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Abstract

In recent experiments on isogenetic cancer cell lines, it was
observed that exposure to high doses of anticancer drugs can
induce the emergence of a subpopulation of weakly proliferative
and drug-tolerant cells, which display markers associated with
stem cell–like cancer cells. After a period of time, some of the
surviving cells were observed to change their phenotype to resume
normal proliferation and eventually repopulate the sample.
Furthermore, the drug-tolerant cells could be drug resensitized
following drug washout. Here, we propose a theoretical mecha-
nism for the transient emergence of such drug tolerance. In this
framework, we formulate an individual-based model and an
integro-differential equation model of reversible phenotypic
evolution in a cell population exposed to cytotoxic drugs. The
outcomes of both models suggest that nongenetic instability,
stress-induced adaptation, selection, and the interplay between

these mechanisms can push an actively proliferating cell popu-
lation to transition into a weakly proliferative and drug-tolerant
state. Hence, the cell population experiences much less stress in
the presence of the drugs and, in the long run, reacquires a
proliferative phenotype, due to phenotypic fluctuations and
selection pressure. These mechanisms can also reverse epigenetic
drug tolerance following drugwashout. Our study highlights how
the transient appearance of the weakly proliferative and drug-
tolerant cells is related to the use of high-dose therapy. Further-
more, we show how stem-like characteristics can act to stabilize
the transient, weakly proliferative, and drug-tolerant subpopula-
tion for a longer timewindow. Finally, using ourmodels as in silico
laboratories, we propose new testable hypotheses that could help
uncover general principles underlying the emergence of cancer
drug tolerance. Cancer Res; 75(6); 930–9. �2015 AACR.

Introduction
The interplay between intratumor heterogeneity (1, 2) and

perturbations in the tumor microenvironment (3–6) plays a key
role in the emergence of drug resistance in cancer cell populations.
Intratumor heterogeneity results mainly from genetic modifica-
tions (e.g.,mutations), leading, through aDarwinian-like process,
to the selection of tumor cells expressing phenotypes adapted to
the local environment (2, 7). However, intratumor heterogeneity
can also emerge from nongenetic processes mediated by either
stochastic events or epigenetic modifications (8–10). In fact,
perturbations of the tumor microenvironment induced by cyto-
toxic agents may "instruct" cells to enter a more stress-resistant
phenotype (11).

In recent experiments, performed on a number of genetically
homogeneous populations of cancer cells (including lung cancer,
melanoma, colorectal cancer, breast cancer, and gastric cancer
cells), Sharma and colleagues (12) showed that epigenetically
regulated changes in phenotype can play an important role in the
development of reversible drug tolerance. During these experi-
ments, a small subpopulation of drug-tolerant cells was consis-
tently detected, that could maintain viability in the presence of
high-dose drug therapy. These drug-tolerant persisters (DTP)were
shown to be nonproliferative and displaymarkers specific to stem
cell–like cancer cells. After a period of time, approximately 20%of
DTPs changed their phenotype to resume normal proliferation
and lost stem-like markers, still in the constant presence of the
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Major Findings
This study provides a new perspective on the inherent risks

of interventional chemotherapy in patients with cancer by
showing how the adaption of even nongenetically unstable
cell populations exposed to antiproliferative drugs can be
acted upon by selective forces, which drive the outgrowth of
rapidly proliferative drug-resistant cell populations.
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Quick Guide to Equations and Assumptions
We describe the evolution of phenotype in a well-mixed PC9 cancer cell population exposed to cytotoxic drugs [whose

concentration at time t is c(t)] using both an I-B and an IDE formalism. In general, we consider the case of constant infusion
of cytotoxic drugs (i.e., c(�) :¼c > 0) and characterize the state of each PC9 cell by its expression levels of two phenotypic traits,
survival potential and proliferation potential. In this framework, we identify a PC9 cell as having a low value of survival potential
and a high value of proliferation potential, a DTP cell as having a high value of survival potential and a low value of proliferation
potential, and a DTEP cell as having a high value of survival and proliferation potential (schematized as in Fig. 1B).

We model the key biologic mechanisms of phenotype evolution in the PC9 cancer cells, namely selection, stress-induced
adaptation, and nongenetic phenotype instability, by using three separate mathematical strategies, which are tailored to fit the
I-B and the IDE formalisms. Selection is modeled through a proliferation probability p(�,�,�) and a death probability d(�,�) (see Eqs.
1 and 3), which depend on the levels of proliferative and survival potentials of the cells, as well as on the cell microenvironment
at time t. Importantly, because DTPs and DTEPs exhibit vastly different proliferation rates, we assume that d(�,�) does not vary
with proliferation potential. On the other hand, we assume that maintaining a high survival potential in a drug-free environment
is costly to a cell and will act to reduce p(.,.,.) (refs. 13, 32, 33). Finally, we assume that p(�,�,�) is dependent on the total population
size to represent competition between cells for space and nutrients. This dependence could also be introduced in d(�,�) without
altering the qualitative results of the model.

