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Analysis of a molecular structured population model with
possible polynomial growth for the cell division cycle

Fadia Bekkal Brikci, ∗ Jean Clairambault, ∗ Benôıt Perthame∗

We analyse both theoretically and numerically a nonlinear model of the dynamics of
a cell population divided into proliferative and quiescent compartments that is described
in [8]. It is a physiological age and molecule-structured population model for the cell
division cycle, which aims at representing both healthy and tumoral tissues. A noticeable
feature of this model is to exhibit tissue homeostasis for healthy tissue and unlimited
growth for tumoral tissue. In particular, the present paper analyses model parameters
for which a tumoral tissue exhibits polynomial growth and not mere exponential growth.
Polynomial tumour growth has been recently advocated by several authors, on the basis
either of experimental observations or of individual cell-based simulations which take space
limitations into account. This model is able to take such polynomial growth behaviour
into account without considerations on space, by proposing exchange functions between
the proliferative and quiescent compartments.
Keywords: Cell division cycle, Structured population equations, Entropy method, Eigenele-
ments.

1. Introduction: the model

A variety of structured cell population models has been studied by several authors
[3,19,26,23], who analysed their interesting mathematical properties. In [4,18,19,36], the
asynchronous exponential growth property was shown for a structured cell population
model with proliferative and quiescent compartments. Our goal here is to design a generic
cell population model applicable to the growth of both cancer and normal tissues, each
of them comprising proliferative and quiescent compartments. The proliferative compart-
ment represents the complete cell cycle which consists of four phases called G1, S, G2,
M. The progression of a cell through these phases is controlled by various proteins, in
particular cyclins and cyclin dependent kinases (CDKs). Recent measurements [21] indi-
cate that cyclins/CDKs complexes are the most determinant control molecules for phase
transitions, and each phase has its specific cyclins/CDKs complexes. Thus, in [8], we
proposed to structure our cell population model by age and cyclin/CDK content.

Let p (t, a, x)and q (t, a, x) be the densities of proliferating and quiescent cells, respec-
tively, at time t with age a and content x in cyclin D/(CDK4 or 6) which is an important
complex to control the transition between proliferation and quiescence. Then, the authors
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in [8] derive the nonlinear system:

∂

∂t
p (t, a, x) +

∂

∂a
(Γ0p (t, a, x)) +

∂

∂x
(Γ1 (a, x) p (t, a, x)) =

− [L (a, x) + F (a, x) + d1] p (t, a, x) +G (N (t)) q (t, a, x) ,

∂

∂t
q (t, a, x) = L (a, x) p (t, a, x)− [G (N (t)) + d2] q (t, a, x) ,

(1)

together with the following condition at the boundary a = 0:

p (t, 0, x) =
2

Γ0

+∞∫
0

+∞∫
0

f (a, x, y) p (t, a, y) dady. (2)

This is a physiological age and molecule-structured population model for the cell di-
vision cycle. Proliferating cells grow and divide whereas quiescent cells are assumed to
be halted in their individual physiological evolution, in the sense that once a cell be-
comes quiescent, its age and cyclin content are fixed at their last values as belonging to
a proliferative cell. In this way, quiescent cells do not age and do not change their cyclin
content.

We denote here by Γ0 the ratio between physiological and chronological time (a constant
in what follows) and by Γ1 (a, x) the evolution speed of cyclin D/(CDK4 or 6) with respect
to physiological age. Following the derivation in [8], it is given by

Γ1 (a, x)

Γ0

= c1
x

1 + x

(
c3
c4

+ e−c4aw1

)
− c2x, (3)

where c1, c3 are interpreted as synthesis rates and c2, c4 as degradation rates of the protein

forming the complex and it is natural to assume that w1 ≤
c3
c4

and

xmax =
c1c3
c2c4

− 1 > 0, (4)

Therefore, a fundamental property of the characteristics in equation (3) is that the cyclin
concentration x is upper limited by xmax when departing from a value less than xmax.
Because Γ1 vanishes at x = 0 there is no need of boundary condition at x = 0.

