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Optimizing cancer pharmacotherapeutics using 
mathematical modeling and a systems 
biology approach

Mechanistic & physiological 
modeling in systems biology for 
cancer therapeutics
I will show in this article that existing math-
ematical methods should be combined to yield 
a rationale for optimizing the treatments of 
 cancers. They rely on three different approaches: 

 � Physiologically structured models of cell pop-
ulation growth based on a representation of 
the cell cycle and its physiological and phar-
macological controls (structured population 
dynamic models: the target); 

 � Whole-body physiologically based pharmaco-
kinetic–pharmacodynamic (PK–PD) models 
for anticancer drugs, from their input in the 
general circulation to their output on cell and 
tissue proliferation (the means of action in 
the clinic); 

 � Numerical optimization methods for the 
delivery of drugs under the constraints of 
limitation of unwanted toxic side effects and 
of emergence of drug-resistant tumor cell 
clones (the theoretical methods to provide cli-
nicians with a rationale for optimizing 
 treatments of cancers).

Growing interest of mathematicians 
& engineers towards biology 
& medicine
Among organizations of engineers, such as the 
Institute of Electrical and Electronics Engineers 
(IEEE) or International Federation of Automatic 

Control (IFAC), more and more room is dedi-
cated in international conferences to biomedical 
modeling, with a focus on cancer. More recently, 
societies and networks of mathematicians (Society 
for Mathematical Biology [SMB], European 
Society for Mathematical and Theoretical Biology 
[ESMTB]) have emerged, organizing conferences 
and summer schools on mathematics applied to 
cancer modeling and therapy. Even more recently, 
integrated cancer centers have appeared that hire 
physicians, biologists, mathematicians, chem-
ists, physicists and computer scientists working 
together in specialized teams on subjects related 
to cancer with medical applications. Numerous 
recent publications testify to this interest among 
applied mathematicians [1,2].

Pharmacology of cancer, 
variability in drug response 
& personalized medicine
Cancer in all of its forms has become the primary 
cause of death in several industrialized countries, 
including France [3,101] and the USA [4], when 
all categories are merged. It potentially puts cell 
integrity of all tissues in the organism at stake 
as a result of the deficiency of various control 
mechanisms. The complexity of this disease may 
help to explain the difficulties met in achiev-
ing major therapeutic advances in oncology and 
the resulting partial stagnation of the number 
of deaths due to cancers in the last quarter of a 
century, whereas at the same time the number of 
deaths due to cardiovascular diseases decreased 
by 50% [3,4]. In the challenging context of this 
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limited therapeutic success, personalized medi-
cine should not be neglected: by merging sub-
jects amenable to an adapted treatment within 
distinct categories, defined by their common 
response toward a given drug, one may expect 
global improvements in the population response 
to existing anticancer therapies through a better 
handling of drug delivery to individual patients.

Indeed, we are not constitutively (in particu-
lar genetically) equal in terms of our reaction to 
diseases and the responses of our bodies to medi-
cal treatments. Cell mechanisms, mainly enzy-
matic, which activate, degrade or expel (using 
energy-consuming molecular pumps) absorbed 
drugs, do vary from one subject to the next 
(between-subject variability), which in prin-
ciple imposes adaptation to every single patient 
dose and administration means. Such molecu-
lar mechanisms can be represented at different 
scales, as sketched in Figure 1, by mathematical 
models that may be subsequently identified and 
individually quantified by tissue samples from 
patients to whom drugs will be delivered.

This is of course easier said than done, because 
tissues are not always accessible and, further-
more, their responses to treatments may be dif-
ferent in cultures from what they would be in the 
whole organism, where local and central regu-
lations are present. Nevertheless, at least a raw 
idea of the intracellular and intercellular regula-
tion mechanisms may be obtained from in vitro 
studies, bearing in mind that straightforward 
transposition from in vitro to in vivo settings 
may be hazardous and at least requires taking 
into consideration higher level regulations.

First, to take into account between-subject 
variability, investigating genetic variations in 
intracellular processing of drugs may be of 
major importance. In this respect, in the field 
of another medical discipline, antibiotherapy, 
the case of isoniazid is historically well known 
among physicians: when it appeared as an anti-
TB drug after World War II, it was noted that 
the same doses (for a given weight) of this new 
drug could be efficacious but very toxic in some 
subjects while in others it was neither toxic 
nor efficacious. The explanation of this puz-
zling phenomenon was shown to reside in the 
interindividual variations of the main enzyme 
that degrades isoniazid, an acetylase. The 
general population is genetically divided into 
two groups with respect to this enzyme: slow 
acetylators, among whom slow degradation of 
the drug results in efficient tissue concentra-
tions at low doses, and fast acetylators, among 
whom fast degradation of the drug makes high 
doses necessary to achieve the same result [5,6]. 
This enzyme (N-acetyl transferase) thus shows 
 striking genetic polymorphisms.

In clinical settings, taking into account 
genetic polymorphisms of cell drug processing 
is hence one of the important aspects of per-
sonalized medicine and this holds for cancer 
therapeutics, in which it has been shown to be 
important at least for some drugs, such as irino-
tecan [7–9],  to better predict undesirable adverse 
effects. One should consider not only enzymatic 
degradation metabolism, which is seldom deter-
mined by only one gene, but also baseline con-
centrations of target molecules for the drugs and 
the function of active efflux transporters, the 
ATP-binding cassette transporters, which expel 
exogenous molecules from cells, using an ATP-
driven pumping mechanism [8,9]. At the level of 
a population of patients, too seldom so far con-
sidered differences between males and females, 
which may be due in particular to differences 
with respect to drug processing mechanisms, 
result in differences of toxicity limitations in 

Dynamic mechanisms of molecular binding and transport:
Extracellular membrane receptors, intracellular targets
Intracellular trafficking, nucleocytoplasmic transport

Division cycle at the single cell level: G0–G1/S–G2/M
Molecular modeling of intracellular cell cycle dynamics
Control by growth factors, CDK inhibitors and drugs

Proliferation at the cell population level: G0–G1/S–G2/M
Long-term behavior of tumors vs healthy tissues
Control by growth factors, CDK inhibitors and drugs

Whole body assemblage of tissues, in one individual:
Blood, a compartment of drug transport towards tissues
Control by neurohumoral inputs and drugs onto tissues

Population of individuals grouped in coherent clusters:
Definition by common characters w.r.t drug metabolism
Personalized treatments adapted to clusters of patients

Figure 1. Multiscale spatial perspective for modeling, from molecules to 
populations of patients. Each triangle stands for a magnifying glass, from 
bottom to top. Drugs are present at each scale: prescribed at the lowest level of 
magnification, they act at the highest molecular levels. In this perspective, genes 
per se are not primordial. All that matters is their physiological meaning in terms of 
impact onto molecular mechanisms of cell division and drug effects. These effects 
may be dependent on several genes, as well as on epigenetic factors, and the most 
accurate elementary description level is hence more likely to be dynamic and 
molecular, both for the physiological control mechanisms of cell division and for cell 
drug metabolism.
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anticancer treatments [10]. Going beyond drug 
processing enzymes, mutations impacting intra-
cellular signaling pathways (e.g., involving pro-
tein KRAS), should also be considered. But, 
as has been evidenced by the limited success 
encountered so far in adapting drug treatments 
to only single-gene variations [6], considering 
not only the gene level, but also the physiologi-
cal level of cell and tissue drug metabolism by 
the representation of dynamic parameters (e.g., 
enzymatic), may be more relevant in describing 
differences between individuals.

