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® Slow genetic mechanisms of ‘the great evolution’ that has designed multicellular
organisms, together with fast reverse evolution on smaller time windows, at the
scale of a human disease, may explain transient or established drug resistance.

® [ntra-tumour heterogeneity, here meant as between-cell phenotypic variability
within cancer cell populations, w.r.t. a given relevant trait, is a relevant setting
to represent continuous evolution towards drug resistance in tumours.

® Plasticity in cancer cells, i.e., epigenetic propension to reversal to a (stem-like?)
de-differentiated status, and resulting adaptability of cancer cell populations,
makes them amenable to resist abrupt drug insult as extreme stress response.

® Reversible plasticity is captured by mathematical models that incorporate
between-cell heterogeneity by making use of continuous phenotypic variables.

® Such models are compatible with optimal control methods for the design of
therapeutic strategies involving combinations of cytotoxic and cytostatic drugs



Plan of the talk

1. Facts about cell plasticity in cancer

2. Modelling cell population plasticity by structured equations
3. Sources of cell plasticity in cancer

4. What is a multicellular organism and how is it ‘de-unified’?

5. Possible consequences for therapeutics in oncology



1. Facts about cell plasticity in cancer

e Major concerns in oncology: drug resistance and metastases

Established drug resistance as evolutionary rescue

Experimental evidence of cell plasticity in cancer

Genetic mutations and/or phenotypic switches



Pitfalls of therapy: side effects, drug resistance, metastases

® Unwanted side effects of drug treatments on healthy tissues must be taken into
account in a therapeutic optimisation perspective, however healthy cell
populations are terminally differentiated and are not concerned by plasticity.
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Pitfalls of therapy: side effects, drug resistance, metastases

® Unwanted side effects of drug treatments on healthy tissues must be taken into
account in a therapeutic optimisation perspective, however healthy cell
populations are terminally differentiated and are not concerned by plasticity.

® Genetically established drug resistance in cancer cell populations, due to
mutations, may be favoured by non-genetic adaptations that are manifestations
of cancer cell plasticity: persistence and tolerance to drug treatments.
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® Unwanted side effects of drug treatments on healthy tissues must be taken into
account in a therapeutic optimisation perspective, however healthy cell
populations are terminally differentiated and are not concerned by plasticity.

® Genetically established drug resistance in cancer cell populations, due to
mutations, may be favoured by non-genetic adaptations that are manifestations
of cancer cell plasticity: persistence and tolerance to drug treatments.

® Metastases, generalising an initially localised disease to the whole organism, rely
on the reversible eptithelial to mesenchymal transition (EMT/MET), a typical

manifestation of non genetic cancer plasticity.
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Established drug resistance as evolutionary rescue

Animal genome (of the host to cancer) is rich and amenable to adaptation
scenarios that may recapitulate developmental scenarios - thus resulting in
insufficient cohesion of the ensemble - that were normally abandoned in the
process of evolution towards stable metazoa (Davies & Lineweaver 2011).
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® Animal genome (of the host to cancer) is rich and amenable to adaptation
scenarios that may recapitulate developmental scenarios - thus resulting in
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process of evolution towards stable metazoa (Davies & Lineweaver 2011).

® In cancer cell populations, enhanced heterogeneity with enhanced proliferation
results in a high phenotypic or genetic diversity of proliferating clonal cell
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® Drug therapies may be followed, after initial success, by relapse due to selection
of a resistant clone: in the words of evolutionary biology, an evolutionary rescue.

a Clonal fractions at initial diagnosis Day 170 First relapse

12.74%( - }

n o ETVE, WNK1-WAC,
« DNMT3A, NPM1, FLT3, PTPAT, SMC3 Z MYO188

AML1/UPNg33124

Cell type: Mutations:
Normal o F 1) (cluster3) e Relapse specific (cluster 5+ Pathogenic mutations
® on . y specil 2 e iched (cluster4) fons in HSCs




Established drug resistance as evolutionary rescue

® Animal genome (of the host to cancer) is rich and amenable to adaptation
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subpopulations.

® Drug therapies may be followed, after initial success, by relapse due to selection
of a resistant clone: in the words of evolutionary biology, an evolutionary rescue.
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[My vision of evolutionary rescue: PW Price and SJ Gould]
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Evidence of cell plasticity in cancer: non-genetic mechanisms

® Population of PC9 (NSCLC) cells under high doses of drugs (e.g., gefitinib)

® 99.7% cells die, .3% survive in this maintained hostile drug environment:
Drug Tolerant Persisters, DTPs

® In the same hostile environment, 20% of DTPs resume proliferation:
Drug Tolerant Expanded Persisters, DTEPs

® Total reversibility to drug sensitivity is obtained by drug withdrawal, occurring
after 9 doubling times for DTPs, and 90 doubling times for DTEPs

® |Inhibition of epigenetic enzyme KDM5A blocks emergence of DTPs

PC9s , DTPs DTEPs

3 S ‘Fr‘ v
Time (during drug treatment) ——>»

. (Sharma et al. Cell 2010)
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can be identified), or drug tolerance (if the whole population is concerned by
transient treatment escape), are non-genetic adaptive, reversible mechanisms
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Genetic mutations or phenotypic switches?