Exits from the quiescent and the proliferative compartment are due either to apoptosis
(physiological cell death) at rates d1 and d2, respectively, or to transition from the quies-
cent to the proliferative phase and vice versa. Here, we assume that the transition from
proliferation to quiescence depends on age and cyclin content of the cell. At the beginning
of the cell cycle, the cell remains in the proliferative phase but from a certain age on, if
its content in cyclin D/(CDK4 or 6) is not high enough, the cell passes to the quiescent
phase. We set the “demobilisation” (or “leak”) function from proliferation to quiescence
as:

L (a, x) = A1
Aγ2

2

Aγ2

2 + xγ2
1l[Ā,+∞[(a).
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(where 1lJ denotes the indicator function of interval J). In this setting, if the Hill ex-
ponent γ2 is high enough (e.g. between 5 and 10), A2 is the “switching” cyclin content
value x beyond which, the “leak” function L becoming close to zero (no more escape
to quiescence), a cell population is irreversibly committed to process in the proliferating
phase until division.
The reverse transition from quiescence to proliferation represented by the “recruitment”
(or “getting in the cycle”) function G is assumed to depend on the total weighted pop-
ulation of cells N (as in [27]). But more precisely in the present model, it depends on
those cells that are qualified to be sensitive to environmental factors such as growth and
anti-growth factors. If these factors acting on the populations of proliferating (p) and
quiescent (q) cells are represented by the weights ϕ∗ and ψ∗, respectively, then N will be
defined by:

N (t) =

+∞∫
0

+∞∫
0

[ϕ∗(a, x)p (t, a, x) + ψ∗(a, x)q (t, a, x)] dadx. (5)

Two cases are studied in this paper, since we assume healthy tissues and tumours to behave
differently with respect to the recruitment function G which always takes the form of a
monotone decreasing (we have in mind population density inhibition) Hill function:

G(N) =
α1θ

n + α2N
n

θn +Nn
, 0 < α2 < α1. (6)

For the two cases we assume that the population grows when N = 0 (see section 2.2.1
below). According to (6), for N large, the fraction of the quiescent cells that reenter the
proliferative phase decreases to α2

1) For a healthy tissue, this fraction α2 is not enough to maintain a growth, and the
population decreases for the linear problem with G = α2,
2) For a tumour, this fraction α2 sustains a growth of the system.

The distribution of the molecular material between daughter cells is assumed to be
unequal (as in [23]): we consider that the distribution of the amount of cyclin D/(CDK4
or 6) between the two daughter cells is given by the conditional density f (a, x, y) when
they are born from a mother cell with content y in cyclin D/CDK(4 or 6). From this
interpretation, f has the following properties:{

f(a, x, y) = 0 if x > y,
f(a, x, y) = f(a, y − x, x).

(7)

Then the fraction F (a, y) of cells which at age a and content y leave the proliferating
phase to undergo cell division - disappearing and being replaced by two daughter cells -
is defined by:

F (a, y) =

∫ +∞

0

f(a, x, y)dx.

Finally, in order to impose the conservation of total molecular content we need to impose

yF (a, y) = 2

∫ +∞

0

xf(a, x, y)dx.
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We choose for F a standard Hill function:

F (a, y) =
k1y

γ1

kγ1

2 + yγ1
1l[A∗,+∞[(a),

where k1 is the maximum effect of cyclin D on cell division, k2 is the cyclin content yielding
its half-maximum effect, γ1 is the Hill coefficient tuning the steepness of the switch at
y = k2 between 0 and k1 for the effect, and A∗ is the minimal cell cycle duration.

We also consider two cases for the cyclin repartition after division. The first choice is
a uniform repartition

f (a, x, y) =
F (a, y)

y
1l[0,y](x). (8)

The second choice is equal repartition in twice x = y/2

f (a, x, y) = F (a, y) δ(x =
y

2
) (9)

To complete system (1)–(2), we specify initial conditions,

p (0, a, x) = pi(a, x) ≥ 0, q (0, a, x) = qi(a, x) ≥ 0, a ≥ 0, x ≥ 0, (10)

where pi and qi are given functions such that Ni defined as in (5) is finite.