Second, apart from between-subject variabil-
ity (nonetheless still taking it into account), as 
far as within-subject variability with respect to 
responses to drug treatments is concerned, an 
important source of such variability is the influ-
ence of molecular circadian clocks on both cell 
proliferation mechanisms and drug metabolism 
processes. Among other developments, circadian 
chronobiology has led to cancer ‘chronothera-
peutics’ in the clinic, which is the discipline that 
determines the best time of day – the most effi-
cient and the least toxic to healthy tissues – to 
administer a given treatment. Its practical clini-
cal applications, in particular from the point of 
view of its technological implementation, involve 
the use of ambulatory programmable delivery 
pumps that can endow cancer patients with 
3-week total autonomy (Figure 2) [10].

Circadian chronotherapeutic treatments of 
cancer have achieved successful results in the 
past 15 years, in particular for metastatic colorec-
tal cancer, which have been partially explained. 

Most of the time these explanations involve the 
role of circadian rhythms in the activity of drug 
processing enzymes [10]. Patients with treated 
metastatic colorectal cancer and disrupted circa-
dian rhythms show a marked decrease in overall 
survival, compared with the same tumor-bear-
ing subjects with the same treatment, but with 
 preserved rhythms (p < 0.001) [11].

In a whole-body spatial perspective, systems 
biology is used, in the context of cancer treat-
ment in general, in at least two situations: to 
represent cell proliferation (by models of the cell 
division cycle in cell populations) and to repre-
sent the fate of drugs in the organism (systems 
pharmacology). In each case, the representation 
should be multiscale, from molecules to cells, 
tissues and the whole organism, for at least two 
reasons. First, because dividing cells are con-
trolled by molecular mechanisms that must be 
modeled, not only at the single-cell level, but also 
at the cell population level for normal and for 
tumor growth and even at the level of the whole 
organism if one takes into account the necessary 
balance between antitumor therapeutic efficacy 
and unwanted toxicity to various healthy organs. 
Second, because drugs are given at the level of 
a whole organism, but move through the body, 
from compartment to compartment, to reach 
tissues and exert their actions in cells at the 
molecular level, which must be represented by 
intracellular PK and PD.

In the same way, in a temporal perspective, 
the mathematical modeling frame of differential 
equations is the best suited because cell and tissue 

Figure 2. Portable programmable device for multidrug infusion (four channels), endowing the patient with a 
3-week autonomy. 
Reproduced with permission from [107].
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proliferation on the one hand and drug diffusion 
and effects in the organism on the other hand 
are both continuous (i.e., dynamic) processes. 
The need for such a rationale to help clinicians 
design improved anticancer treatments has 
emerged from regular collaborations between 
researchers and physicians who work both in 
experimental and in clinical settings, with the 
goal to rely less on trial and error in designing 
therapeutic schedules. Cancer chronotherapeu-
tics makes the use of a dynamic modeling frame 
to represent the influence of circadian clocks on 
tissue proliferation and drug processing inevi-
table, but the use of differential equations goes 
way beyond chronotherapeutics, as is evidenced 
by recent pharmacological literature [12]. 

Mathematical models of cancer & its 
pharmacological treatments: 
a systems biology viewpoint
From mathematical models of prolifera-
tion to the proposal of optimized therapeutic 
strategies in the clinic, theoretical research 
with a therapeutic goal in oncology should 
develop according to the three main directions 
detailed in the  introduction of this article (see 
also [13]), describing: 

 � The physiological system that is perturbed in 
cancer tissues: proliferation of cell popula-
tions, described not only in cancer tissues but 
also in fast-renewing healthy tissues, since 
drugs delivered in the general circulation sel-
dom make a difference between healthy and 
cancer cells; 

 � The methods in the hands of oncologists: 
drugs and their fate from entry into the gen-
eral circulation until their impact on their 
molecular targets, desired or not, with conse-
quences for the control of cell proliferation, 
both healthy and tumor; 

 � Rational ways by which the delivery of drugs 
by clinicians may be scheduled so as not to 
hamper too much physiological proliferation 
in healthy tissues and also not to stimulate the 
emergence of drug-resistant cell clones in 
tumors, which are ways of theoretical 
 therapeutic optimization. 

The first of these directions is the represen-
tation of cell proliferation and its control by a 
description of the cell division cycle, both in 
health and in cancer, together with its control at 
the scale of a cell population, by physiologically 
structured partial differential equations (PDEs). 
In these model equations, which are intended to 

represent proliferation in a therapeutic perspec-
tive, the time evolution of the population does 
not – or not only – depend on space coordinates 
in the medium. Rather – since cancer therapeu-
tics primarily act by impacting the cell division 
cycle – it depends on physiological variables such 
as concentration of cyclins or more globally on 
a lumped variable representing physiological age 
with respect to cell cycle phase timing. Such mod-
els may be linear, thus yielding only exponential 
behavior of the evolution with time of the cell 
populations they represent [14], but it is also pos-
sible to endow them with a nonlinear feedback 
representing growth limitations due to scarcity of 
space or nutrients [15,16]. The control targets are 
the cell cycle checkpoints which ensure genome 
integrity for the cells committed to the cycle. 
These checkpoints are physiologically deter-
mined by Cdks, their inhibitors and activators, 
as described at the single-cell level for instance 
in [17], from which can be extracted simplified 
models [18] or even simpler previous models by the 
same authors and used to yield representations of 
Cdks as control inputs to cell population models 
(functions K

i - i + 1
 in equation 1) [19].
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equation 1 provides an illustration of physiologi-
cally structured proliferation models at the cell 
population level: the Von Förster–McKendrick 
model. n

i
, the variables that are solutions of the 

equations, are cell numbers (or densities) in the 
ith phase of the cell cycle at time t and age-in-
phase a, phase I being the last phase (mitosis); d

i
 

and v
i
 are death and progression speed terms in 

phase i whereas the K
i - i + 1

 terms represent transi-
tion functions between phases. All these terms 
are functions that depend on time and physi-
ological age and can be blocked or enhanced 
by external control. The total number of cells 
at time t is the sum of cells over all ages and all 
phases [14].