® EMT/MET and drug persistence (if a prolonged drug-insensitive subpopulation
can be identified), or drug tolerance (if the whole population is concerned by
transient treatment escape), are non-genetic adaptive, reversible mechanisms
that rely on environment-induced phenotypic switches.

® \Whereas drug resistance relies on established, irreversible, genetic mutations.

® However, cannot prolonged tolerance induce generalised stable persistence, that
itself may promote (by selection on genetically instable cells) irreversible drug
resistance by mutations?

® [ndeed, it has been reported that epigenetic silencing by methylation makes
single nucleotide C to T mutations on the DNMT3A locus highly probable,
entraining in turn more epigenetic alterations (You & Jones, Cancer Cell 2012).



2. Modelling cell populations by structured equations

Adaptive mechanisms in drug persistence or tolerance

Phenotype-structured cell population dynamic models

Adaptive dynamics: cell population asymptotic behaviour

Optimal control therapeutic strategies in oncology



Structured cell population model: cell-functional variables

® [nitial (PC9) cancer cell population structured by a 2D phenotype (x, y):
x € [0,1]: viability = expression level of survival potential phenotype, and
y € [0,1]: fecundity = expression level of proliferation potential phenotype
(both biologically relying on, e.g., levels of methylation in DNA and histones)

® Population density of cells n(x,y, t) with phenotypic expression (x, y) at time t
satisfies

el + o (xetymntey.) =

Drift=stress-induced adaptation
of the proliferation level

[Py, e(8) = dlx, c(e)]nlx v )+ BAn(xy.¢).
————

Non local Lotka-Volterra selection ~ Diffusion=non-genetic
phenotype instability
® o(t)=[y fo n(x,y,t) dx dy, p(x,y, o(t))=(a1 + a2y + a3(1 — x))(1 — o(t)/K)

and d(x,c) = c(by + b2(1 — x)) + b3
® The drift (=advection) term w.r.t. proliferation trait y represents possible (if

v # 0) ‘Lamarckian’, epigenetic and reversible, adaptation from PC9s to DTPs
® v(x,c(t);v) = —ve(t)H(x* — x) where t — c(t) is the drug infusion function
® No-flux boundary conditions

Chisholm et al., Cancer Research 2015

——  (inspired by Sharma et al. Cell 2010)



Same framework using an agent-based model (ABM)
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(a) Each cell j undergoes elther proliferation, death or (b) Each cell i updates its trait values
remains quiescent: according to the discretised SDEs:
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Chisholm et al., Cancer Research 2015



Resensitisation after drug washout is in the model

During drug exposure and after drug withdrawal: total recovery of drug sensitivity
(either high or low drug dose)

Two scenarios: Lamarckian adaptation, or sheer Darwinian selection of the fittest

DTPs and PC9s initially

Only PC9s initially
(d) , ot G100 population density
.
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(a), (b) Only PC9s (no DTPs initially), adaptation on (v # 0): ‘Lamarckian’ scenario

(c), (d) PC9s and DTPs initially, no adaptation (v = 0): ‘Darwinian’ scenario
(sheer selection of the fittest = DTPs, supposed to be present in the initial population)

—  Chisholm et al., Cancer Research 2015



Phenotype heterogeneity in the cancer cell population

(c) Cell distribution (d) Cell distribution
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c, d: In the absence of treatment, the cancer cell population becomes more
heterogeneous when it is left to evolve; from an initial concentrated phenotype (xo, yo),
the phenotype (x, y) diffuses in the population according to a Gaussian-like curve.

(c) Projection onto the x-axis; (d) Projection onto the y-axis.
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Use PDE (or AB) model to address 3 questions

Q1. Is non-genetic instability (Laplacian term) crucial for the emergence of DTEPs?
Q2. What can we expect if the drug dose is low?

Q3. Could genetic mutations, i.e., an integral term involving a kernel with small
support, to replace both adapted drift (advection) and non-genetic instability
(diffusion), generate similar dynamics?