We then analyse the qualitative behaviour of the model, which enables us to distin-
guish a healthy tissue from a tumour by the asymptotic behaviour of their cell densities.
One of the purposes of this paper is to show that tumoral growth is not restricted to
exponential behaviour. In particular, our model is rich enough to be made compatible
with experiments and individual based model simulations that exhibit polynomial growth
[9,15].

2. Analysis and qualitative behaviour

We now perform the analysis of the model developed above. We use for this purpose
the method of Generalised Relative Entropy (GRE), which was recently introduced in
[28–30]. A general presentation of the method can be found in [33]. It allows us to
deal with the model in its full generality. The GRE method is based on the study of
eigenproblems for linearised systems and relies on the Krein-Rutman theorem for compact
positive operators, see [14]. Other methods are possible, for instance methods based on
the theory of abstract semigroups (but at any rate structural conditions as below are
needed), or, in special cases, reduction to differential equations with delay (see [1] for
instance).
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2.1. Linear problem
The linear problem associated with (1) assumes that the transition rate from the qui-

escent to the proliferative state is a constant G̃, such that:

∂p

∂t
+
∂ (Γ0p)

∂a
+
∂ (Γ1 (a, x) p)

∂x
= − (L (a, x) + F (a, x) + d1) p (t, a, x) + G̃q (t, a, x) ,

∂q

∂t
= L (a, x) p (t, a, x)−

(
G̃+ d2

)
q (t, a, x) ,

p (t, 0, x) =
2

Γ0

+∞∫
0

+∞∫
0

f (a, x, y) p(t, a, y)dady.

(11)

Gyllenberg and Webb, studying a similar linear problem with simpler boundary condi-
tions which allow for explicit formulas, by methods relying on the theory of continuous
semigroups, proved the existence and uniqueness of a positive solution for the system,
and also proved that it has the property of asynchronous exponential growth [18]. More
generally, note that existence of weak solutions results in fact from variants of the Krein-
Rutman theorem ([14]) but specific arguments for compactness are always needed. For
the case at hand, the results in [29,33] will do.

Our analysis relies on the following conclusion: the growth rate associated with (11)
-the so-called Malthus parameter- i.e., the first eigenvalue of the problem (also referred to
as the Perron eigenvalue in the finite-dimensional case), is defined as the only λ yielding
a nonnegative steady state (P,Q) solution to the system:

λP +
∂ (Γ0P )

∂a
+
∂ (Γ1 (a, x)P )

∂x
= − (L (a, x) + F (a, x) + d1)P + G̃Q,

(
λ+ G̃+ d2

)
Q = L (a, x)P,

P (0, x) =
2

Γ0

+∞∫
0

+∞∫
0

f (a, x, y)P (a, y) dyda.

(12)

Of course this system can be reduced to a single equation on P , and λ depends con-
tinuously upon G̃. For a pure age-structured model it can be solved by the method of
characteristics.
For further purposes, it is also useful to introduce the adjoint system following the prin-
ciples of the GRE method. The adjoint problem reads:

λϕ− Γ0
∂ϕ

∂a
− Γ1 (a, x)

∂ϕ

∂x
− 2

∫ +∞

0

ϕ (0, y) f (a, y, x) dy

= − (L (a, x) + F (a, x) + d1)ϕ+ L (a, x)ψ,(
λ+ G̃+ d2

)
ψ = G̃ϕ,

(13)
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ϕ and ψ being positive and normalised by the condition:

+∞∫
0

+∞∫
0

[ϕ(a, x)P (a, x) + ψ(a, x)Q(a, x)]dadx = 1.