The second direction, molecular PK–PD of 
anticancer drugs, describes by ordinary differ-
ential equations (ODEs) the fate in the organism 
of therapeutic molecules used in oncology, at the 
cell and whole-organism levels, from its entry 
into the general circulation until its ultimate 
cell effects, either on the DNA or on determi-
nants of the cell cycle machinery. This complete 
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process, from the entry of a drug into the general 
circulation until its effects on molecular targets 
in cells, passing through molecular binding 
to proteins in blood, partial renal and hepatic 
clearance, transport from blood to interstitial 
peripheral tissues and from there to intracellular 
medium, should be described by chemical rules 
based on the law of mass action or Michaelian 
kinetics when applicable, in a systems biology 
perspective. Recall that according to a well-
known mnemonic motto, “pharmacokinetics 
may be simply defined as what the body does 
to the drug” – and this includes not only varia-
tions of blood concentrations but also of tissue 
concentrations and intracellular drug process-
ing – “as opposed to pharmacodynamics which 
may be defined as what the drug does to the 
body” [20] – that is to say, for cancer treatments, 
molecular modifications of intracellular targets 
and secondary effects on tissue proliferation. A 
physiological concern about the representation 
in the PK part of actual body compartments, 
intracellular and extracellular organ after organ, 
should be present here, if one wants to take into 
account variations in drug response in a popu-
lation of patients. This cannot be obtained 
through a statistical shortcut between genes 
and individuals, but by taking advantage of any 
existing knowledge about the mechanisms that 
are damaged – or reinforced – when cell targets 
are hit by drugs and of the mechanisms involved 
in drug processing by enzymes and transport-
ers. This cannot be obtained in a physiological 
systems biology perspective through compart-
mental modeling, but can only be defined by 
concentration curve fitting and the definition 
of sheer descriptive characteristics, such as drug 
half-lives and peak drug concentration. The PD 
part of this modeling is a mechanistic representa-
tion of intracellular drug metabolism and should 
include the description of the molecular signal-
ing cascade, from DNA damage performed by 
cytotoxic drugs, its detection by sensor proteins, 
transmission to the protein p53, until subsequent 
repercussions (e.g., cell cycle arrest, DNA repair 
and apoptosis launching) on the proliferation 
model at the cell population level. Not all of 
these steps in molecular PK–PD models may 
always be observed and scarcity of available data 
often induces the use of shortcuts between some 
of them, while maintaining detailed molecular 
description levels between others, according 
to the clinical problems under consideration. 
Nevertheless, starting from physiological prin-
ciples and using techniques of model reduction, 
from complex to simple, should be preferred to 

oversimplified models strictly based on the avail-
ability of data, which will soon become obsolete 
when more elaborate investigation techniques 
are available, such as those that should come 
from constant progress in intracellular imagery.

Last but not least, in the perspective of 
applications to the clinic, the goal of the third 
direction of research is to optimize the deliv-
ery of anticancer drugs by using optimization 
algorithms, designed with the aim to destroy 
as many tumor cells as possible under the con-
straint of limiting unwanted toxic side effects 
to healthy cells. To this toxicity constraint, 
which concerns healthy cells, one may also add, 
whenever relevant mechanisms are known, 
another constraint on the unwanted drug-
induced emergence of drug resistance in cancer 
cells. Optimization under constraints applied 
to therapeutics is a mathematical formulation 
of the usual trade-off, not specific to oncology, 
between therapeutic efficacy and toxicity, which 
aims to identify the best drug delivery strategy in 
a given biological or clinical context that will not 
be detrimental to the patient’s health through 
unwanted side effects. It is important to note 
that optimized therapeutic control on cell and 
tissue proliferation can seldom be called optimal 
control, in the sense of engineering, for optimal 
control usually means optimization – possibly 
in real time – of a projectile trajectory, which is 
here a programmed drug infusion schedule in a 
deterministic PK–PD representation, to reach a 
well-defined and attainable target. In the case 
of cancer therapies such a target can only be 
eradication of the tumors, which is not always 
possible, or at least their containment under a 
given proliferation threshold, which is not easy 
to define. Furthermore, clinical feedback inputs 
for the adaptation of dose schedules occur on a 
time scale that makes human adaptation more 
advisable than real-time automatic control. For 
these reasons, relating to cancer therapeutics, it 
is more modestly spoken of optimization than 
of optimal control.

Mathematical models of cell 
proliferation & its control
Mathematical or physical models, designed on 
physiological grounds, which describe cell and 
tissue proliferation, are many and have been par-
tially reviewed elsewhere [13]. Some of them are 
designed to mimic macroscopic tumor growth in 
various physical conditions, but do not include 
molecular targets for drugs. In particular this 
is the case for agent-based models, which are 
stochastic, not deterministic, with the double 
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drawback of leading to computationally very 
expensive simulations, presently limited to 
approximately 106 cells in development and, 
more importantly, to images that may mimic 
the physical phenomena under study, but with-
out anyone being able to analyze them from a 
mathematical point of view. This point is impor-
tant, for scores of simulations with various sets 
of parameters will never replace a demonstration 
about the existence of a property or the feasibil-
ity of an optimization method. Nevertheless, 
agent-based models are interesting as guide-
lines to building deterministic models. Other 
models are deterministic and include molecular 
targets, but stick to a single cell, skipping the 
cell population perspective that is essential in 
the representation of controlled (in health) or 
uncontrolled (in cancer) tissue proliferation. 
I advocate, rather, physiologically structured 
PDE models to represent the cell cycle in cell 
 populations because: 

 � They can be designed so as to include the 
molecular targets of drugs that act by damag-
ing the DNA, resulting in cell cycle arrest, but 
also of drugs that will directly induce apopto-
sis or slow down the effects of growth factors 
or directly block cell cycle progression 
(e.g., Cdk inhibitors); 

 � They are positioned at the right level of 
description to represent controlled and uncon-
trolled cancer proliferation, which is a matter 
of cell populations, not of a single cell, even if 
at the single cell level detailed physiological 
ODE models are available that accurately 
describe the cell division cycle [17]; 

 � They are deterministic – which may be ques-
tionable when small cell numbers are consid-
ered, but this is hardly the case when tumors 
reach a clinical stage, approximately 
5 × 105–106 cells – and thus make it possible 
to rigorously predict the behavior of a tissue 
proliferating freely or submitted to an external 
therapeutic control. In this respect, theorems 
may help, not only by telling us for instance 
that under given hypotheses a considered 
therapeutic means will not be successful, but 
also by allowing theoretical comparisons 
between proposed treatments by their 
 predicted outputs; 

 � They are amenable to the adjunction of some 
stochastic components when uncertainty 
exists on the conservation laws that are repre-
sented by the differential equations and con-
versely when gross behavior must be rigorously 

predicted – in the mean – from stochastic 
modeling, such deterministic models can be 
obtained from probabilistic rules by averaging 
according to a probability distribution; 

 � They are computationally much more effec-
tive and mathematically (theoretically and 
numerically) better mastered, allowing the 
management of larger observation times than 
the so-called agent-based models that rely on 
physical and statistical rules applied to the col-
lective behavior of individual cells and are 
quickly limited to too small cell numbers. It 
is important to note that comparisons at small 
cell numbers (roughly less than 10,000 cells, 
corresponding to a developmental stage at 
which a tumor is not clinically detectable, but 
already viable) between the outputs of agent-
based (discrete) and PDE (continuous) mod-
els, physiologically or spatially structured, are 
still the object of active research in the com-
munity of mathematicians. The aim of such 
research is not only to obtain so-called ‘motifs’, 
experimentally observed, but also to under-
stand the way agent-based models evolve and 
to give effective analytical laws of their behav-
ior [21], in the spirit, mutatis mutandis, of 
Johannes Kepler for the movements of planets.