Stress-induced adaptation of cell proliferation level is modeled by an advection term that leads to a decrease in the level of
proliferation. The speed of adaptation v(�,�;�) depends on the cell microenvironment at time t, the level of survival potential, and
the average sensitivity of the cell proliferative potential to stress-inducing agents ��. We assume that adaptation can only occur in the
presence of the drugs. Hence, we specify that v(�,�;�) ¼ 0 when c ¼ 0.

Finally, we assume that small (large) epimutations correspond to small (large) changes in cell properties and also that small
epimutations occur at a much higher frequency than large epimutations (34). Therefore, nongenetic phenotype instability is
modeled as Brownian motion, or diffusion, in the levels of cell proliferation and survival potentials.

Individual-based model
In the I-B formalism, we consider each cell as an individual agent and label it by an index 0 � i � N(t), where N(t) � 0 is the

size of the population at time t 2 [0, T], and T is the end time of the simulation. The normalized expression levels
of the survival-potential and proliferation-potential traits in each cell i at time t are modeled, respectively, by the random
variables Xi(t):[0, ¥] ! [0, 1] and Yi(t):[0, ¥] ! [0, 1]. We simulate the evolution of the cell population in discrete time,
according to the algorithm pictured in Supplementary Fig. S1A and S1B. Over the time interval between two successive time
instants t and t þ Dt, we first allow each cell i either to proliferate, undergo apoptosis, or remain in a quiescent state according
to the respective probabilities

pðXi; Yi; NðtÞÞDt; dðXi; cðtÞÞDt; and 1� Dt½pðXi; Yi; NðtÞÞ þ dðXi; cðtÞÞ�: ð1Þ
If a cell proliferates, we assume both daughter cells inherit the parent's trait values. After all cells had undergone one iteration
of the proliferation and death process and returned to the quiescent state, we then let each cell update its trait values according
to the following system of discretized stochastic differential equations:

Xiðt þ DtÞ ¼ XiðtÞ þD
ffiffiffiffiffi
Dt

p
W1

i ðtÞ;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nongenetic
instability

Yiðt þ DtÞ ¼ YiðtÞ þD
ffiffiffiffiffi
Dt

p
W2

i ðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nongenetic
instability

þ Dt �½XiðtÞ; cðtÞ; ���;|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Stress-induced adaptation
of the proliferation level

ð2Þ

where W1
i ðtÞ and W2

i ðtÞ are standard normal random variables for all 0 � i � N(t) and t � 0, and D is the average rate of
phenotypic fluctuations.

Integro-differential equation model
In the IDE formalism, we consider the cell population to be structured by two continuous, real variables x 2 [0, 1] and y 2

[0, 1], which represent, respectively, the normalized expression levels of survival potential and proliferation potential.
The population density of cancer cells is modeled by the function n(x, y, t) � 0, where the global population density at

time t 2 [0, T] is computed as %ðtÞ ¼ R 1
0

R 1
0 nðx; y; tÞdxdy, and the time evolution of n is governed by the following equation:

qn
qt

ðx; y; tÞ þ q
qy

�ðx; cðtÞ; ��Þ nðx; y; tÞ½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stress-induced adaptation
of the proliferation level

¼ pðx; y; %ðtÞÞ � dðx; cðtÞÞ½ � nðx; y; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Selection

þ bDnðx; y; tÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Nongenetic
instability

: ð3Þ

We set b ¼ D2=2, so that a link between the solution of the IDE model and the outcome of the I-B model can be established
(at least formally) through the Feynman–Kac formula (35).
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drugs. The resulting cells were labeled the drug-tolerant expanded
persisters (DTEP; Fig. 1A). Interestingly, both DTPs and DTEPs
could be drug resensitized by drug-free passaging.

Therefore, the three distinct subpopulations—the parental
cancer cells (PC9), DTPs, and DTEPs—that compose the whole
cancer cell population at various times during drug treatment,
although genetically identical, possess different functional phe-
notypes. Most notably, they can be characterized by their respec-
tive levels of survival potential (i.e., the level of robustness toward
life-threatening events in extreme conditions, which in this case
can be identified as the level of drug tolerance) and proliferation
potential (i.e., the rate of cell proliferation; ref. 13). But what is
driving the evolution of phenotypes observed in the PC9 cancer
cells? Is it simply a case of selection, in which cells with certain
properties survive and proliferate better in a given environment
(14)? Are individual cells changing their properties in response to
environmental cues (11, 15)?

