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Abstract

To make possible the design of optimal (circadian and other period) time-scheduled regimens for cytotoxic drug delivery by intravenous
infusion, a pharmacokinetic–pharmacodynamic (PK–PD, with circadian periodic drug dynamics) model of chemotherapy on a population of
tumor cells and its tolerance by a population of fast renewing healthy cells is presented. The application chosen for identification of the model
parameters is the treatment by oxaliplatin of Glasgow osteosarcoma, a murine tumor, and the healthy cell population is the jejunal mucosa, which
is the main target of oxaliplatin toxicity in mice. The model shows the advantage of a periodic time-scheduled regimen, compared to the
conventional continuous constant infusion of the same daily dose, when the biological time of peak infusion is correctly chosen. Furthermore, it is
well adapted to using mathematical optimization methods of drug infusion flow, choosing tumor population minimization as the objective function
and healthy tissue preservation as a constraint. Such a constraint is in clinical settings tunable by physicians by taking into account the patient's
state of health.
© 2007 Elsevier B.V. All rights reserved.
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1. Physiological and pharmacological background

1.1. Chronobiology and cancer chronotherapeutics

Circadian rhythms have long been known in animals and
humans, and taken into account in the therapy of cancer in
humans during the past 20 years by various teams of clinicians
in Europe, China, Canada and the United States. Recently,
molecular biology has brought new insight about the mechan-
isms by which such rhythms are generated [1–3]. New
understanding has been realized at the molecular level revealing
connections between circadian clocks and cancer therapeutics
[4–6] (see also the review in [7] for a state-of-the-art in cancer
chronotherapeutics).

Our goal here is to provide a tool that is applicable in clinical
settings. Herein, we design a model depending on parameters that
are identifiable, relying on experimental observations at the scale
of the living organism, to yield a macroscopic representation of
the evolution of cell populations exposed to cytotoxic drugs used
in cancer therapeutics. Even though the model is clearly dedicated
to cancer therapeutics, we wish to point out that its pharmaco-
kinetic–pharmacodynamic (PK–PD) part originated primarily
from models commonly used in antibiotherapy, and from more
general chronophar-macological considerations, as described in
[8]. Thus we believe that this model can be generalized to other
medical fields.

1.2. Aims of this study

Various teams of oncologists worldwide now take into account
the fact that for a given cytotoxic drug, improved anti-tumor
efficacy and reduced toxicity are possible when delivered at a
determined circadian time, depending on the particular drug
used. This approach has led to significant improvements in life
expectancy and quality, for example, in patients with colorectal
cancer.

To our knowledge, there is no theoretical model as yet that
explains or predicts the qualitative behavior of an organism
undergoing different time-scheduled anti-tumor therapeutic
regimens. The aim of this article is to partially fill this void,
by providing physicians and drug-delivery scientists with a
practical tool to enable them to improve the clinical efficacy of
anti-tumor treatments while minimizing their toxic effects on
healthy tissues by using optimally designed time-scheduled
regimens.

Since time matters in chronotherapeutics, such a tool must
be dynamic and be composed of PK–PD differential equations
describing the observed chronosensitivity of tumor growth and
healthy tissue homeostasis on a drug delivered by intravenous
infusion, the flow of which (as a function of time) is the external
control law to be optimized.

The six variables of the dynamic system considered here
(first presented in [9]) are the concentrations in active drug (in
the general circulation compartment, in the tumor, and in the
jejunal mucosa), the population of jejunal enterocytes and the
tumor cell population. The time-dependent sensitivity of both
the tumor and healthy cells to the drug is taken into account by
24-hour periodic modulation of the maximum of the PD func-
tion inducing cell death. The identification of model parameters
was performed as far as possible on experimental laboratory
data, precisely tumor size evolution curves during active treat-
ment, i.e., a sequence of oxaliplatin injections, versus inactive
treatment, i.e., the same sequence of injections of the sole drug
vehicle.
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1.3. Application chosen for this feasibility study

Oxaliplatin is one of the few drugs active on human metastatic
colorectal cancer [10]. It is also known to be active on Glasgow
osteosarcoma (GOS) in B6D2F1 mice, and the treatment of this
murine tumor has been extensively studied in our laboratory
(INSERM U 776 “Biological Rhythms and Cancers”, Paul-
Brousse Hospital, Villejuif, France) according to various time-
scheduled dose regimens [11].

Fragments ofGlasgow osteosarcomas, about 1mm3 in volume
that were sampled from fresh tumors in B6D2F1 mice, were
inoculated by subcutaneous puncture into both flanks of animals
of the same lineage. Tumor size, from the moment it had become
palpable just under the skin in the tumor-bearing animals until
their sacrifice on ethical grounds, was measured with a caliper by
its highest and lowest diameter, three times per week. The time
evolution of tumor weight, deduced from these measures by an
approximation formula (proportional to L× l2, longer and shorter
diameters, respectively), was the basis for assessing tumor growth
and therapeutic efficacy [11]. Within four weeks, all mice were
dead, by toxicity or tumor development, or they had been sacri-
ficed on ethical grounds when the tumor grew to a weight of 2 g.

In the present study, the population of jejunal enterocytes was
chosen as a healthy tissue toxicity target in mice. Leukopenia is
another known target of oxaliplatin toxicity in mice, but the main
damage documented after time-scheduled injections of oxalipla-
tin was extensive jejunal mucosa necrosis [12]. For another
cytotoxic drug, the bone marrow can be used as a target of drug
toxicity, possibly using the same type of model, or more likely
models of a different type, e.g., involving differential equations
with delays in cell cycle models as reviewed e.g. in [13].

The total dose per course in the model simulations was
limited to 20 mg/kg of oxaliplatin (300 μg of free platinum for a
30 g mouse). Actual doses in laboratory experiments consisted
of four daily injections of 4 mg/kg of oxaliplatin [11].

1.4. Physiological hypotheses, literature data and model
assumptions

1.4.1. Pharmacokinetics
Free platinum (Pt) is the active form of the drug; it binds irre-

versibly to all DNA bases, which is the assumed main mechanism
of its efficacy and toxicity [14–17]. It also binds more avidly to
sulphydryl radical-containing molecules, such as reduced gluta-
thione, that protect cells fromPt toxicity [14] and also contribute to
its elimination from blood by uptake and irreversible binding in
erythrocytes. In oxaliplatin, Pt is linked to a diamminocyclohex-
ane (DACH) nucleus (which is thought to be responsible for the
poor DNA mismatch repair mechanisms and hence higher ac-
tivity in colorectal cancer, in comparison to cisplatin [18]), and to
an oxalate ion, a compound structure which endows it with
relatively good blood solubility. Diffusion through membranes is
ensured thanks to a transporter protein, a mechanism thought to be
linear (i.e., no saturation is seen on outward/inward concentration
transfer curves), based on in vitro assessments [19].