As an example, equation 1 shows a physiologi-
cally structured linear PDE model, referred to as 
the von Förster–McKendrick model, designed 
to represent the cell cycle in a proliferating cell 
population [14]. The first equation is a conserva-
tion equation, stating that all variations of the 
population number (or density) in the ith phase 
are due either to death or to transition to the next 
phase. The second equation is a boundary condi-
tion, stating that, at all times, all cells at age 0 in 
the ith phase originate from cells that have passed 
the transition from the previous phase. The third 
equation is the same as the second, except that it 
describes cell doubling at mitosis (the Ith phase). 
The behavior of such a linear model is exponen-
tial in time and is shown to be governed, in the 
mean and for large time periods, by a growth 
(or Malthus) exponent; a constant times the 
inverse of the doubling time, which hence may 
be seen, rather than the total number of cells at 
time t, as the output of the model, such as when 
controlled by drugs or by other attempts to re-
establish a physiological control. Furthermore, 
this Malthus exponent may be compared with 
experimental measurements of cell population 
growth. Of note, it is an eigenvalue and makes 
sense only in the case of a linear model, but in the 
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case of nonlinear models, one may nevertheless 
calculate eigenvalues in models linearized around 
particular system states, as seen elsewhere [15,16].

The parameters of such age-structured 
models, in which age is not a parameter, but a 
structure variable, not to be identified, can be 
measured in cultures of cycling cells. This can 
be performed by fluorescence techniques (fluo-
rescent ubiquitination-based cell cycle indicator 
[FUCCI] reporters) applied to sets of individ-
ual cells, as shown by Sakaue-Sawano et al. [22] 
and using methods such as those presented by 
Sherer et al. [23] to identify transition rates from 
phase duration probability density functions. 
Identifying these parameters in vivo will cer-
tainly be much harder since fluorescent report-
ers on the cell cycle are not available in living 
individuals. But at least theoretically, optimized 
treatments designed from cell cultures can be 
tested in animal models and then possibly in 
clinical trials with comparison to reference 
standard treatments. As previously mentioned, 
the addition of physiological control from a 
quiescent phase into the proliferation phase is 
also possible, as previously described [15,16], but 
also more classically as described by Mackey [24] 
with extensions such as those described by 
Adimy et al. [25] and Bernard et al. [26].

From a mathematical point of view, the inter-
est of further considering nonlinear models is 
to obtain richer behavior of the solutions, in 
particular convergence to a stationary value or 
sustained oscillations. Physiologically structured 
PDE models may be transformed into delay dif-
ferential equation (DDE) models, with supple-
mentary hypotheses and usually with the con-
sideration of a unique phase for the whole cell 
cycle resulting in one added delay as described 
by Adimy et al. [25], although multiple delays 
corresponding to cell cycle phases may also be 
considered, as described by Bernard et al. [26]. In 
particular, this has been carried out for hemato-
poiesis models, with the additional consideration 
of a quiescent cell population to the prolifera-
tive one and exchanges between them, making 
them nonlinear by the introduction of a nega-
tive feedback function on proliferation. Their 
application to various hematological diseases is 
reviewed by Foley and Mackey [27]. DDE mod-
els can reproduce the periodic behavior of white 
blood cell production such as has been observed 
in cyclic neutropenia or in some forms of chronic 
myelogenous leukemia.

From a systems physiology point of view, 
bearing in mind future applications in the clinic, 
the main purpose of physiologically structured 

PDE or DDE models is thus to give rigorous 
conditions for the occurrence of cell population 
behaviors, such as uncontrolled growth, decay, 
sustained oscillations or convergence to an equi-
librium, that are observed in biological or clini-
cal settings, concerning healthy cell populations 
as well as cancer growth. The models should be 
structurally the same in health and in cancer, but 
with different parameters. It is possible in such 
models to represent the population dynamics of 
healthy and cancer cells either independently, 
when no direct communication exists between 
the target cells of therapeutic effects and those 
of adverse drug effects, but also in competing 
situations, for example by reaction-diffusion 
equations as described elsewhere [28].

In many occurrences, the shortage of tissue 
data to identify parameters of these physiologi-
cal models of tissue growth renders it neces-
sary to deal with more phenomenological ODE 
models, exponential (valid only at very early 
stages) [29], logistic, Gompertz or extended 
from Gompertz (e.g., Hahnfeldt [30]), which 
have little or no physiological or molecular 
ground, but are easy to identify on growth 
curves [31]. Obviously, when such simplified 
models may be shown to exhibit, for clinical 
needs, the same behaviors as more complex 
physiological ones, they will be preferred 
for the sake of conceptual parsimony (often 
referred to as Occam’s razor [102]) and compu-
tational economy. Indeed, mathematical mod-
eling is never a goal in itself: it all depends on 
the answer to a “modeling, what for?” question 
when one is concerned with clinical applica-
tions. When too few data are available and not 
much is known of the physiological mecha-
nisms, phenomenological representations such 
as direct effects on death rates or proliferation 
rates in ODE models are always an alternative 
solution, as described by Clairambault [31] or 
by Panetta et al. [32,33].

Yet to theoretically study the behavior of prolif-
erating cell populations in physiological or patho-
logical situations, with external control by drugs on 
different targets, physiologically structured PDE 
models of the cell cycle remain the best adapted. 
The known physiological impact of circadian 
clocks on cell cycle proliferation has been studied 
using such theoretical models elsewhere [34]. More 
generally, physiologically structured PDE models 
have the ability to include any molecular target 
for cytotoxic drugs that have different modes of 
action and are often S-phase or M-phase specific. 
They are rich enough to potentially account for 
the molecular action on the growth inhibition of a 
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tumor tissue of an S-phase-specific cytotoxic drug, 
such as irinotecan and/or 5-fluorouracil combined 
with an EGF receptor-targeted antagonist (e.g., 
cetuximab, presently in use in the clinic [35], or 
erlotinib [36]) for a corresponding PDE model and 
many other growth factor-inhibiting drugs.