Consider the drug concentration c(-) = constant and two scenarios:
(i) (‘Darwinian’ scenario (B): the dogma) PC9s and few DTPs initially, no
adaptation (v = 0)

(i) (‘Lamarckian’ scenario (A): the outlaw) Only PCOs initially, adaptation present

(v#0)

To make a long story short, Q1. Always yes! Whatever the scenario
Q2. Low drug doses result in DTEPs, but no DTPs
Q3. Never! Whatever the scenario

——— C/)isholm et al. Cancer Research 2015



Summary of simulation results on the Sharma et al. pap

e Both mathematical models (AB, IDE) reproduce the main experimental observations

e To see the transient appearance of the DTPs during high-dose drug therapy:

® |f there are some DTPs present initially, model explanation requires only

e non-genetic instability
e selection

® |f no DTPs are present initially, model explanation requires interplay between
e stress-induced adaptation

e non-genetic instability
o selection

e Therapeutic consequences? Not clear yet. Epigenetic drugs? Not many of them
exist (in particular no KDMB5A inhibitor). Acting on epigenetics by modifying
metabolism? Combining cytotoxic (inducing drug resistance) drugs and cytostatic
drugs at low doses (not inducing drug resistance)? To be assessed using this model?



Phenotype-structured adaptive dynamics to represent the

fates of heterogeneous cell populations

® Description of evolution of a population in time t and in relevant phenotype x
® ‘Structure variable' x: trait chosen as bearing the biological variability at stake
® Variable : n(t,x) population density of all individuals bearing trait x at time t

® (1) Evolution in numbers of individuals constituting the population

1
t»—>p(t):/0 n(t,x) dc (with, e.g., x € [0,1])

® (2) Distribution of the trait in the population and its asymptotics

. on(t,x)
x = lim
t—+o00 p(t)

® Cancer cell populations: (1) tumour growth; (2) asymptotic distribution of trait

® Space is not necessarily a relevant structure variable when studying drug control



Adaptive dynamics: cell population asymptotic behaviour

Questions: what is the asymptotic behaviour (t — +0c0) of

® the total population p(t)?

® the phenotypes in the population (i.e., possible limits for

"((t’t)’) in M1(0,1))?
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Non-local Lotka-Volterra 1D model: convergence in time

Convergence (one-population case): plot of t — p(t)
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Non-local Lotka-Volterra 1D model: convergence in time

Convergence (one-population case): plot of t — p(t)
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Firstly, it can be shown that: p converges to p>° = max —, i.e., to the smallest value p

[0,1] d
such that r(x) — d(x)p < 0 on [0,1].

C.' Pouchol, PhD thesis 2018



Non-local Lotka-Volterra 1D model: concentration in x

Concentration (one population): Plot of x — n(t, x) for different times t
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Non-local Lotka-Volterra 1D model: concentration in x

Concentration (one population): Plot of x — n(t, x) for different times t
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Theorem

® p converges to p™°, the smallest value p such that r(x) — d(x)p < 0 on [0, 1].
® n(t,-) concentrates on the set {x € [0,1], r(x) — d(x)p> = 0}.

® Furthermore, if this set is reduced to a singleton x°°, then

n(t,-) = p™dxoe in M1(0,1).

C. Pouchol, PhD thesis 2018



Non-local Lotka-Volterra 1D model: convergence and

concentration using a Lyapunov functional

Although in the 1D case a direct proof of convergence based on BV considerations may
be obtained, from which concentration easily follows, it is interesting to note, as this
argument can be used in the case of 2 populations, that a global proof based on the
design of a Lyapunov function gives at the same time convergence and concentration:
. r
choosing any measure n® on [0, 1] such that fol n®>®(x) dx = p>® = r[na>]<g, and for an
0,1

appropriate weight w(x) (= ﬁ P.-E. Jabin & G. Raoul, J Math Biol 2011), setting

1
V(t) = /0 w(x){n(t,x) — n°(x) — n>(x) Inn(t, x)} dx,



Non-local Lotka-Volterra 1D model: convergence and

concentration using a Lyapunov functional

Although in the 1D case a direct proof of convergence based on BV considerations may
be obtained, from which concentration easily follows, it is interesting to note, as this
argument can be used in the case of 2 populations, that a global proof based on the
design of a Lyapunov function gives at the same time convergence and concentration:

choosing any measure n® on [0, 1] such that fol n®>®(x) dx = p>® = r[gaf](é, and for an
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Non-local Lotka-Volterra 1D model: convergence and

concentration using a Lyapunov functional

Although in the 1D case a direct proof of convergence based on BV considerations may
be obtained, from which concentration easily follows, it is interesting to note, as this
argument can be used in the case of 2 populations, that a global proof based on the
design of a Lyapunov function gives at the same time convergence and concentration:

choosing any measure n® on [0, 1] such that fol n®>®(x) dx = p>® = r[gal>]<§, and for an

appropriate weight w(x) (= ﬁ P.-E. Jabin & G. Raoul, J Math Biol 2011), setting

1
V(t) = /0 w(x){n(t,x) — n°(x) — n>(x) Inn(t, x)} dx,

one can show that

dv 00\2 ! oo

S = ) =)+ [ w0 {r() = A (e, x)
which is always nonpositive, tends to zero for t — oo, thus making V a Lyapunov
functional, and showing at the same time convergence and concentration. Indeed, in
this expression, the two terms are nonpositive and their sum tends to zero; the zero
limit of the first one accounts for convergence of p(t), and the zero limit of the second
one accounts for concentration in x (on a zero-measure set) of t—IiToo n(t, x).