It has been assumed in this model that DACH–Pt oxalate
(oxaliplatin) diffuses freely in the plasma and is eliminated as a
free molecule from the (central) plasma compartment by binding
irreversibly to plasma or hepatic proteins or to erythrocyte
glutathione according to first-order kinetics [14,17,20]. In the
periphery, DACH–Pt is transported through cell membranes
according to a linear mechanism to the healthy cells and, in
parallel, to the tumor cell compartment. Also according to first-
order kinetics, either it is degraded there (mainly by intracellular
glutathione) or it reaches its DNA target. This knowledge led to
the definition of a single central compartment for soluble Pt and
two peripheral compartments for nucleic acid-bound Pt, one for
the tumor and one for the healthy tissue, here the jejunal mucosa.
DACH–Pt binding to plasma proteins is fast and irreversible
[14,20], and its intracellular binding either to DNA or to reduced
glutathione and other detoxificationmolecules is also supposed to
be rapid and irreversible. Its binding to plasma proteins and red
blood cell reduced glutathione in the central compartment, on the
one hand, and to peripheral cellular reduced glutathione and other
detoxification molecules, on the other hand, may thus be repre-
sented by simple elimination terms. The parameters of natural Pt
elimination in the tissues may be evaluated by the evolution of
total Pt tissue concentrations, assuming proportionality between
nucleic acid-bound and total Pt tissue concentrations.

1.4.2. Pharmacodynamics
Drug activity is represented by an efficacy/toxicity function

(Hill function) inhibiting cell population growth in each
peripheral compartment, healthy tissue or tumor. This function
is here supposed to depend only on tissue drug concentration
and the time of drug exposure, with a time-dependent amplitude
modulation, here figured by a plain cosine function, represent-
ing circadian drug sensitivity.

1.4.3. Enterocyte population
The enterocyte population is known to respond to radiologic

or cytologic insult by damped oscillations converging to its
initial and stable equilibrium value [21,22]. The stability of this
equilibrium is ensured physiologically by exact compensation
(tissue homeostasis) of the villi cells eliminated into the
intestinal lumen by the influx of young cells from the crypts.

It is also assumed that only crypt cells (the renewing ones, in
which cell cycle activity exists) are subject to drug toxicity.

1.4.4. Tumor cell population
Without treatment, tumor growth is assumed to follow a

Gompertz law [23]: firstly exponential growth, then conver-
gence towards a plateau. This is representative of the early
stages of tumor growth, before neoangiogenesis induces
regrowth. The particular choice of the Gompertz model for
such an S-shaped curve may be justified by considerations of
the existence of proliferative and quiescent subpopulations in
the tumor [24,25]. Though more elaborate models might be
used, for instance using partial differential equations for tumor
growth and inhibition by drug contact [26,27], or modifications
of the Gompertz model, itself, obtained by making the upper
limit, Bmax, dependent on time so as to take angiogenesis into
account [28,29], we chose to represent the first stages of tumor
growth only, and to assess optimization procedures on such a



Fig. 1. Model oscillations of the population of enterocytes in response to a brief
radiotoxic or cytotoxic insult shown over 20 days. Villi cells (top) and flow from
crypts (bottom) are represented here recovering in a steady state behavior after
an initial deviation from their equilibria at time zero. They may be seen as the
linear approximation of a more complex phenomenon, e.g., as proposed in [31].
Units are in millions of cells for villi (solid line) and in units of 105 cells for the
flow of cells from crypts (dashed line). Time (abscissa) is in hours.
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basic model endowed with but few parameters. Drug resistance
may also optionally be introduced into the model as the
probability for a given tumor cell to develop such resistance
[30], though this is not considered here.

2. The model

2.1. Pharmacokinetics

The three dynamic variables considered here are Pt con-
centration (oxaliplatin being a compound DACH–Pt oxalate) in
the central, or plasma, compartment, P, and nucleic acid-bound
Pt concentrations in the healthy tissue (jejunal mucosa), C, and
in the tumor, D. The first-order kinetic equations are:

dP
dt

¼ �λP þ i tð Þ
Vdi

ð1Þ

dC
dt

¼ �lC þ nCP ð2Þ

dD
dt

¼ �mDþ nDP: ð3Þ

Here λ, μ and ν are decay parameters representing Pt
elimination by irreversible binding to plasma proteins, hepatic
or red blood cell glutathione, on the one hand (λ), and to
intracellular glutathione or protective proteins, on the other hand
(μ for healthy cells and ν for tumor cells). Parameter Vdi is the
drug distribution volume, which is assumed to be constant, in the
central compartment, and i: t↦ i(t) is the drug infusion flow
control law. The flow i may be a constant function, in the case of
constant continuous infusion, or a periodic one, in the case of a
time-scheduled drug regimen, as is commonly used in clinical
settings, and in the latter case may show different forms: square,
sinusoid-like, or sawtooth-like waves, all of which are clinically
implemented using programmable and portable infusion pumps
like the ones that have been used for delivering the chronotherapy
of cancer medications over the past several years; it may also be a
brief, quasi-dirac-like impulsion function in the case of bolus
administration, or any continuous function of time. Factors ξC and
ξD beforeP in the second and third equations represent active drug
transfer rates from the plasma to the peripheral compartments.

2.2. Pharmacodynamics: toxicity and therapeutic efficacy
functions

These functions represent the mean drug activity in the
healthy and tumor cell populations considered here, and are
functions of the drug concentration, in the healthy tissue for
toxicity, and in the tumor tissue for therapeutic efficacy. Both
are Hill functions, modulated in amplitude by a circadian
chronosensitivity factor:

f Cð Þ ¼ Fd 1þ cos 2p
t � uS

T
� �n o

d
CgS

CgS
S50 þ CgS

g Dð Þ ¼ Hd 1þ cos 2p
t � uT

T

� �n o
d

DgT

DgS
T50 þ DgT
where C and D are as defined earlier, γS and γT the Hill
coefficients (N1 if drug activity is known to show cooperative
reaction behavior as in certain enzymatic reactions, and by
default equal to 1 if drug binding to its target, and subsequent cell
death, is assumed, as will be the case here, to follow Michaelis–
Menten kinetics), CS50 and DT50 half-maximum activity
concentrations, F and H the half-maximum activities, T =24 h
(period of circadian drug sensitivity oscillations), andφS andφT

are phases (in hours with reference to a fundamental 24-hour
rhythm, i.e., taking into account 24-hour periodicity) of the
maximum activities of functions f and g.