These equations imply that solutions of (11) satisfy the “conservation law”:

+∞∫
0

+∞∫
0

[ϕ(a, x)p(t, a, x)+ ψ(a, x)q(t, a, x)]dadx

= eλt

+∞∫
0

+∞∫
0

[ϕ(a, x)pi(a, x) + ψ(a, x)qi(a, x)]dadx,

which clearly expresses exponential growth with rate λ.
In the following, we explain why these growth rates can allow to qualitatively distin-

guish between healthy and tumoral tissues. This is made possible by considering the
behaviour of the first eigenvalue λ for the system linearised at the extreme values of the
recruitment function G. We present the main features of the nonlinear problem using a
method introduced in [11] enforcing conditions on the linearised problem. In particular,
the linearised adjoint problem serves to compute the weights measuring the growth of
the system. This imposes to assume several comparisons between these weights and the
quantities (ϕ∗, ψ∗) measuring the quantity N in (5) (see H2, H4, H6... below). These as-
sumptions are always fulfilled when a and x remain a priori bounded because the weights
are all positive and bounded, as a consequence of the Krein-Rutman theorem. In the
non-compact cases at hand, these conditions are more restrictive and it is difficult to
analyse the behavior or (ϕ, ψ) for large a (see [29,33,34] for results in this direction). But
our numerical tests have always confirmed the theoretical predictions even though we did
not compute the solutions to the adjoint problem (see Section 4).

2.2. Analysis for a healthy tissue
Coming back to the nonlinear problem, we give conditions on the linearised problem

enforcing homeostasis for healthy tissue. These are given in separate paragraphs where
we prove firstly non-extinction, and then a priori bounds and existence of a steady state.

2.2.1. Non-extinction (a priori bound from below)
We first state conditions enforcing non-extinction. For this purpose, we need to inves-

tigate the linearised problem around N(t) = 0 and its first eigenvalue.
We assume that the coefficients are such that the following qualitative properties hold true:

(H1) For G̃ = G(0) = α1, the first eigenvalue, denoted here as λ0, of system (12) and its
corresponding adjoint system (13), is positive (λ0 > 0).
(H2) For the corresponding solutions to (12) and (13) obtained for G̃ = G(0), (p0, q0) and
(ϕ0, ψ0), there exists a positive constant C0, such as ϕ∗ ≤ C0ϕ0 and ψ∗ ≤ C0ψ0 (ϕ∗andψ∗

being as defined in equation (5)).
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These assumptions express that even if there are very few cells in the healthy tissue,
the population can be regenerated spontaneously. As mentioned earlier, if we a priori
assume the existence of a maximum possible age, then the positivity of ϕ0 and ψ0 implies
that (H2) is automatically satisfied for any pair of bounded functions (ϕ∗, ψ∗).

Proposition 2.1 Under hypotheses (H1)–(H2) and

0 <

+∞∫
0

+∞∫
0

[ϕ0(a, x)pi(a, x) + ψ0(a, x)qi(a, x)]dadx <∞,

there exists a real number m0 such that

(∀t ≥ 0)

+∞∫
0

+∞∫
0

[ϕ0(a, x)p(t, a, x) + ψ0(a, x)q(t, a, x)]dadx ≥ m0 > 0.

Proof of Proposition 2.1. We define the quantity

S0(t) =

+∞∫
0

+∞∫
0

[ϕ0(a, x)p(t, a, x) + ψ0(a, x)q(t, a, x)]dadx.

Using (11) and (13), we have by straightforward computation:

dS0

dt
(t) = λ0S0(t) + (G(0)−G(N(t)))

+∞∫
0

+∞∫
0

[ψ0(a, x)− ϕ0(a, x)]q(t, a, x)dadx

= λ0S0(t)−
λ0 + d2

G(0)
(G(0)−G(N(t)))

+∞∫
0

+∞∫
0

ψ0(a, x)q(t, a, x)dadx

≥ λ0S0(t)−
λ0 + d2

G(0)
(G(0)−G(N(t)))S0(t),

because ϕ0, ψ0 and p are positive and G is decreasing. Hence we arrive at

dS0

dt
(t) ≥

(
λ0 + d2

G(0)
G(N(t))− d2

)
S0(t).

Therefore, firstly,

S0(t) ≥ S0(0) exp

{∫ t

0

(
λ0 + d2

G(0)
G(N(t))− d2

)
dt

}
> 0.