C. Pouchol, PhD thesis 2018



3. Sources of cell plasticity in cancer

Physiological framework: development and tissue repair

Loss of control on differentiations in cancer

Cancer stem cells? Not necessarily needed

Cellular stress: launching de-differentiation signals?
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® |n development (in particular in embryogenesis), physiological cell populations
are initially functionally indeterminate and very plastic; they depend for their
differentiation on the genetic programme they bear in their genome and on close
interactions (contact, delta/notch, connexons?) between neighbouring cells.

® Such plasticity is epigenetically determined (differentiation is obviously of
epigenetic nature), transient during development, but can be reactivated under
physiological circumstances such as tissue repair. In particular some vertebrate
species (e.g., axolotl) are able to regenerate a missing limb.

® The possibility of de-differentiation, although normally repressed, is thus
naturally present in the genome of all cells in multicellular organisms, and can
easily be exploited by plastic cancer cells - and not by healthy cells - to adapt
their phenotypes to a hostile environment (e.g., drug insult), or to the cancer
invasion process through EMT, recovering normally lost motility in epithelia.
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® Blockade of differentiation of the myeloid lineage leads to immature
(myeloblast) cell proliferation in acute myeloid leukaemia (AML)

® Uncontrolled differentiation leads to immature cell proliferation in unclear
histological zones: Barrett’s oesophagus, ductal carcinoma in situ (DCIS)

® Transdifferentiation from interfollicular epidermis (IFE) cells to bulge cells,
favours basal cell carcinoma (BCC) upon activation of the Hedgehog oncogenic
pathway, and vice versa from BCC to an IFE/isthmus mixed cell state upon
inhibition of Hedgehog

® |n castration-resistant cancer, transdifferentiation of epithelial cells may lead to
a neuroendocrine cellular type

® Epithelial to mesenchymal transition (EMT) and its reverse (MET): normally
differentiated epithelial cells are unable to move, a capacity mainly left to
immune or mesenchymal cells (fibroblasts). De-differentiation of transformed
epithelial cells into a mesenchymal state endows them with the mandatory
motility to invade remote tissues where they re-acquire an epithelial state and

e — proliferate, making metastases.
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Cancer stem cells? Not necessarily needed

® Cancer stem cells have been proposed to be at the origin of cancers. This may
be so for a number of cancers, however not for all of them.

® |n particular, cancer may occur at intermediate stages of differentiation, as in
the case of acute myeloid leukaemia in the old French-American-British (FAB)
classification. For instance, reestablishing impaired differentiation by ATRA at
the promyelocytic stage (AML3, aka APL) of myeloid differentiation cures the
disease (where are the leukaemic stem cells?)

® Differentiation control may thus be altered at any differentiation stage,
stem cell state and many others downstream the cell differentiation flows,
without mandatorily involving stem cells.



Cellular stress-launched de-differentiation signals?

® Cellular stress is a cell state in which a cell threatened by a deadly
environmental insult (drug, hypoxia, reactive oxygen species, radioisotopes)
launches a variety of response signals, with internal or external destination.
Noteworthy is the high potential of cellular stress to induce cell differentiation:
see Wagner et al. Bioessays 2019, Nedelcu & Michod Bioessays 2020.
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® Cellular stress is a cell state in which a cell threatened by a deadly
environmental insult (drug, hypoxia, reactive oxygen species, radioisotopes)
launches a variety of response signals, with internal or external destination.
Noteworthy is the high potential of cellular stress to induce cell differentiation:
see Wagner et al. Bioessays 2019, Nedelcu & Michod Bioessays 2020.

® Under extreme stress (Multiple Myeloma exposed to doxorubicin, A. Wu et al.
PNAS 2015), cancer cells overexpress ‘cold genes’, i.e., ancient genes that are
never substituted, thus being testimonies of ‘a form of life adapted to high
fitness under extreme stress’, as the expression of these genes coincides with the
rapid emergence of a subpopulation of resistant cancer cells.

® Could the expression of these ‘cold genes’, launched by a de-differentiation stress
signal sent to the chromatin, be, or secondarily result in unmasking, thanks to
the plasticity of cancer cells, the expression of ancient genes, dating back to
unicellular ancestors that were able to resist extreme stress conditions on our
planet, such as toxic molecules, UV radiations, hypoxia, hyperacidity, etc.?

® This speculation refers to the so-called ‘atavistic theory of cancer’ (Davies,
Lineweaver and Vincent 2011), according to which cancer is a very primitive
state of multicellularity, unable to lead to a cohesive multicellular organism by
lack of a coherent development program, and nevertheless trying to launch the
bases of multicellularity (cooperativity, motility, plasticity) for its own benefit.