2.3. Enterocyte population

Growth of the enterocyte population evolution in an
arbitrarily fixed volume of jejunal mucosa is represented by
two dynamic variables: the mature villi cell population, A (in
number of cells), and the flow, Z (in number of cells per time
unit), of incoming young cells counted positively which migrate
per each time unit from the crypts to replace ageing villi
enterocytes that are eliminated into the intestinal lumen (Fig. 1):

dA
dt

¼ Z � Zeq ð4Þ

dZ
dt

¼ �a� f Cð Þf gZ � bAþ g: ð5Þ

Here f (C) is the drug toxicity function in the healthy tissue
introduced earlier, α a natural autoregulation factor in the crypt
which the drug toxicity function thus modulates additively, β a
mitosis inhibitory factor (a so-called “chalone”) supposedly sent
from the villi to the crypts, Zeq the steady state (constant) flow
from crypts to villi, and Aeq ¼ g�aZeq

b the steady the steady state
villi population (without treatment). In healthy jejunal mucosa,
tissue homeostasis (here represented, in the absence of drug
damage, by constant cell population at steady state) is granted,
so the equilibrium point (Zeq,Aeq) is a stable one. The parameters
of the damped harmonic oscillator (Z,A) are entirely determined
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if its period and dampening coefficient, together with the
equilibrium point coordinates, are known (they can indeed be
determined by elementary computation, as shown in the
Appendix).

2.4. Tumor growth

Tumor growth is represented by the number of tumor cells,
B, which is assumed to follow the Gompertz law without
treatment, modified by a “therapeutic efficacy term” −g(D) ·B:

dB
dt

¼ �adBd ln B=Bmaxð Þ � g Dð ÞdB ð6Þ

where g(D) is the therapeutic efficacy function earlier introduced
(here seen as a instantaneous death rate in the tumor cell
population), Bmax is the asymptotic (that is, maximal, since
without dBdt N0) treatment value of B, a is the Gompertz exponent,
i.e., without treatment, one has dB

dt ¼ Gde
�a t�t0ð Þ dB, where G ¼

1
B t0ð Þ

dB
dt jt¼t0 is the initial growth exponent if t0 is the chosen initial

observation time, conveniently estimated on the initial part of a
tumor growth curve without treatment. Without treatment, this

integrates immediately in B tð Þ ¼ B t0ð ÞeG
a 1�e�a t�t0ð Þ
� �

, whence
Bmax ¼ B t0ð ÞdeG=a. An example is shown in Fig. 2.
3. Model identification and computer simulation

3.1. Drug doses and pharmacokinetics

In the case of constant or periodic delivery regimens, the
daily dose of active infused drug (Pt in oxaliplatin) was fixed as
60 μg of free Pt (corresponding to 4 mg/kg/d of oxaliplatin for a
30 g mouse, a common dosage for the laboratory, where the
daily doses range between 4 and 17 mg/kg). Diffusion
parameters (Vdi=10 mL, λ=6, μ=0.015, ν=0.03) were
estimated according to published laboratory data [20] on
plasma concentration and half-life of free Pt in plasma and
total Pt in peripheral tissues (jejunal mucosa for toxicity and red
blood cells for therapeutic efficacy, in the absence of actual data
Fig. 2. Example of simple model Gompertzian growth: B(t)=B0e
G /a(1− e − at )

where, G=a ¼ ln Bmax
B0

, a=0.005 and Bmax/B0=150; time (x-axis) and number of
cells are here in arbitrary units, from a minimum value B0 arbitrarily set to 1 on
the y-axis to a maximum value Bmax.
on tumor tissue); the value ν=2μ corresponds to the elimination
of the total Pt from the tumor being twice as fast as in the healthy
jejunum.

3.2. Pharmacodynamics

Hill exponents γS and γT were arbitrarily fixed as 1 in the
absence of data on the actual concentration efficacy dependence,
and CS50 and DT50 were set to a high value (10) compared to the
average drug tissue concentrations in the model, so as to bring
the efficacy/toxicity functions into a linear zone, in the absence
of data on these Hill, or Michaelis–Menten functions at the
tissue level.

The optimal injection phase (i.e., circadian time) of an
oxaliplatin bolus was identified from laboratory experiments as
15 h after light onset (HALO), which corresponds to the middle
of the activity time in the nocturnally active mice housed under
a 12 h light–12 h dark regimen. This dosing time was observed
to be optimal in both senses simultaneously: optimal in the
sense that it yielded best anti-tumor efficacy and also optimal in
the sense that it led to least drug-induced toxicity. This
remarkable experimental result — a coincidence that has been
always observed in experiments with mice in our laboratory,
with no explanation so far, was obtained with a time resolution
of 4 h by recording survival and tumor weight evolution in six
different groups of mice, each group being defined by a specific
HALO designation corresponding to the circadian time at
which the animals received bolus injection of oxaliplatin for
four consecutive days (see [11] for details). The maximal anti-
tumor efficacy phase (φT=21 HALO) for a bolus was deduced
by numerical variation along a one-hour step grid in
simulations of the model. This delay Δφ of approximately
6 h (from 15 HALO to 21 HALO) between the optimal
injection phase φI – note that for a bolus the peak phase and the
phase of the beginning of infusion, φI, coincide – and the
maximal efficacy phase φT in the model may also be obtained
by direct computation (see the Appendix). The maximal
healthy tissue toxicity phase was estimated as φS =9 HALO
based on two convergent considerations. First, we assumed by
our cosine model of chronosensitivity a 12 h delay between
highest and lowest drug-induced toxicity phases – and we
already knew the circadian phase of lowest toxicity – and
second, the circadian phase φS=9 is also known to be the
phase of the minimum concentration of non-protein sulphydryl
compounds (i.e., reduced glutathione and cysteine, the main
actors in the tissue detoxification of oxaliplatin) in mouse
jejunum cells [32].

In the absence of data on the evolution of jejunal cell
population under treatment, the parameter F was adjusted
(F=0.5) so as to yield a residual villi population always greater
than 10% of the initial cell population for daily doses lower than
200 μg of free Pt (the approximate lethal dose effect for a 30 g
mouse). The parameter H was estimated from tumor size
evolution curves derived from animals under treatment (see
Fig. 2) to obtain a likely value which was then fixed; the value
then used in further simulations was H=2 (see the Appendix for
details).
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3.3. Healthy and tumor cell proliferation

The equilibrium point (Zeq,Aeq) for the enterocyte model was
(16,500,106), the latter value arbitrarily fixed and the former
proportionally fixed according to data previously published in
the literature [21]. The period of oscillations (6 days) and damp-
ening coefficient (1/3) were also estimated using data found
in the literature [21,31], whence α, β, γ (see Appendix for
details). The initial growth exponent G and the Gompertz ex-
ponent a, whence Bmax /B(t0)=e

G / a, were first estimated based
upon tumor size evolution curves (see Fig. 3) without treatment.
Their values varied from one individual to the other (a between
0.005 and 0.1, Bmax between 1.2 and 30 times the value of B
at the beginning of its steep increase). Intermediate values
chosen were a=0.015 and G=0.025, leading for the para-
meter Bmax to a value of 5.3 times the initial observed value B(t0)
at the onset of steep tumor growth. These values were retained
so that further simulations might correspond to a human-like
situation where the tumor grows rapidly, in a bounding envi-
ronment, and being the object of an efficient chemotherapy (see
Appendix for computational details).

The attainable parameters for model identification in clinical
settings should thus be a and Bmax for natural tumor growth,
and H for therapeutic response.