During drug therapy, the average level of survival potential in
the PC9 cell population is nondecreasing over time.We argue that
this canbe explainedby the interaction between twomechanisms.
The first mechanism is nongenetic instability (16), which results
in phenotypic fluctuations without alteration of the genotype due
to processes that may be intrinsic or extrinsic to the cell (17), and
may include noise related to gene expression (18, 19), protein
production (20), and DNA methylation (9, 10). Importantly,
nongenetic fluctuations in phenotype can occur without a cell
dividing (unlike changes in phenotype due to genetic mutations)
and can be passed on to subsequent generations (20). Fluctua-
tions in phenotype give rise to phenotype heterogeneity and can
result in the transition of drug-sensitive cells into a robust phe-

notype (4, 10, 21). These cells are able to survive drug exposure,
and hence the second mechanism, selection, can cause the most
robust cells to become the majority in the population (14).

The dynamics of the average level of proliferation potential is
even more interesting. Initially, as the majority phenotype transi-
tions from PC9 to DTP, the average proliferation level drops.
However, after a period of time, as DTEPs emerge from DTPs, the
average level of proliferation increases back to normal. The
interplay between nongenetic instability and selection could
explain the emergence of the DTEPs from the DTPs. Nevertheless,
thesemechanisms alone cannot account for the initial drop in the
average level of proliferation of the surviving cell population.

A natural explanation is that there are a small number of DTPs
present in the initial populationof PC9 cells that survive the initial
drug therapy, and are subsequently selected for in the presence of
the drugs (14). This is exactly the scenario suggested by the
authors in ref. 12, despite the lack of definitive evidence that
there are DTPs present in the initial population of PC9 cells.
Therefore, it is possible that there are noDTPs present in the initial
population of PC9 cells. If this is the case, thenwepropose that the
DTP phenotype must be stress-induced (11, 15, 22).

In this adaptive scenario, PC9 cells are induced to lower their
proliferative potential in response to stress caused by exposure to
the drugs. This idea is supported by several observations. First, in
response to stress caused by exposure to chemotherapeutic agents,
damage to DNA is a common event and can activate the DNA
damage response—a process that has been associated with cell-
cycle arrest in lung cancer cells (22, 23)—until either the DNA can
be repaired, or apoptosis is triggered. Second, one of the main
chemotherapy drugs used in the experiments of ref. 12, gefitinib,

Extended individual-based model
In the extended I-B model, we keep the birth and death process unchanged from the original I-B model. However, instead

of allowing the DTPs to update at each time step, we consider them to be stem-like so that they do not change their pheno-
type, unless they proliferate. When a DTP undergoes proliferation, we allow its offspring to update according to p1, p2, and
p3, which represent, respectively, the probabilities for symmetric self-renewal, asymmetric self-renewal, and symmetric
differentiation. The update mechanisms of the PC9s and DTEPs remain unchanged. This new algorithm is pictured in
Supplementary Fig. S1C and S1D.

The assumptions on the functions p, d, and v are summarized in Supplementary Tables S1 and S2. All definitions of the
parameter functions are provided in the Supplementary Material.

A B

Time

Figure 1.
Phenotype evolution in PC9 cells
during cytotoxic drug therapy. A,
schematic diagram of phenotype
evolution in PC9 cells during high-
dose cytotoxic drug therapy. Note
that, in the scenario pictured here,
there are DTPs present in the initial
PC9 population. However, this may
not necessarily be the case. B,
schematic diagram representing the
evolution of proliferation and survival
potential levels in PC9 cells during
cytotoxic drug therapy. The dashed
lines highlight the regions of the
phenotype space corresponding to
the PC9s, DTPs, and DTEPs.
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has been shown to induce cell-cycle arrest in G1 phase in lung
cancer cell lines, including PC9 cells (24). Therefore, we hypoth-
esize that in the presence of the drugs, cells with a low survival
potential will experience significant stress, and respond by low-
ering their proliferation rate (23, 25). On the other hand, robust
cells, with a high survival potential, experience much less stress in
the presence of the drugs and will not be induced to lower their
proliferation rate.

Motivated by these considerations, here, we propose an indi-
vidual-based (I-B) computational model (11, 26–28) and an
integro-differential equation (IDE) model (29–31) of the phe-
notype evolution observed in ref. 12. Such models can be used as
in silico laboratories to highlight stylized facts, and uncover
mechanisms that underlie emergent features of cancer cell popu-
lations. The I-B computational model allows an intuitive and
flexible description of the system at hand, whereas the IDEmodel
makes it possible to study the system in terms of qualitative and
asymptotic analysis, and is computationally less expensive.