4. How may a multicellular organism be ‘de-unified’ ?

Evolution of multicellular organisms: atavistic theory of cancer

The metaphoric Waddington epigenetic landscape

A complementary metaphor: the wickerwork basket

What sort of disruptions may elicit cancer?



A possible evolutionary framework (billion year-term view for

multicellular organisms): the atavistic theory of cancer (1)

“Nothing in biology makes sense except in the light of evolution” (Th. Dobzhansky, 1973)
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“Cancer: more archeoplasm than neoplasm” (Mark Vincent, 2011) More references:
Boveri: ‘Zur Frage der Entstehung der maligner Tumoren’ 1914, Israel JTB 1996,
Davies & Lineweaver Phys Biol 2011, Vincent Bioessays 2011, Lineweaver, Davies &
Vincent Bioessays 2014, Chen et al. Nature Comm 2015, Bussey et al. PNAS 2017,
Cisneros et al. PLoS One 2017, Trigos et al. PNAS 2017, Trigos-et al. BJC 2018,

e ——— Trigos et al. eLife 2019
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® The genes that have appeared in the development to multicellularity are those
that are altered in cancer (as shown in phylostratigraphic analyses by
Domazet-LoSo & Tautz 2010; investigated by Trigos et al. 2017, 2018, 2019)

® |n order, in evolution, from 1) proliferation+apoptosis to 2) cell differentiation
+ division of work, and to 3) epigenetic control of differentiation and
proliferation? (reverse mutation order w.r.t. Hirsch et al. Nature Comm. 2016)

® Reconstituting the phylogeny of this ‘multicellularity toolkit' should shed light
on the robustness or fragility of genes that have been altered in cancer.

® Attacking cancer on proliferation is precisely attacking its robustness. It would
be better to attack its weaknesses (e.g. absence of adaptive'immune response)
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Another evolutionary framework (/ife-term view):

revisiting the Waddington epigenetic landscape

Waddington landscape revisited by S. Huang (2011, 2012, 2013)
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“Nothing in evolution makes sense except
in the light of systems biology” (S. Huang, 2012)
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Stem cell fate: modern version by Tariq Enver Zoom on the PU.1/GATAL node (for
(ASH meeting 2011) equations and-bifurcations, see Huang,

S Guo, May & Enver Devel Biol 2007)



Differentiation control by what? Making a multicellular

organism, another metaphor: the wickerwork basket

The base is the body plan. The fibres are the cell differentiation trees. The rim of tips
is where are the terminally differentiated cells. Intertwining the trees/twigs that stem
from the base is the work of between-fibre connections, part of a proposed extended
vision of the immune system, the cohesion watch. These 3 elements: (1) body plan,
(2) differentiation trees and twigs and (3) cohesion watch make sense only together in
a Brunnian structure, better known in the most elementary case as a Borromean knot.
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® Fibres may be fragile and break. For instance, in the case of acute myeloid
leukaemia (AML), differentiation in the haemopoietic tree is blocked at different
possible stages. Then immature cells accumulate at these stages and invade
surrounding structures (bone marrow, then blood).
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What sort of disruptions may elicit cancer?

® Fibres may be fragile and break. For instance, in the case of acute myeloid
leukaemia (AML), differentiation in the haemopoietic tree is blocked at different
possible stages. Then immature cells accumulate at these stages and invade
surrounding structures (bone marrow, then blood).

® This illustrates the fact that cancer may primarily be due to a loss of control on
differentiations in a most abrupt way: blockade, by breaking of a differentiation
fibre, a rough pathology of the vertical cohesion watch (along fibres).

® More commonly, loss of control on differentiations may be due to impaired
connections between fibres. When neighbouring differentiation trees are not
clearly determined (as in the case of histological poor separation between
oesophagus and stomach epithelia, or duct and endometrium epithelia), then
immature cells may develop and proliferate, uncontrolled.

® This illustrates the fact that cancer may also be due to a loss of control on
differentiations, in a less abrupt way than by blockade: by poor intercellular
communication control, a pathology of the transversal cohesion watch (between

fibres).



Modelling bet hedging in cancer cells using a 3D

cell-functional phenotype for population heterogeneity?

® \What is more relevant for cellular stress response of a cell population
(adaptable, as in the case of a tumour): maintain a subpopulation of all-stress
resistant cells, or maintain a subpopulation of plastic cells expressing ‘cold
genes' (Wu et al. PNAS 2015), able to launch different resistance mechanisms
in different cells? (About cellular stress-induced differentiation, see also Wagner
et al. Bioessays 2019, Nedelcu & Michod Bioessays 2020.)
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cell-functional phenotype for population heterogeneity?

® \What is more relevant for cellular stress response of a cell population
(adaptable, as in the case of a tumour): maintain a subpopulation of all-stress
resistant cells, or maintain a subpopulation of plastic cells expressing ‘cold
genes' (Wu et al. PNAS 2015), able to launch different resistance mechanisms
in different cells? (About cellular stress-induced differentiation, see also Wagner
et al. Bioessays 2019, Nedelcu & Michod Bioessays 2020.)