3.4. Computer simulation

Numerical integration of the system of six ordinary differ-
ential equations was performed first in SCILAB or inMATLAB,
then using programs written in fortran. The time unit was the
hour, counted from 0 HALO on day 1. Integration (observation
step: 0.1 h) began with treatment; the applied solvers were
Adams and an implicit (BDF) scheme. The set of initial values
was (P0=0, C0=0, D0=0, A0=Aeq=10

6, Z0=Zeq=16,500,
B0=10

6). In clinical-like conditions that mimic hospital settings
in where medications are delivered on a 24-hour basis, the
chosen periodic control law was either a square, a sawtooth-like,
or a sine wave.
Fig. 3. Examples of tumor growth curves: without treatment (dashes) and after four
evenly spaced injections (on days 5, 6, 7 and 8 following tumor inoculation into the
test animals) of oxaliplatin, 4 mg/kg (solid line) in two B6D2F1 mice bearing a
Glasgow osteosarcoma. When tumor weight grew to two grams, animals were
sacrificed on ethical grounds. Tumor weight is in units of mg (y-axis) and time is in
units of days (x-axis).
4. Results: optimizing cancer chronotherapeutics

4.1. Frames for therapeutic optimization

In a first attempt, we adopted the types of drug-delivery
regimens which are common in clinical therapeutics. Usually
they entail infusion times of 1 to 12 h each day, periodically
repeated on a 24-hour basis over four or five days, followed by a
drug-free interval of time to allow patient recovery from drug-
induced toxicity. This course of treatment is repeated every
other week (when the duration of effective treatment is four
days per course) or every third week (when the duration of
effective treatment is five days per course). The optimal peak
infusion time being known from previous experimental data, the
search for optimality then consisted of obtaining the best
infusion duration for the best daily regimen chosen among a
limited dictionary of infusion profiles, of square, triangle, or
sine wave shape. This best infusion was determined by varying
this duration from 1 to 12 h by one-hour steps for each profile,
and evaluating the resulting number of residual tumor cells.

Then we decided, using mathematical optimization techni-
ques, to remove the periodical infusion scheme constraint, still
taking into account the optimality of the peak infusion times,
which is represented in the model by a sinusoidal modulation of
the maximum effect. This yielded other optimal therapeutic
drug-delivery schemes.

These two different attitudes toward therapeutic optimization
and their results are described below.

4.2. Mimicking hospital routines: 24-hour periodic chemother-
apy courses

A typical five day-infusion chemotherapy course, with the
first five days of recovery, is represented in Fig. 4, where one
can see the six variables of the dynamic system, from top to
bottom: P, C, Z, A, D, and log10(B). The objective function (to
be minimized) is the minimal number of tumor cells (ideally
zero) and tolerability consists of preserving a minimal number
of villi cells, a percentage of the arbitrary initial value of 106

cells.
A graphic illustration of injection phase optimization in the

model is presented in Fig. 5. The plateaus (centered on
maximum anti-tumor efficacy phase φT) represent the logical
variable L ¼ a ln Bmax

B � g Dð Þb0
� �

that is highly dependent on
drug chronosensitivity in the tumor: 1 when the drug actually
inhibits tumor growth, 0 when it does not. The optimization
principle used here (numerically varying the circadian phase φI

of the beginning time of infusion) may be seen as graphically
superimposing the areas under peaks of tumor drug concentra-
tion (D, sawtooth line) on these plateaus (L=1). Tumor cell
population evolution is shown in parallel on a logarithmic scale.

Therapeutic optimization may take place in two different
contexts, depending on the patients' state of health, based on
clinical criteria (to be evaluated by physicians), leading to two
different schemes: either an aggressive curative scheme for
patients who are able to tolerate a high degree of toxicity in the
hope of obtaining complete tumor eradication, which is the



Fig. 5. Graphic chronotherapeutic optimization. Solid line = tumor population,
logarithmic scale log10(B); dashed line plateaus: up when the drug actually
inhibits tumor growth, down when it does not; sawtooth dashed line = drug
concentration in the tumor shown in arbitrary units; time shown in hours.

Fig. 4. A five-day optimal time-scheduled 24-hour periodic regimen followed by five days of recovery. Time (abscissa) is in hours and quantities in ordinates in units
that depend on the track considered: μg/mL for drug plasma concentration, arbitrary units for tissue drug concentrations (depending on an unknown transfer constant
from plasma to tissue) and cell populations in number of cells.
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main goal of therapy; or a reduced toxicity scheme, leading only
to tumor stabilization, i.e., forsaking eradication but maintain-
ing an absolute limit of healthy cell toxicity, within which one is
left with as few tumor cells as possible at the beginning of
recovery time (usually followed by repeated subsequent courses
of chemotherapy in order to contain the tumor). Transposed in
the context of this model study, this choice between an
aggressive and a reduced toxicity scheme led to the definition
of two different types of simulations.

4.2.1. Simulations focusing on anti-tumor efficacy
The criterion for the “aggressive curative scheme” was to

yield the smallest number of tumor cells during the course of
chemotherapy (5 days of treatment and 16 days of recovery) for
a standard daily dose of 60 μg/d of free platinum. A possible
temporary decrease in the mature enterocyte population to as
low as 35% of the initial population was allowed (compare this
threshold with the previous one of 60% in the reduced toxicity
scheme; these values are arbitrary in the absence of data known
to us on the severity of diarrhea related to mucosal depletion,
but they could easily be changed).

For the square wave control law, the best result (four residual
tumor cells out of 106 initially) was obtained with an effective
five-hour infusion duration that begins at 12 HALO. Even a
better result (3 residual tumor cells) than with this five-hour
square wave for the same daily dose was obtained with a sharp
sinusoid-like model infusion law lasting five hours that begins
at 12 HALO. Respect for the optimal injection phase is
essential, since constant infusion yields worse results (16 cells)
than square wave time-schedule beginning at optimal injection
phase φI =12 HALO (four cells), but achieves better results
than the beginning time coinciding with the worst phase of 0
HALO (52 cells). In other words, this means that chronotherapy
can be worse than constant infusion if the beginning infusion
time φI is ill-chosen.

These simulations show in this theoretical framework the
advantages of a time-scheduled regimen as compared to the
conventional constant infusion scheme, provided that the
beginning infusion (circadian) time φI is accurately chosen.
Note that this last point is dependent on the chosen drug, not on
the individual, inasmuch as the fundamental circadian rhythms
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of the individuals in a population (as determined by their body
circadian clocks [33]) are synchronized by environmental time
signals of light, meals, social life, etc.; this was the case for the
nocturnally active mice of this study that were all previously
synchronized to a regimen of 12 h light alternating with 12 h
darkness. These simulations also suggest that sinus-like waves
actually used in clinical chronotherapies are a good approxi-
mation for optimality in this context.

