ), which can be exactly computed as follows.
Let a1 ≥ 0 and a2 ≥ 0 be the smallest nonnegative real numbers such that

rH(x)

1 + αH ū2
− ū1µH(x) ≤ dH(x)a1 and

rC (x)

1 + αC ū2
− ū1µC (x) ≤ dC (x)a2.

Then (ρ∞H , ρ∞C ) is the unique solution of the invertible (aHH .aCC >> aCH .aHC ) system
I∞H = aHHρ

∞
H + aHCρ

∞
C = a1,

I∞C = aCHρ
∞
H + aCCρ

∞
C = a2.

Let AH ⊂ [0, 1] (resp., AC ⊂ [0, 1]) be the set of all points x ∈ [0, 1] such that equality
holds in one of the inequalities above. Then the supports of the probability measures

νH(t) =
nH(t, x)

ρH(t)
dx and νC (t) =

nC (t, x)

ρC (t)
dx

converge respectively to AH and AC as t tends to +∞.
Pouchol et al. J. Maths Pures Appl. 2018Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Cell-killing strategy preserving healthy cells: optimal control
problem using this 1D phenotype-structured model

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫ 1
0 nH(t, x) dx , ρC (t) =

∫ 1
0 nC (t, x) dx .

Integrodifferential model with evolution in x due to effects of cytotoxic drug u1(t)

∂

∂t
nH(t, x) =

(
rH(x)

1 + αHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

)
nH(t, x)

∂

∂t
nC (t, x) =

(
rC (x)

1 + αCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

)
nC (t, x)

0 ≤ u1(t) ≤ umax
1 , 0 ≤ u2(t) ≤ umax

2

Optimal control problem: find controls (u1, u2) minimising in fixed horizon T

CT (u1, u2) = ρC (T ) =

∫ 1

0
nC (T , x) dx

under the additional constraints
ρH(t)

ρH(t) + ρC (t)
≥ θHC , ρH(t) ≥ θH .ρH(0)

(the last constraint, with, e.g., θH = 0.6, to limit damage to healthy cells)

Pouchol et al. J Maths Pures Appl 2018Jean Clairambault, ECC23 Bucharest, June 14, 2023
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How to be deleterious by using constant doses of drugs
[We define the population of sensitive cancer cells by ρCS (t) :=

∫ 1
0 (1− x) nC (t, x) dx]

Simulation with u1(t) = Cst = 3.5 and u2(t) = Cst = 2, in time T = 10
yields a seemingly ‘pessimal’ solution:

• Quite small effect of the drug pressure on the phenotype of nH
• nC quickly concentrates around a resistant phenotype
• Catastrophic effects on ρH , ρC and ρCS .

Pouchol et al. J Maths Pures Appl 2018Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Optimal control problem: theoretical results

Theorem
(Optimal control theorem)

The optimal therapeutic trajectory (u1, u2) in large time T > 0 consists of 2 parts:
• a long-time part, with constant controls on [0,T1], at the end of which

populations have almost concentrated in phenotype (for T1 large);

• a short-time part on [T1,T ] consisting of at most three arcs, for T − T1 small:

1. a boundary arc, along the constraint
ρH(t)

ρH(t) + ρC (t)
= θHC ,

2. a free arc (no constraint saturating) with controls u1 = umax
1 and

u2 = umax
2 ,

3. a boundary arc along the constraint ρH(t) ≥ θH .ρH(0) with u2 = umax
2 ;

• the proof uses the Pontryagin maximum principle.

Pouchol et al. J Maths Pures Appl 2018Jean Clairambault, ECC23 Bucharest, June 14, 2023
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Simulations illustrating this theorem
Simulations with T = 30
(optimisation using AMPL-IPOPT)

Simulation with T = 60
(optimisation using AMPL-IPOPT)

Note that this strategy (drug holiday) lets the cancer cell population ρC grow initially
to an equilibrium level, while increasing the ratio

ρCS

ρC
of drug-sensitive cancer cells,

before delivering u1 = umax
1 ; only then is the cytotoxic efficacy maximal.
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Comparison with “almost periodic” therapeutic strategies
1) Mimicking the clinic; 2) the same with saturation of the constraint ρH = θH .ρH(0)

1) Left: (unsatisfying) periodic strategy: stabilisation of ρC only. 2) Right: second strategy, same, but
with added arc following the constraint ρH = θH .ρH (0), with u2 = umax

2 , and control u1 obtained from

the equality
dρH

dt
= 0 (saturation of the constraint) and back to the drug holiday strategy u1 = 0 as ρC

starts increasing again: we see that ρC can be brought arbitrarily close to 0 (tumour eradication?).
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Conclusion on the interest of continuous
phenotype-structured cell population models

• Capture any sort of relevant heterogeneity related to a given biological question

• May represent phenotype plasticity by adding diffusion/advection in equations

• Often of the nonlocal Lotka-Volterra type, well-studied systems

• Analysable in terms of asymptotic behaviour

• Can result from agent-based models by passage to the limit (ε→ 0, N → +∞)

• Conversely, may be transformed in compartmental ODE systems by
discretisation of the phenotype space

• However, note that structuring biological variables are by nature continuous

• Amenable to control and optimal control methods, in particular for therapeutics
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