® Bet hedging as a ‘tumour strategy’ to diversify its phenotypes in response to
deadly stress (cytotoxic drugs) by launching different response mechanisms in
different cells? (ABC transporters, detoxication enzymes, DNA repair...)

® Two conflicting phenotypes x and y, and a third one coding for cell pasticity, 6.
Oen+V-{V(x,y,0,D)n— A(0)Vn} = n{r(x,y,0) — d(x, y,0)p(t) — u(x,y,0,D)}

® More generally, model for evolution in cell populations structured according to
conflicting phenotypes x and y only bound by a constraint like C(x,y) < k?
(adhesivity /motility, fecundity/motility, germinal/somatic) yielding either a
homogeneous population of hybrid cells, or a heterogeneous cell population of
two sticking together subpopulations separately maximising each phenotype. Is
not the latter choice at the origin of multicellularity in eucaryote cell
populations, admitting that tumours constantly reinvent multicellularity?

D ( ith F.E. Alvarez Borges, work underway)



lllustrations for this 3 cell-functional trait equation
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5. Possible consequences for therapeutics

Insufficiency of single cell-based molecular therapies
(intracellular pathways do not make a cell population)

Cell-killing strategies: cytotoxics and cytostatics
(the cannonade and the siege)

Adding immunotherapies
(increasing the power of the immune police forces)

Reestablishing lost control connections between cell lineages?
(cells to speak to their neighbours towards an understanding)



Insufficiency of single cell-based therapies

® Cancer exists as a disease only in multicellular organisms. Searching for impaired
intracellular signalling pathways for blocking or enhancing them by externally
imposed molecules (targeted therapies) may lead to transient or partial
successes, however if control of differentiation is still impaired in some part of
the organism, the disease is likely to recur.
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same tumour, either because it has developed mutational resistance, or, even
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imposed molecules (targeted therapies) may lead to transient or partial
successes, however if control of differentiation is still impaired in some part of
the organism, the disease is likely to recur.

® And this is indeed what is often observed in clinical settings, maybe because
tumours are so heterogeneous that a drug that seems efficacious on a typical
cell of the cancer under treatment, may be ineffective on a deviant cell of the
same tumour, either because it has developed mutational resistance, or, even
without mutations, because it has developed a drug-tolerant phenotype.

® Fast evolution (fast though not immediate, more likely of epigenetic nature than
due to slow genetic mutations) of plastic cancer cell populations towards
tolerance to a single molecule, may explain the relatively disappointing
performances of targeted therapies, that may be theoretically efficacious on a
given intracellular signalling pathway, but practically of limited effect on
phenotypically heterogeneous populations of cells.



Cell-killing strategies (the cannonade): optimal control

problem, phenotype-structured IDE model

Environment: IHl(t) = apy.pH(t) + aHCipC(t), Ic(t) = ach-pH(t) + acc.pc(t),
with p(t) =[5 nu(t, x) dx, pc(t) = J5 nc(t, x) dx.

IDE model with evolution in phenotype x due to effects of cytotoxic drug ui(t)

8 it = (& A (t) — ul(t)uH(x)) (2, %)

t 1+aHu2(t)

9 _ re(x)
anc(t,x) = (m —dc(x)Ic(t) — ul(t)p,c(x)) nc(t,x)



Cell-killing strategies (the cannonade): optimal control

problem, phenotype-structured IDE model

Environment: IHl(t) = apy.pH(t) + aHCipC(t), Ic(t) = ach-pH(t) + acc.pc(t),
with p(t) =[5 nu(t, x) dx, pc(t) = J5 nc(t, x) dx.

IDE model with evolution in phenotype x due to effects of cytotoxic drug ui(t)

0 _ r(x)
8 it = (m—dH<x)/H(r)—u1(t)uH(x)) (2, %)

%nc(t,x) = (ﬁ — de(x)le(t) — ul(t)p,c(x)) ne(t, x)

1+ acua(t)
0 < up(t) < u™, 0 < u(t) < ug™
Find controls (u1, u2) minimising
Crlus, ) = pe(T) = [ ne(To 8¢
under the additional constraints

pH(t)
on(t) + pe(t) > Ouc, pr(t) > 04.p1(0)

(the last constraint, with, e.g., 0y = 0.6, to limit damage to healthy cells)

——— - o/ ot ol. J. Maths Pures Appl. 2018



Asymptotic behaviour with constant controls

Following an argument by P.-E. Jabin & G. Raoul (J Math Biol 2011), convergence
and concentration can be proved at the same time by using the Lyapunov functional

w(x) {n(t,x) — n°°(x) — n®>°(x) Inn(t,x)} dx
Theorem
(Asymptotic behaviour theorem, generalising to 2 populations the 1D case)
Assume that u1 and uy are constant: uy = 01, and ux = . Then, for any positive
initial population of healthy and of tumour cells, (py(t), pc(t)) converges to the
equilibrium point (pgf, p%), which can be exactly computed as follows.
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w(x) {n(t,x) — n°°(x) — n®>°(x) Inn(t,x)} dx

Theorem
(Asymptotic behaviour theorem, generalising to 2 populations the 1D case)
Assume that u1 and uy are constant: uy = 01, and ux = . Then, for any positive
initial population of healthy and of tumour cells, (py(t), pc(t)) converges to the
equilibrium point (pgf, p%), which can be exactly computed as follows.