4.2.2. Simulations focusing on treatment tolerability
The criterion for the reduced toxicity scheme was prohibition

of the decrease of the mature enterocyte population below a
given threshold (arbitrarily fixed between 40% and 60% of the
initial population value) to obtain the therapeutic regimen
Fig. 6. Optimal eradication treatment preserving at least 50% of jejunal enterocytes:
population A, and the resulting dose (in μg) – obtained by integration of i between
Figure courtesy of C. Basdevant. See Ref. [38] for further details.
yielding, by variation of the drug daily dose, the smallest
number of tumor cells during the course of chemotherapy (in
this case, 5 days of treatment and 16 days of recovery).

In the case of the threshold to preserve 60% of the initial
population of enterocytes, the best result (2400 residual tumor
cells out of 106 initially) was obtained with a right sawtooth-like
infusion model law lasting 2 h (i.e., steep increase, then drop)
beginning at φI =14 HALO, allowing the infusion of a
maximum dose of 33 μg/d of Pt. In the perspective of
applications to clinical settings, the main drawback of this
time schedule is the achievement of very high drug concentra-
tions over a short period of time; in humans, at least a two-hour
duration of oxaliplatin infusion is recommended to prevent
acute muscular toxicity, in particular laryngeal spasm, an acute
instantaneous drug infusion flow i (in μg/h), tumor cell population B, villi cell
times t and t+24 h – administered over a sliding window of 24-hour duration.
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toxicity symptom which imposes termination of treatment. Such
acute toxicity is excluded in the model, where chronic jejunal
toxicity is the focus, by setting an upper limit to the drug
infusion flow and its derivative with respect to time. The ad-
vantage of this reduced toxicity scheme is better anti-tumor
outcome compared to the conventional constant infusion thera-
py that, for the same limit toxicity, imposes (in the model) a
dose delivery no greater than 29 μg/d of Pt (7000 residual tumor
cells).

These simulations illustrate in a modeling frame what is well
known to oncologists involved in chronotherapeutics: first, a
Fig. 7. Three weeks stabilization treatment with repeated chemotherapy courses of 1
Fig. 6. Figure courtesy of C. Basdevant. See Ref. [38] for further details.
well chosen time-scheduled regimen can yield better results
than a constant infusion scheme, and second, the shorter the
infusion time, the less intolerance to treatment, as far as chronic
toxicity is concerned.

4.3. Drug flow optimization in a general non-periodic frame

With the same model, but removing usual clinical chron-
otherapeutic requirements which impose 24-hour periodicity of
the infusion scheme, we set the mathematical problem of
therapeutic optimization as maximizing tumor cell death under
.5 of active medication 5.5 days medication-free interval: same variables as on
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the constraint of maintaining the healthy cell population always
above a given threshold. This point of view has also been
developed by other authors with different methods, in a similar
context but with preservation of a different healthy cell
population [36,37].

Whereas the clinical tolerability constraint is unequivocal
(yet tunable by physicians according to the patient's state of
health), the tumoral cell death maximizing goal may be
understood in two different ways, since a tumor that has not
been eradicated starts to regrow at the end of treatment. Either
one assumes that complete eradication is possible and then the
objective function to be minimized is the minimum number of
tumor cells, as close as possible to zero, during a one course
treatment; or one admits that there always will remain an
ineradicable fraction of tumor cells, which may only be
contained by repeated treatment courses under an acceptable
threshold, compatible with patient survival. Then the objective
function to be minimized is the maximum number of tumor cells
during repeated treatment courses, in fact during the recovery
period of the course.

This distinction leads to two different optimization strate-
gies, respectively: the eradication strategy in a single course,
and the stabilization strategy for repeated courses of the same
treatment, which aims only at containing the tumor. This point
of view has been extensively developed in a recent article, to
which we refer for detailed results [38]. To briefly state the
results obtained for each one of these two strategies, an optimal
drug infusion flow (to be implemented using a programmable
pump) is derived to minimize the tumor cell number (minimum
or maximum) and to satisfy the conditions: a) the healthy cell
population number remains above a given threshold; b) the total
drug dose is lower than a prescribed level; and c) its
instantaneous flow and its derivative with respect to time also
remain below a prescribed level. Examples of these results are
illustrated in Figs. 6 and 7. Since the resulting optimized
infusion flows are not superimposable onto the 24-hour periodic
sine wave like flows used in clinics, this suggests that classical
repeated sine wave chronotherapeutic regimens are only
approximations to optimality and may be further improved.
Yet, in the absence of precise knowledge of all the parameters of
the model, and their related confidence intervals, it would be
hazardous to quantify in terms of tumor cell kill the gain
expected from this optimized procedure as compared to the
classical chronotherapeutic regimens.

5. Discussion and clinical perspectives

5.1. Advantages and limits of the model

The described model provides a semi-quantitative prediction
tool. First, it shows that time-scheduled regimens are likely to
yield a better treatment outcome than a constant infusion
regimen, provided that the beginning time (with reference to
circadian rhythms) φI of the infusion is well chosen. Second, it
allows one to optimize time-scheduled regimens by acting on
the beginning (or peak time) and duration of the infusion, and
on the shape of the programmable infusion control law. To our
knowledge, this is the first time that such clinical know-how has
been set upon theoretical grounds.

The model was chosen to be a simple one to help parameter
identification under the restraint of a relative scarcity of
available data on the internal mechanisms of tumor growth
and inhibition by medications. Its quasi-linear form without
treatment (set W=ln B in the last equation and the model
without treatment becomes completely linear) may be seen as a
robust and natural approximation, in a neighborhood of its
initial values, of a hypothetic, more complete and realistic
model for cell proliferation. Some of its components, such as
drug activity functions, remain unknown and were chosen
according to the experience of pharmacologists working with
different medications, such as antibiotics; in the same way,
some parameters had to be estimated on questionable grounds,
such as extrapolation from one tissue to another. Nonetheless,
the other parameters were identified after experiments done in
our laboratory on the effects of oxaliplatin treatment on GOS
tumor-bearing B6D2F1 mice.

5.2. Model assumptions

5.2.1. Healthy cell population
The linear system representing jejunal mucosa homeostasis

may be seen as the linearization of an unknown non-linear
system, which should describe the enterocyte population
kinetics in a more accurate way (as in [31]), around its stable
equilibrium point (Zeq,Aeq). Tissue homeostasis may be
observed after brief radiologic or cytotoxic insult. In the case
of a sudden perturbation, return to equilibrium with damped
oscillations has been reported [22]. To guarantee the validity of
this linear approximation, we make the additional assumption
that this equilibrium point is hyperbolic, i.e., the linear tangent
system has no zero or purely imaginary eigenvalues. Then
linearization is valid, up to topological equivalence, in the
vicinity of the equilibrium point, according to the Hartman–
Grobman theorem (see for instance Perko [34]).