Mathematical models for 
physiological molecular PK–PD: 
molecular, cell, tissue & whole body 
In recent years, pharmacological literature has 
reported many success stories and also less suc-
cessful attempts towards targeted treatments, 
such as monoclonal antibodies, associated or 
not with cytotoxic molecules (e.g., gemtuzumab 
ozogamicin, recently withdrawn from the US 
market [103]), new galenic forms or physically 
aided (e.g., by magnets) vectors for drug delivery 
as close as possible to tumor tissues. It is not the 
purpose of this article to review them, but rather 
to stress the fact that such, sometimes wonderful, 
targeted therapies cannot do all the jobs, since 
they may at times show unpredicted toxic side 
effects that also have to be taken into account and 
that ‘old’ drugs, such as 5-fluorouracil, can still 
be very useful, especially in combined therapies.

Classical anticancer drugs are administered 
every day in successful combinations into the 
general circulation at the whole-body level in 
patients, have toxic side effects on healthy tis-
sues and may be delivered according to differ-
ently ordered schedules. The synergistic effects 
of drug combinations have been well addressed 
from a rather classical point of view mixing 
genetics and statistics [37], but not in a physiolog-
ical perspective. This inevitably comes back by 
pragmatic clinical considerations to a still pres-
ent motivation to represent the effects of drug 
combinations in a physiological and dynamic 
way by whole-body PK–PD models.

Indeed, relating blood PK to therapeutic effi-
cacy and toxicity in a direct way is hopeless if 
one does not take into account not only blood 
PK, but also tissue PK, together with tissue PD 
models – or better said, ‘PD-population dynam-
ics’ models of the effects of drugs on both wanted 
and unwanted targets in cell populations, tumor 
and healthy. Various whole-body compartmental 
PK ODE models have been published in recent 
years in excellent journals dedicated to PK and 
its clinical applications in oncology. They repre-
sent state-of-the-art pharmacological modeling, 
sometimes being ‘semiphysiological’ [38]. Rather 
than reporting these compartmental models that 
are easily extendable to user-friendly software 
for population studies, this article will focus on 

physiological PK–PD modeling at the level of an 
individual patient, which in my opinion is the 
immediate future of modeling for therapeutics.

As mentioned in the first section, drugs act 
at the molecular level in peripheral tissues but 
are delivered (possibly after previous intestinal 
absorption) into the central blood compart-
ment at the whole-organism level. Physiological 
representations of the fate of drugs must take 
into account this multiscale setting and rely on 
equations dealing with drug concentrations in 
blood and tissues for whole-body physiologically 
based PK (WBPBPK, a term coined by Malcolm 
Rowland [12]) and molecular reactions based on 
law of mass action or Michaelian kinetics for 
intracellular PK and PD (hence, WBPBPKPD). 
Physiologically based modeling implies going 
beyond roughly descriptive blood PK parameters 
(e.g., half-lives, maximum concentration, peak 
concentration time and area under curve) and as 
much as possible involves tissue characteristics, 
such as enzymatic activities for cell PK and in 
particular DNA double-strand breaks for cell PD.

In more detail, PK–PD molecular model 
design for anticancer drug optimization is con-
cerned with drug concentrations in the plasma, 
in organs and in cell populations that are drug 
targets, be they desired (tumor tissues) or not 
(healthy tissues subject to toxic side effects). The 
molecular choice of mechanism description, both 
for PK (drug transformations from its input in 
the general circulation) and for PD (action on 
the target at the cell and tissue levels) makes such 
models amenable to take into account by differ-
ent parameters genetic (e.g., enzymatic polymor-
phism) and epigenetic variations between indi-
viduals. This may subsequently lead to clearly 
identifiable (provided of course that correspond-
ing biomarkers are available, which unfortunately 
is not always the case) physiological characteriza-
tion of different profiles directed towards indi-
vidualized treatments. To date, most efforts have 
been made on drug processing enzyme genet-
ics, with limited success [6], but it is not unlikely 
that by taking physiological differences between 
patients, which are not always explained by 
genetics, into account in drug processing, one 
can improve this situation. This is at least one 
non-negligible motivation to study PK–PD on 
physiological rather than only genetic bases.

Numerous PK–PD models based on dif-
ferential equations exist for various anticancer 
drugs and some of them are molecular based, 
but not all of them are physiologically based 
(they more often rely on compartment design 
that is phenomenologically guided by drug 
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blood concentration curve fitting, with hardly 
any physiological considerations) and even fewer 
among them are whole-body designed.

An important issue for these models is the 
experimental identification of their parameters, 
since they include much more than easily acces-
sible blood PK characteristics. Dealing with tis-
sue PK and PD, they must be identified initially 
in cell cultures (to begin with, immortalized 
cell cultures, then ex vivo transplants, which are 
shorter lived). Then, passing from in vitro to 
in vivo, in laboratory animals by using healthy 
tissue samples and samples from xenografts 
standing for in vivo host tumors and eventually in 
clinical trials, by using inverse problem analysis 
techniques, for example. As a whole this is a long 
process and hardly ever yields effective quantita-
tive predictive models in a reasonable timeframe. 
More modestly, qualitative predictions may be 
obtained to compare different treatment sched-
ules between them and then test these predic-
tions in clinical settings, with the outcomes being 
response to treatment and long-term survival. 

An example of a model for WBPBPK for 
capecitabine has been reported [39]. A theoretical 
proposal of an essentially intracellular PK–PD 
model, nonetheless including whole-body infu-
sion, for the combined delivery of 5-fluororacil 
with folinic acid (a potentializing association 
used in the treatment of colorectal cancer) has 
also been described [10]. An illustration of the 
output of this ODE model with periodic drug 
infusion is shown in Figure 3. The equations of the 
ODE system rely on the law of mass action and 
Michaelian kinetics when enzymes or transport-
ers are concerned according to what is known of 
the intracellular physiology of drug processing. 
Other models based on the same physiological 
multiscale principles, with law of mass action and 
Michaelian kinetics, in particular for irinotecan 
[Ballesta A, Dulong S, Abbara C et al.: A combined exper-

imental and mathematical approach for molecular-

based optimization of irinotecan circadian delivery. 

Manuscript Submitted] [40] and cytosine arabinoside 
[104], are currently being designed and experimen-
tally identified in cell cultures or in laboratory 
animal models. The last of these two models is 
in fact a hybrid model, where continuous differ-
ential equations for drugs and for regulatory pro-
teins exert their actions on a discrete agent-based 
model for cell population dynamics [104]. 