Let a3 > 0 and ax > 0 be the smallest nonnegative real numbers such that

() — O1py(x) < dy(x)ar  and re(x)

— — 0 < d, .
1+anin 1+acih Tipc(x) < de(x)az

Then (p7, p) is the unique solution of the invertible (apy.acc >> acH.anc) system
IOO — o0 oo
4 = aHHPH + aHcpc = a1,
18° = acHply + accpT = a2.

Let Ay C [0,1] (resp., Ac C [0,1]) be the set of all points x € [0, 1] such that equality
hold in one of the inequalities above. Then the supports of the probability measures

ny(t, x) % and v :nc(t,x) "
() &2 veld) ¢

pc(t)
converge respectively to Ay and Ac as t tends to +oo.

——— 0, cho] et oI, J. Maths Pures Appl. 2018

vu(t) =



How to be deleterious by using constant doses of drugs

[We define the population of sensitive cancer cells by pcs(t) := fol(l — x) nc(t,x)dx]

Simulation with u1(t) = Cst = 3.5 and uz(t) = Cst = 2, in time T = 10
yields a seemingly ‘pessimal’ solution:

t=>pglt)
Curves x =>n, (LX) Curves x => n(tx) 1
15 15
1.4
10 1.2
1
1
5
08
05
[ 06
0.4
0 -5
0 05 1 0 0.5 1 o
0 5 10
t->p, (0/(p, t+pc(0) t=> pogOlpcl) t=>p,0
07 0. 051
08 05
04 049
05 048
03
04 047
046
08 02
045
. 044
o 10 o1 0 5 10 ] 10

o 5 5
® Quite small effect of the drug pressure on the phenotype of ny
® ¢ quickly concentrates around a resistant phenotype
® C(Catastrophic effects on py, pc and pcs: the pessimal strategy.

——  Pouchol et al. J. Maths Pures Appl. 2018



Optimal control problem: theoretical results

Theorem
(Optimal control theorem)
Under these conditions, the optimal trajectory in large time T > 0 consists of 2 parts:

® 3 long-time part, with constant controls on [0, T1], at the end of which
populations have almost concentrated in phenotype (for Ty large)

® a short-time part on [Ty, T] consisting of at most three arcs, for T — T small:

t
1. a boundary arc, along the constraint PHi() = Oyc,

PH(t) + pc(t)
2. a free arc (no constraint saturating) with controls u; = u"®
uz = uz™,
3. a boundary arc along the constraint py(t) > 04.p4(0) with up = u3?*.

and

————— -, /o/ ot ol. J. Maths Pures Appl. 2018



Simulations illustrating this theorem

Simulations with T = 30
(optimisation using AMPL-IPOPT)
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Figure 4: Simulation of (OCP) for T = 30.
Figure 5: Simulation of (OCP) for T = 60.
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. . . Simulation with T = 60
Simulations with T = 30 (optimisati ing AMPL-IPOPT)
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Note that this strategy (drug holiday) lets the cancer cell population pc grow initially

to an equilibrium level, while increasing the ratio Pes of drug-sensitive cancer cells,

C
before delivering vy = ul"®; only then is the cytotoxic efficacy maximal.



Immunotherapies

(reinforcing the killing power of the immune cell police)

® The immune cells (T-lymphocytes; dendritic cells; B-lymphocytes that diffuse
immunoglobulins; monocytes and macrophages) are the part of the immune
system in charge of eliminating external pathogens and deviant cells that are not
recognised as part of the self. They are the immune police.
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they become too weak to kill them, due to tumour immunoescape.
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® Although able to cure some cancers that were until recently out of reach (in
particular cases of melanoma), their success is limited (about 20% of complete
cures, the remaining 80% consisting of partial response, no effect and even
sometimes tumour hyperprogression, with poor understanding of these failures,
except at times uncontrolled immune cell response.
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® The immune cells (T-lymphocytes; dendritic cells; B-lymphocytes that diffuse
immunoglobulins; monocytes and macrophages) are the part of the immune
system in charge of eliminating external pathogens and deviant cells that are not
recognised as part of the self. They are the immune police.