No basal (without treatment) circadian variation of the
enterocyte population has been taken here into account; where-
as, at least circadian variations in the enterocyte cell cycle have
been known for some time [22,35]. The reason for this is the
irrelevance of such variations for the follow up of the enterocyte
population during a course of chemotherapy. The variables (Z,A)
should rather be seen as sliding averages over the last 24 h
of the population described beforehand. It is quite likely that
instead of a basal equilibrium point, the non-linear system pres-
ents rather a stable limit cycle, with 24-hour period, but we are
interested here only in controlling drug toxicity on an average
villi population, since circadian variations of this population are
negligible compared to the havoc produced by the drug-induced
cytotoxicity.

Other toxicities such as neurotoxicity and hematotoxicity,
known to be induced by oxaliplatin in human beings, were
taken into account by imposing course scheduling designed as
short treatment durations followed by sufficiently long recovery
times, e.g., two days of treatment followed by five days of
recovery in the case of repeated chemotherapy courses. Such a
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recovery duration may seem short, but GOS is a fast growing
tumor, with an apparent doubling time in exponential models
being about 1.4 days; so, the long recovery times as used in
clinical settings for curable human tumors (e.g., 10 days in
2 weeks or 16 days in 3 weeks) are not realistic here, since they
would enable the tumor too much time for regrowth beyond its
initial value after the end of the last infusion.

Neuropathy could not be experimentally examined in mice.
Hematotoxicity (mainly leukopenia) was assumed in this study
to be made up for by natural bone marrow proliferation during
recovery. Post-mortem histology performed in animal experi-
ments in our laboratory showed tolerable bone marrow
depletion; in contrast, jejunal toxicity was most severe, with
extensive necrosis of the mucosa [12,20].

5.2.2. Tumor cell population
The initial value for the tumor cell population number was

arbitrarily fixed as 106 cells, and eradication was considered
complete when it became lower than 1. These values could easily
be replaced by 5×109 and 200 (oncologists agree on these figures,
which represent a frequent lower limit for clinical or radiological
discovery and a cell population number under which a tumor is
usually considered as non-viable). The optimality, in the
conditions of our model, of the infusion duration and initial
phase (between 0 and 24, i.e., taking into account 24-hour
periodicity) will not be changed by such modifications, given the
homogeneity of Eq. (6) and the scale independence of the chosen

criterion min
ta 0;T½ �

B tð Þ or max
ta 0;T½ �

B tð ÞÞ
�

.

It is possible to introduce drug resistance in tumor cells,
following Goldie and Coldman [30], by replacing in Eq. (6) the
cell kill term −g(D)d B by �g DÞ:B: 1þBq

2

�
where q is −2 times

the probability for a cell to become resistant, a probability that
in this formulation is independent of the time of or the amount
of delivered dose, yielding a population of Bd

1�Bq

2 resistant
cells; for instance, if one out of a thousand cells acquires drug
resistance, then q=−0.002.

5.2.3. Pharmacodynamics
No cell cycle phase specificity of oxaliplatin has been

reported, which is consistent with its supposed mechanism of
action at the cell level, i.e., binding to DNA at any stage of the
cell cycle. This makes inclusion of cell cycle kinetics in the
present model unnecessary, at least as long as oxaliplatin is the
only cytotoxic drug used for pharmacological control and
circadian drug sensitivity is represented in the above-mentioned
simplified way.

Drug toxicity and anti-tumor efficacy functions have been
chosen to act as multiplicative factors on the population size of
enterocytes and tumor cells. While this assumption is quite
natural in the linear frame of the enterocyte model, where f (C) is
just an enhancement of the natural autoregulation coefficient α,
it is more questionable for the Gompertz tumor growth model: it
has the consequence “big tumor, big effect; small tumor, small
effect”. This may be true for oxaliplatin, but not for other drugs;
other representations of the anti-tumor effect could be used
instead of −g(D)B, such as �g Dð Þ B

KþB, as in [26].
The only place in the model where circadian variability
occurs is by modulation of the maximal drug effect (parameters
F and H). This simplifying assumption thus aggregates all
possible circadian influences on one term in each peripheral
compartment. The actual physiological circadian variation in
drug sensitivity is more likely due to the variations in drug
detoxification mechanisms in the central (hepatic enzymes,
plasma proteins) and peripheral (cellular glutathione) compart-
ments, but tissue measures which would be necessary to identify
the parameters of these chronopharmacokinetic (i.e., biological
rhythms in drug pharmacokinetics) mechanisms were not
available to us, even though one may hope they will become
available through future routine laboratory experiments or
clinical data investigations.

The representation of drug chronosensitivity by a plain
cosine intervening as a multiplying factor in the expression of
the drug activity functions may be considered to be a coarse
description of circadian rhythmicity. In the same way, this
model does not include recent advances in the knowledge of
the genetic determinants of mammalian circadian rhythms,
such as the clock genes CLOCK, BMAL1, PER and CRY (and
their proteins), nor of their influences on the cell cycle of the
cellular populations involved [5–7]. In this respect, the cosine
model might be replaced by a circadian oscillator model of the
type developed by A. Goldbeter for Drosophila [2] or for
mammals [3,4] or even by a simple Van der Pol oscillator, as
suggested in [39]. But, as it is, this cosine function takes
pragmatically into account the chronomodulation of the PD by
circadian factors which has been observed in experimental and
clinical settings.

5.3. Possible extensions of the model

5.3.1. Perspectives for clinical applicability
The design of this model originated from the desire to

improve already existing time-scheduled regimens used in
chronotherapeutics, mainly for metastatic colorectal cancer. But
the present identification of its parameters in a population of
mice, especially those related to untreated tumor progression, is
not easily transposable to the clinic for evident ethical reasons.
Yet if we want to apply chronotherapeutic optimization
procedures outlined in this paper in clinical settings, we need
to evaluate for a given cancer in a given patient the parameters
of tumor growth dynamics and of drug response.

In particular, in order to give confidence intervals for the
results of therapeutics optimized with the help of this model, a
linear sensitivity analysis of the space of its parameters clearly
remains to be done, and this will be accomplished in a future
and extended version of this work. Nonetheless, individual
patient tailoring of therapeutics involves developing for this
model population PK and PD parameter evaluation methods
which will require a better understanding of the various forms of
tumor growth, relying on mathematical modeling and the
analysis of in vitro, experimental and clinical data.

This presented model is thus intended to serve as an intro-
ductory example to the use of a general method for therapeutic
optimization. Further modeling work is yet required to take
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into account the accumulating knowledge of tumor growth
dynamics and to apply this model in the everyday treatment of
cancer patients, which uses combinations of different cytotoxic
drugs.

5.3.2. Toxicities
Other toxicities need to be considered. In the perspective of

future applications to medicine, it must be stated that oxaliplatin
toxicity in human beings consists of peripheral sensory
neuropathy, diarrhea and vomiting (taken here into account by
jejunal toxicity), and hematological suppression [14].