If one takes into consideration within-subject 
variability in the response to drugs, as discussed 
in the first section of this article, the impact of 
circadian clocks on drug processing should be rep-
resented by periodic functions to modulate the 

maximal activity (V
max

) of enzymes or transporter 
proteins. Such periodic functions may be plain 
sine waves in the most elementary form of circa-
dian modeling, but also much more detailed ODE 
models of the clock [41], when detailed knowledge 
of their function must be taken into account. This 
may be the case when a reverse impact of cyto-
kines on the clock is to be considered, such as 
tumor-emitted cytokines, which has already been 
shown experimentally [42] and clinically [43]. In 
this case, targets for toxicity to the central and 
to the peripheral clocks may also be added to the 
healthy tissue toxicity part of the whole-body 
model, since some anticancer drugs have been 
proven to induce circadian clock disruption [10]. 

In the same way, in a whole-body perspective 
going beyond the representation of only prolifer-
ating tissues (healthy and tumor), targets of tox-
icity for nonproliferative cell populations, such 
as cardiac (anthracyclines) or neurological (e.g., 
oxaliplatin) should be considered. Beneficial 
effects on the surrounding tissues of additional 
drugs, such as anti-inflammatory, antiangio-
genic, matrix metalloprotease inhibitors and 
pH-modifying immunostimulators may also be 
represented according to their effective associa-
tions in specific combined treatments used in 
the clinic. They are numerous and it is not the 
purpose of this article to review them, assuming 
that cancer is primarily a disease of uncontrolled 
cell and tissue proliferation. When molecular 
models are available to take these effects into 
account, they should be used, depending on the 
treatments that are under study in the clinic.

Therapeutic optimization: 
optimization algorithms 
for therapeutic control of 
tissue proliferation
The practical aim of these models, representing 
both the system to be controlled on the one hand 
(proliferating cell populations in a whole-body 
setting) and the therapeutic control methods 
on the other hand (drugs, their fates and their 
effects on proliferating tissues in a living organ-
ism), is to give clinicians a rationale to handle 
treatments of cancer in the best possible way. By 
‘best possible way’ it is meant that treatments of 
cancers are always a compromise between thera-
peutic efficacy, that is destruction of tumor cells 
(the objective) and preservation of physiological 
functions by healthy cells (the constraint). 

An optimization problem under constraints 
is the mathematical formulation of a trade-off: 
given an objective and a constraint, its solution, 
when it exists, is a control function on the system 
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(a treatment, that is a drug delivery schedule in 
the case of therapeutics) that will maximize the 
objective function while satisfying the constraint. 
Most treatments of cancers that use cytotoxic or 
cytostatic drugs arrest or slow down the cell cycle 
in fast-renewing cell populations and this holds 
true not only for tumors, but also for fast-renew-
ing healthy tissues, such as gut, skin or bone mar-
row. Efficient anticancer therapeutics manage to 
hit cancer cells without damaging healthy cells 
too much, but rules to achieve this goal are rare. 

One way to do it is to take advantage of dif-
ferences between healthy and cancer cell popula-
tions with respect to observed circadian rhythms 
of drug toxicity.

Using a simple cellular automata model of the 
cell division cycle in cell populations [44,45], it has 
been suggested that desynchronization between 
phases of the division cycle, that is an extended 

overlap of phase transition probabilities between 
cells in the cell population (assumed to be the case 
for cancer cells) together with lesser sensitivity to 
gating at checkpoints by circadian clock controls, 
results in enhanced sensitivity to drug damage. 
This is true provided that cell cycle phase-sensitive 
drugs, such as 5-fluorouracil, are delivered accord-
ing to a circadian scheme applied at times when 
healthy cell populations (assumed to be better 
synchronized and better entrained by  circadian 
gating) are relatively protected from drugs.

Coming to somehow support from a theoreti-
cal point of view a current hypothesis according 
to which cancer cell populations are less syn-
chronized with respect to cell cycle timing, pre-
liminary unpublished mathematical results, that 
is, theorems, not simulations nor experiments, 
using physiologically structured PDE models, 
show that desynchronization between cells yields 

1. 5-FU plasma infusion

2. Intracellular FdUMP concentration

3. Folinic acid plasma infusion

4. Intracellular MTHF concentration

5. FdUMP-induced factor
triggering ABC transport

6. ABC transporter activity

7. Enzyme TS, unbound to FdUMP

8. Reversible TS–FdUMP complex

9. Irreversible complex
TS–FdUMP–MTHF

10. Ratio of bound to unbound TS
(i.e., [variable 8 + variable 9]/variable 7)

Figure 3. Simulation of an ordinary differential equation system representing intracellular 
concentrations and effects on the target enzyme thymidylate synthase of a combined 
treatment by 5-fluorouracil and folinic acid. A total of nine variables constitute this system, from 
periodic plasma infusion of the two drugs until the decay of free TS due to reversible and then 
irreversible binding to FdUMP. 5-FU is transformed in the cell to its active form FdUMP and similarly 
folinic acid is transformed to MTHF. An ABC transporter, expelling the drug from the intracellular 
medium and triggered through an assumed intermediate factor by FdUMP, is here supposed to be 
responsible for drug-induced resistance to the treatment. FdUMP binds to TS and the secondary 
binding to them of MTHF makes the complex indissociable, resulting in free (unbound) TS loss. The 
last track is the ratio between TS–FdUMP bound complexes, reversible or not, and free (unbound) TS. 
Times are in hours, vertical units are arbitrary. Further details can be found elsewhere [10].
5-FU: 5-fluorouracil; ABC: ATP-binding cassette; FdUMP: Fluorodeoxyuridine monophosphate; 
MTHF: Methylene tetrahydrofolate; TS: Thymidylate synthase.
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faster growth (i.e., results in higher Malthus 
exponents). This idea is currently being experi-
mentally investigated by cell cycle fluorescent 
reporters (e.g., fluorescent ubiquitination-based 
cell cycle indicator reporters) [22] recorded in 
samples from healthy and tumor tissues. A con-
jecture is first that such desynchronization might 
be a hallmark of cancer and second that lesser 
sensitivity to synchronizing signaling from the 
hypothalamic circadian clock might be responsi-
ble for this loss of synchrony, a marked difference 
between healthy and cancer tissues that could 
subsequently be exploited in therapeutics. This 
conjecture is currently investigated, among other 
questions, in the European Systems Biology 
Research Network (ERASysBio) ‘C5Sys’ [105].

Using a completely different, deterministic 
model of the PK–PD of a noncell cycle phase-
specific drug (e.g., oxaliplatin) representing 
simultaneous growth of healthy and cancer tis-
sues by simplified ODEs, with the (rather strong, 
but not without experimental support) assump-
tion of 12-h-shifted sensitivity peak time to the 
drug in the two tissues, it has been shown that a 
numerical optimization technique, as developed 
in an earlier work [46], yielded a proposed optimal 
drug delivery time schedule, maximizing antitu-
mor efficacy under the constraint of absolutely 
keeping unwanted toxicity on healthy cells (in 
that case villi cells in the gut) under a  tolerability 
threshold. This is illustrated in Figure 4.