Our models rely on the assumption that PC9 cells possess
significant phenotypic plasticity. Furthermore, we assume that,
during drug treatment, the surviving cell population can consist of
cells residingwithin a spectrumof intermediate phenotypic states,
ranging from PC9 through to DTP, and to DTEP. We also assume
that the PC9s can gradually acquire drug tolerance at the same
time as they gradually change their proliferation ability.

Unlike previousmodels of resistance in cancer cell populations
that focus on the evolution of just one phenotypic trait (11, 27–
31), here, we introduce a novel strategy to model the effects of
stress-induced adaptation, and we focus on the evolution of two
phenotypic traits that show substantial variability during drug
treatment and after drug washout: a cell's survival potential and
proliferation potential. Throughout, we consider the proliferation
potential and survival potential of cells separately. However,
mathematically they are not strictly independent traits, due to
the strategyweuse tomodel the effects of stress-induced adaption.

In the presence of high-dose drug therapy, we illustrate the
ability of themodels to recover the evolution of the PC9 cells into
DTPs and finally into DTEPs, and also the drug resensitization of
DTPs andDTEPs. Showing this, we can then argue that themodels
have validity for suggesting plausible evolutionary mechanisms
underlying drug tolerance. Therefore, we use our I-B computa-
tional and IDE models in parallel to address the following
questions:

Q1. Is nongenetic instability necessary in the development
of drug tolerance?

Q2. How do the evolutionary dynamics of the cell
population compare between the regimes of low
and high drug dose?

Q3. Is it possible to determine whether therapy induces
the DTP phenotype?

Q4. What is the role of stem-like characteristics of the DTP
cells in the development of drug tolerance?

Our study highlights the important role of nongenetic insta-
bility in the emergence of DTEPs, and also leads us to propose
experiments that may help to assess whether there are DTPs
present ab initio, and whether PC9 cells are undergoing stress-
induced adaptation of their phenotype. Finally, our models
predict that the transient dominance of the DTP subpopulation
is regulated by their stem-like characteristics and is a direct result
of the high doses of chemotherapeutic drugs used in ref. 12.

Results
For each scenario presented below, we consider the concen-

tration of cytotoxic drugs (i.e., the parameter c) to be high (low)
if it is greater (less) than, or equal to, the LC90 (LC50) dose,
which is defined as the drug dose required to kill 90% (50%) of
the total cell population in the initial stage of drug therapy,
before the population starts to recover. A sample of parameter
sets and their corresponding LC90 and LC50 doses is provided
in Table 1. The end-time of the simulations is represented by the

parameter T, and satisfies N¥�Nðt¼TÞj j
N¥ < 0:05 or %¥�%ðt¼TÞj j

%¥ < 0:05,
whereN¥ and %¥ are the respective asymptotic values of the total
cell number and global population density, which are computed
for a given set of parameters values.

Mathematical models recover the population level dynamics of
the PC9 cells

To determine whether our models can reproduce the exper-
imental observations of the PC9 cancer cell lines during drug
therapy, as reported in ref. 12, we numerically solve the IDE
model and simulate the I-B model for a high dose of the
cytotoxic drugs. In Fig. 2, we present numerical solutions from
the I-B and IDE models for the case when there are a few DTPs
present in the initial population (i.e., 5% of the global popu-
lation density), and when there is no stress-induced adaptation
of the proliferation potential. Figure 2A displays the trajectories
of the mean phenotypic expression of the population. It is clear
that, as time progresses, the mean phenotypic expression
changes from being PC9-like, to being DTP-like and finally to
being DTEP-like. Such dynamics are also shown in Fig. 2C–J,
which displays the phenotypic distribution at different times
during drug therapy (see also Supplementary Movie S1, which
shows the phenotypic distribution evolving in time for one
simulation of the I-B model). In Fig. 2B, the plot of the global
population density as a function of time reveals that, shortly
after drug exposure, there is a large reduction in cell number,
followed by a time of relatively constant population level,
before the population recovers back to normal levels. Similar

Table 1. Representative sets of parameter values

(a1, a2, a3) (b1, b2, b3) b �� x� K l LC90 LC50

(0.03, 0.25, 0.05) (0.15, 1.3, 0) 0.5 � 10�5 0.012 0.8 1.0 � 105 0 0.138 0.090
(0.03, 0.25, 0.05) (0.15, 1.3, 0) 0.5 � 10�5 0.005 0.8 1.0 � 105 0 0.189 0.114
(0.03, 0.25, 0.05) (0.15, 1.3, 0) 0.5 � 10�5 0 N/A 1.5 � 105 0.05 0.213 0.121
(0.03, 0.25, 0.05) (0.15, 1.3, 0) 0.5 � 10�5 0 N/A 1.0 � 105 0.02 0.212 0.121
(0.03, 0.25, 0.05) (0.15, 1.3, 0) 2.5 � 10�5 0 N/A 1.0 � 105 0.02 0.220 0.122
(0.03, 0.25, 0.05) (0.15, 1.3, 0.02) 1.0 � 10�4 0 N/A 0.5 � 105 0.05 0.215 0.115
(0.03, 0.25, 0.05) (0.15, 1.3, 0.02) 1.0 � 10�4 0.070 0.8 0.5 � 105 0 0.100 0.067