Neurotoxicity is usually reversible in humans. As men-
tioned earlier, when it does not manifest itself as an acute
symptom, such as laryngeal spasm which imposes immediate
cessation of the treatment (this is normally avoided by averting
high instantaneous drug concentration flows). it is a chronic
toxicity, dependent on the total delivered dose, which imposes
in clinical settings only a minimum recovery time between
courses of chemotherapy. The prevention of acute neuropathy
is taken into account in the model by imposing an upper limit
to the drug infusion flow and its first derivative with respect to
time.

In the perspective of clinical applications, hematotoxicity is
not an issue in colorectal cancer chronotherapeutics by
oxaliplatin and 5FU; whereas, intestinal toxicity is. For
instance, it has been shown that in a pilot clinical trial [40] of
oxaliplatin and 5-Fluorouracil (5FU) in patients with colorectal
cancer, comparing chronotherapeutic time-scheduled regimen
with the more widely used FOLFOX2 protocol, fewer episodes
of neutropenia and more numerous episodes of diarrhea
occurred in the chronotherapy arm.

It is clear that the future inclusion of other cytotoxic drugs in
model therapeutics will imply considering the representation in
the model of other such toxicities.

5.3.3. Molecular pharmacology modeling to explain drug
synergies

Some future extensions of this model will be necessary to
actually help oncologists, such as representation of several
drugs acting in the same chemotherapy course (for instance
oxaliplatin, 5FU and folinic acid, as currently used in com-
bination for the treatment of human colorectal cancer). To
account for synergies between drugs and their optimization, as
much as possible such PD modeling should be led at the
molecular level within a model of the cell cycle. For instance,
oxaliplatin action should be represented by the damage it
exerts directly on DNA as a function of its intracellular con-
centration; whereas, the PD of 5FU should be represented by
its action on thymidylate synthase during the S phase of the
cell cycle. The resulting cell kill in fast renewing tissues will
then be due to phase transition blocking and apoptosis in-
duction, in particular, by the protein p53. Models which partly
take into account cell cycle dynamics of tumor growth and
therapy already exist [41–43], but considerable work remains
to be done to represent multidrug-induced modifications at the
molecular level in a model that will be useable by oncologists
in the clinic.
5.3.4. Drug resistance and other problems not considered
here

Other options include representation of a tumor drug
resistant cell population as an independent dynamic variable,
as in [44,45] with possible dependence of the probability of
transition to resistance on the drug dose level, genetic
polymorphism in the response to cytotoxic drugs (this may
be done more easily in molecular PK–PD models), and all
other issues linked to metabolic and tissue environmental
factors such as tumor angiogenesis, local and remote invasion,
some of which are representable by reaction–diffusion
equations for tumor growth and therapy, as in [26,27]. These
manifestations of cancer growth may also be included as
targets for anticancer therapy, i.e., included in an objective
function to be optimized; whereas, emerging resistance linked
to high drug doses provides a supplementary constraint
comparable to clinical tolerability in healthy tissues. These
complementary problems can thus be taken into account as
objective functions and constraints for optimization methods in
extended versions of the model without changing the principle
of balancing therapeutic efficacy and unwanted adverse
medication effects.
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Appendix A. Parameter identification procedures

A.1. Enterocyte model

As mentioned in the text, tissue homeostasis (conservation of
the cell population number, at least in the mean, i.e., averaged
over 24 h and thus independent of circadian factors) of the
jejunal mucosa may be represented by an equilibrium point of a
dynamic system. Since convergence towards equilibrium is
experimentally obtained with damped oscillations, the model
should be of dimension 2 at least, but dimension 2 is also
sufficient to design a linear oscillating model. Besides,
assuming hyperbolicity of the equilibrium point, the Hart-
man–Grobman theorem allows us to replace, in a neighborhood
of the equilibrium, the unknown system, one output of which is
the villi cell number, by its linear tangent system (see for
example Perko [34]).

To justify the particular form adopted for this linear
system, first consider that the villi population is not submitted
to a renewal process from itself, so dA

dt is not dependent on A;
besides, the factor 1 between dA

dt and Z−Zeq is justified by the
fact that eliminated villi cells may be reasonably assumed to
be compensated one for one by the flow of young cells from
the crypts. In this respect, Zeq is clearly the mean rate of
mature cells which are eliminated in the intestinal lumen:
1400/day for a villus of 3500 cells, according to [21], hence
the number of approximately 16500 cells per time unit (=1 h)
and for an equilibrium villi population of (arbitrarily) 106

cells.
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Second, the estimation of the coefficients on the second line
dZ
dt

� �
comes from 3 equations:

a. The equation giving the dampening coefficient over one
period (T):

s ¼ exp � a
2
T

� �

since � a
2 is the real part of the eigenvalues of the linear system,

the characteristic polynomial of which is λ2 þ aλþ b (and s=1
3

after estimation based on literature data [22]).
b. The equation giving the period of oscillations: T ¼ 2p

x ,
where ω is the imaginary part of the complex eigenvalues of the
linear system, i.e.

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a2

4

r

(T=6 days after estimation based on published data[22]).
c. The equilibrium equation

aZeq þ bAeq ¼ g:

Hence the values of α, β, γ

a ¼ �2
ln s
T

; b ¼ 4p2 þ ln sð Þ2

T2
; g ¼ aZeq þ bAeq

A.2. Gompertz model for tumor growth without treatment

In principle, as the Gompertz model is without treatment
linear inW=ln B: dWdt ¼ a Wmax�Wð Þ, it should be possible to
obtain the slope −a and intercept aWmax by linear interpolation

on a data set ln B tið Þ; lnB tiþ1ð Þ� lnB tið Þ
B tið Þ tiþ1�tið Þ

� �
. But such an identi-

fication procedure requires points rather close to one another on
the S-shaped curve, which was not the case in our laboratory
data set that showed only three points per week.

So we used another procedure, eliminating the unreachable
value Bmax, based on the equation dW

dt ¼ a Wmax �Wð Þ: since

Wmax �W tð Þ ¼ e�a t�t0ð Þ Wmax �W t0ð Þð Þ

i.e. for all i

lnBmax � ln B tið Þ ¼ e�a ti�t0ð Þ ln
Bmax

B t0ð Þ
ln Bmax � ln B tiþ1ð Þ ¼ e�a tiþ1�t0ð Þ ln

Bmax

B t0ð Þ

whence

lnB tiþ2ð Þ � lnB tið Þ
lnB tiþ1ð Þ � lnB tið Þ ¼

e�a tiþ2�t0ð Þ � e�a ti�t0ð Þ

e�a tiþ1�t0ð Þ � e�a ti�t0ð Þ :

Given three consecutive times ti, ti+ 1, ti+ 2, the first member is
known, and the second is a rational fraction in X=e−24a, since
any ti is of the form t0+24ki, ki∈N. This gives a polynomial
equation in X, which has always one root strictly between 0 and
1, the natural logarithm of which is identified as −24a. For this
procedure to be efficient, it is necessary to choose three points in
the middle part of the evolution curve, not too close to its
beginning, where ln B(t) is almost constant, and not too far,
where other phenomena, e.g., linked to neoangiogenesis, may
complicate the picture. This usually left hardly more than three
points in our laboratory data set, e.g., measures at days 8, 9 and
12 on untreated animals, or days 16, 19 and 21 on treated
animals.