This was a proof of concept that optimization 
of therapeutic control under dynamic toxicity 
constraints is possible. Others have also tackled 
this problem in more classical settings, proposing 
theoretical solutions in both  cell-cycle-specific 
and nonspecific cases [47].

Yet, complex as it may seem to manage simul-
taneously healthy and cancer populations toward 
this goal, another even more difficult issue is 
encountered in the clinic when empirically opti-
mizing anticancer treatments; the need to avoid 
the emergence of resistance to drugs in cancer 
cell populations as much as possible. The mecha-
nisms of drug resistance are many and not all 
are understood. Some are due to unpredictable 
mutations, others seem to be drug induced, that 
is triggered by long exposure to the same drug 
(rather than high doses: on the contrary, giving 
high doses in a short time could be beneficial 
to patients, as long as no heavy toxic side effect 
occurs [48]). Some may be due to intracellular 
enhancement of physiological mechanisms such 
as overexpression of ATP-binding cassette trans-
porters or drug detoxication enzymes and others 
may be due to resistant cell selection by muta-
tions in the population of (genomically unstable) 
cancer cells under the pressure of drugs, accord-
ing to a ‘cell Darwinism’ hypothesis. It is not 
clear whether acquired drug resistance in cancer 
cells is reversible or not. Tackling the problem 
of the emergence of drug resistance in cancer 
cells is thus much more difficult than optimizing 
under an unwanted toxicity constraint, and to 
my knowledge, no satisfactory representation has 
been proposed for it so far. It is nevertheless clear 
that, again, it will be necessary to consider the 
level of proliferating cell populations in order to 
make advances in the right direction. If patho-
physiological mechanisms are unraveled and may 
be represented by molecular-based equations, 
then optimization algorithms associating sev-
eral anti cancer drugs, to limit the emergence of 
resistance to one if it were given in monotherapy, 
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Figure 4. Optimized drug infusion flow over 2 days followed a recovery period in a 1-week chronotherapy course intended 
to limit (without eradication) cancer growth while maintaining toxicity to healthy villi cells under an absolute tolerability 
threshold, here the preservation of at least 60% of the equilibrium population cells. This 1-week course must be followed by 
subsequent courses to prevent tumor regrowth. Further details can be found elsewhere [17].
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may be used together with limited toxicity con-
straints, as has been detailed from a statistical 
viewpoint [37]. But much remains to be done 
both experimentally and theoretically to better 
understand the mechanisms of drug resistance in 
cancer cell populations, in particular by adaptive 
dynamics in a genetic evolutionary perspective, 
if we want to take into account the limitation of 
emergence of drug resistance as a constraint in 
an optimization problem. To date, optimization 
has mainly been performed on ODE models, but 
a genetic evolutionary perspective taking into 
account cell selection pressure by drugs, such as 
in long exposure schemes, as an environmental 
factor should again drive us back to PDE mod-
els, with a genetic trait  occurring as a structure 
variable [49–51].

It should also be noted that such models, 
designed to improve therapeutic control on tis-
sue proliferation, are open-loop. That is, they 
do not claim to achieve optimized control using 
information from the effect of the treatment on 
the target system, as do automated closed-loop 
systems designed for the real-time control of 
glycerin or blood oxygenation. As previously 
mentioned, the feedback in oncology comes 
from the clinic and the complexity of the treat-
ment response (therapeutic response in terms of 
radiologic image shrinkage; various toxicities, 
clinically detectable or only biologically; emer-
gence of drug resistance; positive or adverse 
effects on the immune system) makes it hardly 
amenable to automatic correction in an optimal 
control perspective, as in the case of the trajec-
tory of an airplane with a given destination and 
rather simple constraints, for example.

Finally, it should be noted that theoretical 
optimization of anticancer treatments as dis-
cussed here is not limited by number of drugs 
used in combination therapies, making it a 
potentially useful tool to mimic and rationalize 
modern treatments of cancer, which in their vast 
majority rely on the associations of drugs acting 
on different cell targets.

Individualizing treatments in 
oncology: the present & the 
near future
From the point of view of personalized medi-
cine, the models sketched above for tissue pro-
liferation (and its control) and for drug disposi-
tion present the advantage to be physiologically 
adaptable to individual patients insofar as they 
depend upon parameters that are in principle 
(or will be some day) identifiable by biological 
samples. Parameters of enzymatic activity that 

are the affinity constant (K
m
) and maximum 

velocity of reaction (V
max

) in a Michaelian rep-in a Michaelian rep-
resentation (mean, peak and trough V

max
 if one 

assumes the fact that V
max

 may be subject to 
circadian variations) may be considered as char-
acteristic of each individual for drug processing 
enzymes. When these enzymes present genetic 
polymorphism with a clearly identified gene, 
then one can hope that reading any patient’s 
complete genetic code on a cellular phone, 
which already belongs to a very close future 
given present fast developments of information 
and communication technology [106], may give 
an insight to her or his biological characteristics, 
making it possible to adapt treatments to her or 
his case. Of course, this is not specific of cancer 
treatments, but given that the genomic instabil-
ity is one of the hallmarks of cancer, finding 
genetic mutations responsible for mutated forms 
of proteins, such as KRAS for the possible treat-
ment of metastatic colorectal cancer by EGF 
receptor antagonists [52], may prove quite valu-
able. Of note, pharmacogenomic profiling in 
view of treating cancer by targeted therapies 
seems to have been more successful recently 
when searching for mutations or chimeric 
fusions of genes coding for proteins involved 
in pathological intracellular pathways (e.g., 
KRAS, BCR-ABL, PML-RARA, Flt-3, Her2) 
than of specific drug-processing enzymes and 
more should come from genome-wide associa-
tion studies. However, this situation may be due 
to the fact that the level of gene description, 
rather than the protein activity level, has been 
the most explored in the recent past.

Indeed, proteonic activity is not always 
dependent on only one gene and even assum-
ing that all genes coding for a protein have 
been identified, epigenetic modifications may 
also explain the silencing of tumor suppressors 
or overexpression of oncogenes associated with 
cancer [53]. Examples of epigenetic variations 
that might explain fitness of cancer cells to a 
changing environment have been discussed [54]. 
Together with the fact that modifications of the 
intracellular or extracellular environment (in 
particular perturbed synchronizing messages 
from a disrupted circadian clock) may induce 
enhancement of tumor progression [55], these 
observations suggest that genetic tests, valuable 
though they are, may not be enough to catch 
between-subject and within-subject variability 
in cancer progression and in patients’ responses 
to drugs. Hence, modeling at a physiological 
level (proteins and protein activity) of both tissue 
proliferation and drug fate in organisms may be 
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a preferable way to work toward the prediction 
of response to anticancer treatment and its opti-
mization. Of course, many biomarkers remain 
to be designed to make physiologically based 
mathematical models identifiable from biologi-
cal samples and clinically applicable, but this is 
a general issue that cancer biology has to cope 
with in the immediate future.