NOTE: A sample of sets of parameter values used in the simulations, with their corresponding LC90 and LC50 doses, which were calculated numerically. x� is the
parameter that specifies the value of x, above which, stress-induced adaptation is switched off (details in the Supplementary Material).
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results can be obtained when there are no DTPs present in the
initial population, and when we include stress-induced adap-
tation of proliferation levels (we present numerical solutions for
this case, from the IDE model in Fig. 3A and B and the top rows
of Supplementary Figs. S3 and S4, whereas Supplementary
Movie S2 shows the phenotypic distribution evolving in time
for one simulation of the I-B model in this case).

However, only the I-B model can shed light on the individual
cell-level dynamics, which, at times, is quite different from the
population-level dynamics. A comparison between the trajecto-
ries of the phenotypic expression of six individual cells and the
population mean trajectory from the I-B model is provided in
Supplementary Fig. S5A. In this case, there are no DTPs present in
the initial population, and we include stress-induced adaptation
of the proliferation potential. Supplementary Fig. S5A shows one
cell deviating from the average population-level behavior, by
rapidly evolving a DTEP phenotype directly from the PC9 phe-
notype. Therefore, although the majority of surviving cells are
predicted to follow the phenotypic trajectory from PC9 to DTP

and through to DTEP (see Supplementary Movies S1–S3), due to
stochasticity, this will not always be the case.

We present numerical solutions from the I-B and IDE
models when c ¼ 0, to see what happens to the PC9 cells if
they are left to evolve in the absence of drugs in Supplementary
Fig. S5C and S5D. It is clear that, although selection forces
the majority of cells to remain in the PC9 phenotype, the effect
of the diffusion term is to make the population more hetero-
geneous over time. Therefore, there are a small number of cells
that are more slowly proliferating and/or with higher resistance,
despite the fact that the fast-proliferating and less-resistant cells
have a fitness advantage in the drug-free conditions.

Figure 2 also shows that we can obtain a good match for the
dynamics predicted by the I-B model with that predicted by
the IDE model. We also achieve the same qualitative match for
the other cases considered in this section. Therefore, with the
exception of our study on the stem cell characteristics of DTPs
(where we use the extended I-B model), from now on we present
numerical results obtained from the IDE model only.

A B

C

E F G

H I J

D

Figure 2.
Mathematical models recover the
population level dynamics of the PC9
cells. A, trajectories of the mean
phenotypic expression for 0 � t � T. B,
global population density as a function
of time. C, cell distribution over the
survival potential at three different times
t ¼ T/50, T/10, T/2. D, cell distribution
over the proliferation potential at three
different times t ¼ T/50, T/10, T/2. Solid
lines are the numerical results from the
IDE model, whereas the broken lines
are from the I-B model. E–J, phenotypic
distribution of the cell population at
three different times t ¼ 0, T/5, T for the
I-Bmodel (E–G), IDEmodel (H–J). Details
are provided in the Supplementary
Material.
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In the experiments reported in ref. 12, both the resistant DTPs
and DTEPs can be drug resensitized by drug-free passaging. There-
fore, we numerically solve the IDE model and simulate the I-B
model for a period of time with high doses of cytotoxic drugs, so
that either DTPs or DTEPs are left as the dominant subpopulation.
We subsequently switch the drug concentration off to simulate
drugwashout, and allow the system to continue to evolve.We find
that the models can successfully reproduce drug resensitization of
the DTPs and DTEPs (see Fig. 4 and Supplementary Fig. S6).

Finally, in ref. 12, the authors suggest that reversible drug
tolerance in the PC9 cancer cell lines is due to an epigenetic
mechanism, rather than resistance-conferring genetic mutations.
To determine whether a genetic mechanism could generate the
same phenotype dynamics observed in ref. 12, we define an IDE
model of phenotype evolution, inwhichonly selection and genetic
mutations are driving cell dynamics (described in the Supplemen-
tary Material). Our simulations (see Supplementary Fig. S2) show
that a detectable subpopulation of DTPs cannot emerge during
treatment if there are noDTPs present in the system initially. In this
case, either thePC9populationwillmove toward extinction, or the
DTEPs will evolve directly from the PC9s. Furthermore, if there are
some DTPs present in the system initially, and selection allows
them to transiently emerge as the dominant subpopulation during
drug treatment, then the time it takes for theDTEPs to subsequently
emerge from the DTPs is significantly longer, than if phenotypic

changes were the result of nongenetic mechanisms. These results
support the idea that epigenetic mechanisms, rather than genetic
mutations, are responsible for the evolution of phenotype
observed in the cell lines studied in ref. 12.