We estimated G ¼ a ln Bmax
B t0ð Þ ¼

dB t1ð Þ
B tð Þdt jt¼t0 by

B t1ð Þ�B t0ð Þ
B t0ð Þ t1�t0ð Þ i.e., on

the initial part of the curve, where B(t1)−B(t0) is small, but
non-zero, whence the determination of Bmax=B(t0) · e

G / a.
These primary estimations were then used as initial values for
curve fitting algorithms, by using a least mean square
procedure on each individual animal tumor growth evolution
curve.

Only one pair of values (a=0.015, Bmax=5.3×B(t0)) was
retained for further simulations and optimization procedures.
These values correspond to a concave growth curve, since for
parameter estimations we have focused on the fast growing part
of each curve.

It means that we have in fact simulated an efficient treatment
beginning at an advanced stage of tumor growth.

A.3. Pharmacodynamics

As mentioned above, the jejunal toxicity function ( f (C))
could not be identified, and was arbitrarily set as yielding likely
curves for the enterocyte population, with levels not under 10%
of the equilibrium value for the drug doses in use at our
laboratory. In the absence of data on the subject, for instance,
40% of villi population depletion was set to represent moderate
toxicity, and 60% severe toxicity.

For the anti-tumor therapeutic efficacy function (g(D)),
tumor size evolution curves under treatment were available.
Animals which had previously been synchronized to an
environmental regimen of 12 h of light alternating with 12 h
of darkness and had received subcutaneous inoculation of
Glasgow Osteosarcoma cells were treated with the same daily
dose of oxaliplatin, according to a procedure described in
[11] (where one can find that another daily dose of 5.25 mg/
kg/d was also used, confirming the optimality of the 15
HALO injection phase). The treatment consisted of a bolus of
4 mg of oxaliplatin injected in the retroorbital venous sinus
on four consecutive days with different groups of animals
each one being treated consistently at one of six different
HALO time points (each differing by 4 HALO from another).
We could then compute the dynamics of the oxaliplatin
concentration and therapeutic effect based on our model, as a
function of its maximal value 2H (DT50 and γT being fixed
respectively as 10 and 1, to obtain g Dð Þ≈ H

DT50
D for current

levels of variable D, a quasi-linear behavior), and compare
these calculations with the experimental curves. We started
from the linear relation

dW
dt

¼ �aW þ aWmax � g Dð Þ



1067J. Clairambault / Advanced Drug Delivery Reviews 59 (2007) 1054–1068
where W= ln B; on integration, this becomes:

W tð Þ ¼ Wmax þ eat W0 �Wmaxð Þ

� e�at
Z t

0

HD uð Þeau
DT50 þ D uð Þ 1þ cos2p

u� uTð Þ
24

� 	
du

whence

H ¼
eat ln Bmax

B tð Þ � ln Bmax
B0R t

0
eauD uð Þ

DT50þD uð Þ 1þ cos2p u�uTð Þ
24

n o
du

:

The integral was evaluated between time 0, representing the
time of the last bolus of a series of four injections, on days 5, 6,
7 and 8 after tumor inoculation (the tumor being palpable on
day 5), and other subsequent times, evenly spaced by multiples
of 24 h. For instance, with t=0 corresponding to the last in-
jection on day 8, time t for the upper bound of the integral was
13×24 h, corresponding to a measure on day 21, at the same
given HALO.

Each bolus was injected at the same HALO for the same
animal, and consisted of a unique dose (per day) of 4 mg/kg
oxaliplatin (60 μg of free platinum for a 30 g mouse). Each
bolus was taken as an initial condition P0=60 μg, for the first
equation, whence D(t) (drug concentration in the tumor):

D tð Þ ¼ P0

λ
1þ e�24v þ e�48v þ e�72v
� �

e�vt:

In order to assess comparable data, we evaluated a and Bmax

on the same mouse chosen for the evaluation ofH, but at the end
of the tumor size curve, when drug concentration in the tumor was
almost zero. As stated earlier, there were so large inter-individual
differences in the evaluation of the Gompertz parameters G and
Bmax that we preferred this procedure, specifically for the
evaluation of parameter H, rather than evaluating G and Bmax

on curves without treatment for other mice.
Based on these computations for the evaluation of H on

different mice subject to oxaliplatin injections, we eventually
used an H value of 2, which allowed us to qualitatively compare
treatments in an effective way in model simulations.

The time difference Δφ of approximately 6 h between the
phase φT of maximal therapeutic effect and the optimal peak
infusion phase φI (for a bolus, beginning and peak times are the
same) may be obtained as follows.

Suppose a bolus of drug is injected at t=0, giving rise to an
initial concentration P0. Then by straightforward integration,
plasma concentration will be P(t)=P0e

− λt and tissue concen-
tration, D tð Þ ¼ P0 ¼ e�vt�e�λt

λ�v c P0
λ e�vt, since ν≪λ.

Replacing the pharmacodynamic function (with γT=1):
g Dð Þ ¼ H D

DT50þD 1þ cos 2p
24 t � uTð Þ


 �
by a linear approxi-

mation in D, g Dð Þ ¼ H0D 1þ cos 2p
24 t � uTð Þ


 �
, we have

g D tð Þð Þ ¼ H0
P0
λ e�vt 1þ cos 2p

24 t � uTð Þ

 �

.
On integration between 0 and 24 h of the equation

d
dt

ln B=Bmaxð Þ ¼ dB
Bdt

¼ �ad ln B=Bmaxð Þ � g DÞð
we obtain

ln B 24ð Þ=Bmaxð Þ ¼ ln B 0ð Þ=Bmaxð Þe�24a

� e�24a
Z 24

0
H0

P0

λ
e a�vð Þt

� 1þ cos
2p
24

t � uTð Þ
� 	

dt

and we want to know for which value of φT this last integral
takes its maximum: this value of φT will be the delay between
the optimal injection time (known from experimental observa-
tions, here assumed to be zero) and the tissue optimal anti-tumor
efficacy time φT. This maximum will be obtained when its
derivative with respect to φT is zero, i.e., when

Z 24

0
e a�vð Þt sin

2p
24

t � uTð Þ
� 	

dt ¼ 0

which by simple computation is the case if and only if

a� vð Þsin 2p
12

uT þ
p
12

cos
p
12

uT ¼ 0

leading to

uT ¼ 12
p

Arc tan
p

12 v� að Þ

with ν=0.03 and a=0.015, this value is approximately 5.78 h,
for which value of φT the second derivative

� 2p
24

Z 24

0
e a�vð Þt cos

2p
24

t � uTð Þ
� 	

dt

of the integral with respect to φT is easily seen to be negative,
showing that the integral actually reaches a maximum for this
value of φT. Hence if the optimal injection time has been
approximately determined as 15 HALO, then this means that
φT≈21 HALO.
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