Conclusion & future perspective
Apart from what is discussed in this article 
on the issue of designing more biomarkers to 
adapt therapies in individual patients, or rather 
in groups of patients (e.g., slow and fast acety-
lators), according to phenotypic – rather than 
only genotypic – profiles, other tracks remain 
to be explored. Areas where progresses in 
experimental and theoretical biology (includ-
ing mathematical modeling) are expected to 
develop include:

 � Immunotherapies: that is using the patient’s 
individual built-in defenses against tumor cells;

 � Better understanding of the emergence of resis-
tance in cancer cell populations: what are the 
concerned mechanisms that may differ from 
one subject to the other, from one situation to 
the other and how should they be overcome by 
adapted combined therapeutic strategies? (See 
previous section regarding optimization);

 � Noncell-killing therapeutics, with the objec-
tive to be less toxic to healthy tissues: instead 
of only killing tumor cells, such therapeutics 
could let them stagnate and then naturally 
disappear in an environment in which they 
cannot thrive, to the advantage of healthy 
cells. This is at least the case for the treatment 
of a rare form of leukemia, acute promyelo-
cytic leukemia, in which the delivery of a 
redifferentiating agent (combined or not with 
a classical cytotoxic drug) allows the differen-
tiation blockade to be removed and cures up 
to 80% of patients [56];

 � Systems biology representations toward the 
prediction and optimization of therapeutic 
outcome: not in an exhaustively descriptive 
way of intracellular signaling networks but for 
specific diseases and their instances in indi-
vidualized patients, in particular by physiolog-
ically based mathematical modeling, so as to 
identify so-called ‘hubs’ in intracellular signal-
ing pathways and hit them by targeted thera-
pies [57]. This is indeed the case of the example 
of acute promyelocytic leukemia, where the 
protein responsible for the differentiation 

blockade is the chimeric protein encoded by 
the PML–RARA fusion oncogene, which is 
successfully hit by all-trans-retinoic acid and 
other mutations, such as Flt-3 duplication [56], 
and is already the object of  therapeutic assays 
in the clinic.

Systems biology applied to drug discovery, 
disposal and delivery optimization has already 
been called systems pharmacology [58]. It usu-
ally constitutes the description of physiologi-
cal networks, that is intertwined intracellular, 
tissue-level and whole-body signaling pathways, 
representing the fate of drugs from their infu-
sion into the general circulation until their 
effects are recorded at the molecular and whole-
organism scale. These signaling pathways are 
described by ordinary differential equations; 
the parameters and control functions in these 
equations contain both between-subject and 
within-subject variability, which makes sys-
tems biology and systems pharmacology 
models amenable to individualization. In the 
case of cancer treatments, I propose the addi-
tion to this perspective of a representation, in 
terms of physiologically structured population 
dynamics under control, of the evolution of the 
cell populations that are targets of the drugs 
(wanted or unwanted) in order to predict treat-
ment outcomes on the actual drug targets and 
not indirect indexes. At the other end of the 
pharmacotherapeutic chain, I propose a sys-
tematic use of optimized therapeutic control 
algorithms under the constraints of limiting 
adverse drug response effects, which is already 
rather well understood and quite reachable, and 
also emergence of drug resistance in cancer tis-
sues, which is a more distant objective due to 
the complexity of the involved mechanisms. 
Both of these prospects call for enhanced col-
laboration between mathematicians, biologists, 
pharmacologists and clinicians, which could be 
better obtained in integrated cancer research 
centers, some of which already exist, thus far 
mainly in the USA.
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Executive summary

Pharmacology of cancer, variability in drug response & personalized medicine
 � Between-subject and within-subject (circadian variations) variability in the response to drugs is a constant in personalized medicine and 

they should be considered to improve treatments, especially in the case of cancer, where therapeutic progress is almost at a standstill.
 � Systems biology is called upon in this context to represent, by physiological rules and equations, both the means of action (the fate of 

drugs in the organism) and their targets, that is cell populations, both healthy and tumoral.
Mathematical models of cancer & its pharmacological treatments: a systems biology viewpoint
 � Mathematical models and methods should be developed along three axes:

– Representation of cell proliferation by physiologically based models of the cell cycle in cell populations.

– Pharmacokinetics–pharmacodynamics (PK–PD) of anticancer drugs.

– Optimization algorithms to optimize multidrug treatments delivered to a central blood compartment.
Mathematical models of cell proliferation & its control
 � Physiologically structured partial differential equation models are the best models to theoretically study the effects of anticancer drugs on 

proliferation in cell populations.
 � They can be complexified or simplified according to the problem under study and the availability of data to identify their parameters.

Mathematical models for physiological molecular PK–PD: molecular, cell, tissue & whole body
 � PK–PD of anticancer drugs should be represented by ordinary differential equation models in a multiscale setting: whole-body, tissue, cell 

and molecular effects.
 � Parameters of these models characterize genetic polymorphisms and other between-subject variations.
 � Their modulation by inputs from circadian clocks must not be neglected.

Therapeutic optimization: optimization algorithms for therapeutic control of tissue proliferation
 � Optimization algorithms yield solutions, in terms of best proposed drug treatments (e.g., delivery schedules to be implemented in 

programmable pumps in the clinic) to an optimization problem, that is maximizing tumor cell kill under the constraint of limiting 
unwanted adverse drug effects and if possible (but more difficult) also limiting the emergence of resistant tumor cell subpopulations.

 � They are not limited in number of drugs and may yield optimized combined therapies of different drugs.
 � They take into account individual physiological characteristics and yield optimal individualized therapies.

Individualizing treatments in oncology: the present & the near future
 � Individualization of treatments with a systems biology and systems pharmacology viewpoint must certainly take into account 

pharmacogenomic studies, especially in the near future when anyone may carry their genome sequence in their pocket.
 � Having the proteome level and the epigenetic level as a goal as well as cell and tissue environmental modifications that may be specific 

to a given individual is manageable in a systems biology perspective, provided that one has good biomarkers (which is still an unsolved 
issue in individualized medicine in general).

Conclusion & future perspective
 � New frontiers should include immunotherapy, theoretical and experimental advances in the understanding of drug resistance and 

noncell-killing therapeutics, together with a search for high-interest targets for therapies, such as the BCR-ABL chimeric protein for the 
treatment of chronic myelogenous leukemia.

 � To the usual setting of systems biology that investigates intracellular networks of signaling pathways should be added, in the case of 
cancer (a disease of proliferation), a cell population dynamics perspective describing the cell cycle in cell populations, both healthy 
and tumoral.

 � Optimization of anticancer treatments must be the ultimate goal in modeling cancer growth and therapy; a physiological multiscale 
systems biology perspective should be a constant concern toward this goal, as it potentially holds all ingredients to personalize 
treatments when biomarkers are available.
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