Nongenetic instability is crucial for the emergence of DTEPs
To investigate the role of nongenetic instability in the evolution

of drug tolerance in PC9 cells, we analyze the phenotype evolu-
tion in the PC9 population for different values of the average
rate of phenotypic fluctuations (i.e., the parameter b) for a high
dose of cytotoxic drugs. We consider two hypothetical scenarios:

Scenario 1, when the initial population consists of only PC9s
and stress-induced adaptation of the proliferation level is
present.

Scenario 2, when a small number of DTPs are present initially
and stress-induced adaptation of the proliferation level is
absent.

For the first scenario, our model predicts that if the average rate
of phenotypic fluctuations is too large, then the PC9s will evolve
directly into the DTEPs. Furthermore, if this rate is too small, then
the PC9s will become extinct before they are able to express
the more robust DTP phenotype. This is illustrated in Fig. 3A
and B, in which we plot the trajectories of the mean phenotypic
expression of the population and the corresponding total cell
density as a function of time, for three values of b (see also
Supplementary Fig. S3A and S3B).

For the second scenario, the model predicts that in the absence
of nongenetic instability, the DTEPs cannot emerge from the
DTPs. Therefore, the DTP phenotype is stabilized inside the
surviving population. Consequently, compared with the case
when nongenetic instability is present, the long-term total global
population density can be much smaller. In fact, if the concen-
tration of the drugs is high enough, then the population can go
extinct when nongenetic instability is absent. These predictions
are illustrated in Fig. 3C and D (see also Supplementary Fig. S3C
and S3D).

A high dose of cytotoxic drugs is necessary for the transient
dominance of DTPs

Weuse our IDEmodel to investigate the evolutionary dynamics
of the PC9 cells in a low drug-dose regime. For scenario 1,

A B C D

Figure 3.
Nongenetic instability is crucial for the emergence of DTEPs. We illustrate the effect of the rate of phenotypic fluctuations (i.e., the parameter b) on the
trajectory of the population mean trait levels for 0 � t � T (A and C) and the corresponding global population density (B and D) as a function of
time, in a high drug-dose regime and when there are only PC9s present in the initial population and stress-induced adaptation is present (A and B) or
98% PC9s and 2% DTPs present in the initial population and stress-induced adaptation is absent (C and D). Note that in A and C, the trajectories
corresponding to the case b¼ 0 terminate (when the populations become extinct) in the regions corresponding, respectively, to the PC9 and DTP phenotype.
Details are provided in the Supplementary Material.

A B

Time
Time

Tim
e

Time

Figure 4.
Mathematicalmodels recover the drug resensitization of DTPs (A) andDTEPs
(B) following drug washout. Trajectories of the mean phenotypic expression.
Here, solid lines are the numerical results from the IDE model during drug
exposure, whereas the broken lines are from the IDE model after drug
washout. Details are provided in the Supplementary Material.
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described above, our model predicts that, ceteris paribus, decreas-
ing the drug concentration canprevent the emergenceofDTPs and
speed up population recovery. These dynamics are illustrated
in Fig. 5A and B, in which we plot the trajectories of the mean
phenotypic expression of the population and the correspond-
ing global population density as a function of time, for both a
high dose and a low dose of the cytotoxic drugs. This is also true
for scenario 2 (see Fig. 5C and D). Therefore, we can conclude
that a higher dose of the cytotoxic drugs is a key ingredient to
see the transient dominance of DTPs. A more complete set of
comparisons between the high and low drug-dose regimes, for
a range of parameter values, is provided in Supplementary Figs.
S3 and S4.

Low cytotoxic drug-dose experiments could establish if theDTP
phenotype is not stress induced

Another interesting prediction from ourmodel in the low-dose
regime is that, if there are a few DTPs present in the initial PC9
population, and stress-induced adaptation is absent, then it is
possible to see an increase in the average proliferative potential in
the surviving population, followed by a decrease before a second
increase (see Fig. 6). This behavior is not predicted in the high-
dose regime, nor is it predicted if there are no DTPs present
initially, and is driven by the concurrent emergence of the DTEPs
from both of the initial subpopulations (PC9s and DTPs). In the
low drug-dose regime and without stress-induced adaptation of
the proliferative potential, some of the initial PC9 cells and their
progeny are able to survive the drug exposure and gradually adopt
a phenotype with a higher survival potential. Hence, some DTEPs
begin to emerge directly from the PC9s. At the same time, the
small DTP initial subpopulation, which has a significant survival

advantage in the presence of the drug compared with the PC9s, is
transitioning into a more proliferative (DTEP-like) phenotype
and, after a time-lag, begins to outcompete the PC9s. Therefore,
the majority population switches from the PC9s (which are
transitioning into DTEPs) to the DTPs (also transitioning into
DTEPs), thus forcing the average proliferative potential to
decrease for a period of time before increasing again.