® |Immune checkpoint inhibitors (ICls): anti-CTLA4, anti-PD1, anti-PDL1
molecules, reinforce their power, boosting their action on tumour cells when
they become too weak to kill them, due to tumour immunoescape.

® Although able to cure some cancers that were until recently out of reach (in
particular cases of melanoma), their success is limited (about 20% of complete
cures, the remaining 80% consisting of partial response, no effect and even
sometimes tumour hyperprogression, with poor understanding of these failures,
except at times uncontrolled immune cell response.

® CAR T-cells have also achieved remarkable cures (ALL, B-cell lymphomas),
however with the same limitations: boosting the power of the immune police
may have unexpected and unpredictable counter-productive effects (e.g.; CRS).



A simple structured model for ICl therapy (work underway)

Structure variables:
x, a malignancy trait (stemness-like, in tumour cells)
¥, an anti-tumour aggressiveness trait (in competent lymphocytes)

n(t, x) cancer cells, {(t,y) competent lymphocytes at tumour site, p(t,y)
lymphocytes differentiated and amplified in lymphoid organs, x(t) APC-borne message
from tumour cells, ICI(t) immune checkpoint inhibitor therapy

2
901,20 = ) — d0RL) — (On(esx) (455 2 (60
B (€)= PO = T (L a(O)(e.y),

%2 (t,) = ax(t. () — ke2(E. 7).

where ) L
o(t) = /0 n(t,x)dx, o(t) = /0 o(t, y)dy,
1 1
(1) = /0 POt y)dy,  x(ty) = /0 w(x, y)n(t, x)dx.

e — Work underway with Z. Kaid



Future prospects: reformatting the cohesion watch?

(reinforcing concord between stromal cells towards a
common goal, serving the health of the whole organism?)

® Admitting the necessary existence, within the immune system seen as what
sticks cells together in a multicellular organism, of a cohesion watch, firstly
virtual as principles of coherence within the genetic developmental programme
launched by fecundation, then material as a set of cohesive intercellular
connections within the organism constituted by self-organisational development,
it remains to us to identify it.
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virtual as principles of coherence within the genetic developmental programme
launched by fecundation, then material as a set of cohesive intercellular
connections within the organism constituted by self-organisational development,
it remains to us to identify it.

® This should lead us to investigate intercellular connections during development,
i.e., during the first stages of embryogenesis that yield the body plan, and later
during the following steps in which functionally defined trees (the great
physiological functions of the organism) stem from the body plan. These
connections should be conserved in some way in the adult multicellular organism
to ensure its cohesion (maintenance). Understanding them as generic elements
of a global unifying system, part of the immune system, might be a help to
recognise them.
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® Admitting the necessary existence, within the immune system seen as what
sticks cells together in a multicellular organism, of a cohesion watch, firstly
virtual as principles of coherence within the genetic developmental programme
launched by fecundation, then material as a set of cohesive intercellular
connections within the organism constituted by self-organisational development,
it remains to us to identify it.

® This should lead us to investigate intercellular connections during development,
i.e., during the first stages of embryogenesis that yield the body plan, and later
during the following steps in which functionally defined trees (the great
physiological functions of the organism) stem from the body plan. These
connections should be conserved in some way in the adult multicellular organism
to ensure its cohesion (maintenance). Understanding them as generic elements
of a global unifying system, part of the immune system, might be a help to
recognise them.

® Then finding ways to enhance them, possibly but not necessarily by molecular
therapies, would be the next step to design non-cell killing anticancer therapies,
a goal that is still far ahead of us, but not unreachable.
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® To find new therapeutic tracks for fighting the cancer disease, one can make use
of existing (cell-killing) therapies, however one has to optimise their use.
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® Immunotherapies are no exceptions to this proposition, as they are also
cell-killing therapies. They may be optimally combined with chemotherapies and
targeted therapies, provided that their pitfalls are well enough identified to
design optimal combinations, which does not seem to be the case so far (and to
the best of my knowledge, we still have not understood the reasons of the
successes and failures of William Coley’s founding experiments in cancer
immunotherapy, more than a century ago).
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® To find new therapeutic tracks for fighting the cancer disease, one can make use
of existing (cell-killing) therapies, however one has to optimise their use.

® Immunotherapies are no exceptions to this proposition, as they are also
cell-killing therapies. They may be optimally combined with chemotherapies and
targeted therapies, provided that their pitfalls are well enough identified to
design optimal combinations, which does not seem to be the case so far (and to
the best of my knowledge, we still have not understood the reasons of the
successes and failures of William Coley's founding experiments in cancer
immunotherapy, more than a century ago).

® This situation should invite us to better understand what a multicellular
organism is (limiting ourselves to the metazoan, i.e., animal case), what its
cohesion consists of, how it is altered in cancer, and how such cohesion could be
reinforced by enhancing intercellular connection means. Mere speculations? Not
necessarily only. At least having such prospects in mind might help us to give
sense to upcoming new observations and possibly reinterpret old ones.
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