Therefore, one way to determine whether there are preexisting
DTPs within the initial PC9 population, and if stress-induced
adaptation is not occurring, would be to repeat the experiments of
ref. 12 with a low dose of the cytotoxic drugs, and observe the
average mitotic rate of the surviving population. Our models
predict that, if there is an initial increase in the averagemitotic rate,
followed by a decrease and a further increase, then it is likely that
DTPs are present in the initial population, and stress-induced
adaptation is not occurring.

Stem-like characteristics temporarily stabilize the
subpopulation of DTPs

Sharma and colleagues (12) showed that theDTPs display stem
cell–like surface markers, which are absent in the DTEPs. There-
fore, it is reasonable to assume that the DTPs express some stem-
like characteristics. In particular, stem cells have the potential to
generate more stem cells, as well as differentiated daughter cells
(36)—they are capable of symmetric cell divisions, in which a
dividing stem cell can produce either only stem cell daughters
(self-renewal) or only differentiated daughters, or asymmetric cell
divisions, in which a dividing stem cell produces one stem cell
daughter and one differentiated daughter.

Motivated by these considerations, we use the extended I-B
model to investigate the role of self-renewal and asymmetric cell

A B C D

Time

High dose
Low dose High dose

Low dose

High dose
Low dose High dose

Low dose

Figure 5.
A high dose of cytotoxic drugs is necessary for the transient dominance of DTPs. We illustrate the effect of the concentration of the cytotoxic drugs (i.e., the
parameter c) on the trajectory of the population mean trait levels for 0 � t � T (A and C) and the corresponding global population density (B and D) as a
function of time when there are only PC9s present in the initial population and stress-induced adaptation is present (A and B) or 98% PC9s and 2% DTPs present
in the initial population and stress-induced adaptation is absent (C and D). Details are provided in the Supplementary Material.

A B C

Time Time
Time

Figure 6.
Low drug-dose experiments could
establish whether the DTP phenotype
is not stress induced. Trajectories of
the population mean trait levels during
low drug-dose therapy, when there
are 98% PC9s and 2% DTPs present in
the initial population, and stress-
induced adaptation of the proliferation
level is absent (A) or present (B and C).
Details are provided in the
Supplementary Material.
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divisions in the development of drug tolerance. We analyze the
dynamics of the cells for a range of different values of the
symmetric self-renewal probability p1, when the probability of
asymmetric self-renewal p2 equates to 1 � p1, so that the prob-
ability of symmetric differentiation p3 is zero (see Supplementary
Fig. S1C and S1D).

Again, we consider the two hypothetical scenarios outlined
above. In both scenarios, if DTPs do transiently dominate the
surviving population, then a higher probability of self-renewal
increases the time taken for the emergence of the DTEPs from the
DTPs. Furthermore, after the DTEPs have emerged, a higher
probability of self-renewal corresponds to a larger and more
stable subpopulation of DTPs in the surviving population. These
predictions are illustrated in Fig. 7, in which, for scenario 1, we
plot the trajectories of the mean phenotypic expression of the
population and the corresponding numbers of PC9s, DTPs, and
DTEPs as a function of time for three different values of p1 (see
also Supplementary Fig. S7C and S7D for scenario 2).

On the other hand, if the DTPs do not transiently dominate
the surviving population, either because the population becomes
extinct before it can become drug tolerant (see Supplementary
Fig. S7G and S7H), or because the DTEPs emerge directly from
the PC9s (see Supplementary Fig. S7A and S7B), then, not sur-
prisingly, the probability of self-renewal p1 does not play any
role in the dynamics of the population.

Discussion
The PC9 cell line experiments reported in ref. 12 are performed

in an isolated and relatively homogeneous environment, and
involve only a few constituents—a genetically identical cell pop-
ulation, culture media, and combinations of drugs. Furthermore,
each experiment has clear observables, namely the percentage of
surviving cells and their phenotypic distributions, whichmake the
PC9 cancer cell lines an ideal system to study fromamathematical
perspective.

Here, we have presented an I-B computational model and an
IDE model of the evolution of phenotype observed in ref. 12,
which rely on the assumption that this evolutionary process is
driven by the interplay betweennongenetic phenotype instability,
stress-induced adaptation, and selection. Distinct mathematical
strategies were used to model each evolutionary mechanism, to
enable us to better understand the effect of each mechanism on

phenotypic evolution. The models reproduce the main experi-
mental observations detailed in ref. 12, and support the idea that
epigenetic mechanisms, rather than genetic mutations, are
responsible for the evolution of cell phenotype. Our analysis
highlights the important role of nongenetic fluctuations in phe-
notype in the emergence of drug tolerance in PC9 cancer cell lines.
In particular, we suggest that the absence of nongenetic instability
can result in the stabilization of the DTP phenotype in the
surviving population, so that DTEPs do not emerge, or even in
extinction. This is a key result because it supports the idea that
epigenetic therapy may be a promising therapeutic strategy in the
war against cancer (37–39).

Another important prediction of our models is that the tran-
sient dominance of DTPs is strictly related to the use of high doses
of cytotoxic drugs. If experimentalists apply a lower dose of
cytotoxic agents to the PC9 cell population during drug therapy,
we propose that it would be highly unlikely to observe DTPs.
Rather, we would expect the DTEPs to emerge directly from the
PC9 population. Note that this is the usual way to yield stable
drug-tolerant lineages (40).

Our analyses also suggest that stem-like, self-renewing cell
divisions of DTPs can act to increase the number of DTPs in the
system, and is consistent with other mathematical models of
stem cell dynamics (41). In particular, we expect that DTP self-
renewal can act to stabilize the DTP subpopulation for a longer
period of time during drug therapy, compared with the case
without self-renewal, as well as to delay the emergence of DTEPs.

On the basis of our models, we can conclude that if there are
no DTPs present in the initial population of PC9 cells, then it is
likely that a proper interplay between nongenetic phenotype
instability, stress-induced adaptation, and selection is mandatory
for the transient appearance of the DTP phenotype during high-
dose drug therapy. On the other hand, if there are some DTPs
present in the initial population, then nongenetic fluctuations
in phenotype and selection are enough to explain the experi-
mental observations reported in ref. 12. Therefore, the next
biologicallymeaningful question is: areDTPs present in the initial
population? Our analysis enabled us to propose a low cytotoxic
drug-dose experiment, which could answer this question. Another
possible way to determine whether DTPs are present ab initio
would be to use the experimental technique described in ref. 42
to identify and isolate slow-cycling cells in the parental PC9 cell
population, and subsequently compare the drug sensitivity of
these cells with that of the more rapidly dividing PC9 cells.

The low-dose experiment we proposed could also determine
that stress does not induce the DTP phenotype. However, another
way to assess whether PC9s are induced by stress to acquire the
DTPphenotypewouldbe to performaflow-cytometry analysis on
the PC9s with respect to the cluster of differentiation 24 (CD24)
surface marker, at a time soon after drug delivery. If the surviving
populationhas an intermediate level of expression soon after drug
exposure, relative to the expression of CD24 in PC9s and DTPs,
then this would suggest that the DTP phenotype is a result of
nongenetic fluctuations in phenotype, selection, and stress-
induced adaptation.

To keep the models as simple as possible, we chose to include
only mechanisms that were necessary to reproduce the experi-
mental results observed in ref. 12. However, if appropriate
future experimental evidence emerges for this system, such as
time series data for proliferation rates or cell density, then this
could be used to determine whether an additional mechanism,

Tim
e

A B

Figure 7.
Stem-like characteristics of DTPs stabilize the transiently dominant
subpopulation of DTPs for longer. We illustrate the effect of the DTP self-
renewal probability on the trajectories of themeanphenotypic expression (A)
and the corresponding number of PC9s (solid lines), DTPs (dotted lines), and
DTEPs (dash-dot lines) as a function of time (B). Numerical results come from
the extended I-B model. Details are provided in the Supplementary Material.
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like stress-induced adaptation of the survival potential, should be
added to the basic framework established here.

A natural way to extend our model would be to study the
emergence of epigenetic drug tolerance in a primary tumor. In this
framework, we could assume cells to be organized in a nonvas-
cularized and radially symmetric microspheroid (43), and intro-
duce an additional structuring variable that stands for the nor-
malized linear distance of cells from the center of the spheroid.We
could also introduce an additional evolution equation for the
local concentration of cytotoxic drugs. In this case, the interplay
between diffusion and consumption of cytotoxic drugs could lead
to the creation of distinct niches differentiated by the local
environment, which would provide ecologic opportunities for
diversification.

Inour study,wehave considered a two-dimensional structuring
phenotype. It is then natural to wonder about what could be a
biologic quantitative variable underlying such a continuous phe-
notype. We propose, as a reasonable candidate, the degree of
epigenetic modifications of the DNA (methylation and histone
acetylation) in relevant parts of the genome. Such modeling has
been previously proposed in ref. 44, using a one-dimensional,
phenotype-like structure variable. By using a multidimensional
phenotype, we consider differential effects of epimutations on
genes responsible for the classical intracellular pathways of pro-
liferation and survival.
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