Now, either the minimum of S0 (t) is attained att = 0 and S0(t) ≥ S0(0), or it is attained

at some point t0 (possibly at infinity) where
dS0

dt
(t0) = 0, which gives

G(N(t0))
λ0 + d2

G(0)
− d2 ≤ 0,
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or equivalently

G(N(t0)) ≤
d2

λ0 + d2

G(0).

Since G is continuous and decreasing to 0, there exists a number N0 > 0 such that

G(N0) =
d2

λ0 + d2

G(0).

Thus G(N(t0)) ≤ G(N0) which implies that N(t0) ≥ N0 > 0 and S0(t) ≥ S0(t0) ≥
N0

C0

> 0

for all t ≥ 0, by (H2). Therefore we have proved the result with

m0 = min

(
N0

C0

, S0(0)

)
.

2.2.2. Limited growth (a priori bound from above)
We also need conditions enforcing tissue homeostasis, meaning that the total cell popu-

lation density is limited in its growth: for this purpose we assume that for some λlim < 0 ,
there are Nlim > 0 and nonnegative functions (ϕlim, ψlim) satisfying:

(H3) For G̃ = G(Nlim) =
α1θ

n

θn +Nn
lim

, the first eigenvalue, denoted here as λlim of sys-

tem (12) and its adjoint(13), is negative (λlim < 0).
(H4) For the corresponding solutions to (12) and (13) obtained for G̃ = G(Nlim) , (plim, qlim)
and (ϕlim, ψlim), there exists a positive constant Clim, such that ϕ∗ ≥ Climϕlim and ψ∗ ≥
Climψlim.

These assumptions express that a large excess of cells is regulated negatively and thus
the population remains bounded as we state it now.

Proposition 2.2 Under hypotheses (H3) and (H4) and

0 <

+∞∫
0

+∞∫
0

[ϕlim(a, x)pi(a, x) + ψlim(a, x)qi(a, x)]dadx <∞,

there is a number mlim such that

(∀t ≥ 0)

+∞∫
0

+∞∫
0

[ϕlim(a, x)p(t, a, x) + ψlim(a, x)q(t, a, x)]dadx ≤ mlim.

Proof of Proposition 2.2. As in the proof of Proposition 2.1, we define the auxilliary
quantity

Slim(t) =

+∞∫
0

+∞∫
0

[ϕlim(a, x)p(t, a, x) + ψlim(a, x)q(t, a, x)]dadx.
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Then, we compute

dSlim

dt
(t) = λlimSlim(t)− λlim + d2

G(Nlim)
(G(Nlim)−G(N(t)))

+∞∫
0

+∞∫
0

ψlim(a, x)q(t, a, x)dadx

≤ λlimSlim(t)− λlim + d2

G(Nlim)
(G(Nlim)−G(ClimSlim(t)))

+∞∫
0

+∞∫
0

ψlim(a, x)q(t, a, x)dadx,

because, due to assumption (H4)

N(t) ≥ ClimSlim(t).

Therefore, following the arguments above, we arrive at the estimate

Slim(t) ≤ sup

(
Slim(0),

Nlim

Clim

)
:= mlim,

which concludes the proof of Proposition 2.2.

2.2.3. Steady state for a healthy tissue
Numerical experiments show that in the case of healthy tissues, the cell population

goes to a steady state that represents tissue homeostasis. Even though the existence of
a unique steady state can be analysed in the present model, the convergence toward this
steady state is an open question.

Such a steady state (p∗, q∗) of (1), is the solution to the system of equations:



∂ (Γ0p
∗)

∂a
+
∂ (Γ1 (a, x) p∗)

∂x
= − (L (a, x) + F (a, x) + d1) p

∗ (a, x) +G (N∗) q∗ (a, x) ,

L (a, x) p∗ (a, x)− (G (N∗) + d2) q
∗ (a, x) = 0,

p∗ (0, x) =
2

Γ0

∫ +∞

0

∫ +∞

0

f(a, x, y)p∗ (a, y) dady,

(14)

with

N∗ =

+∞∫
0

+∞∫
0

[ϕ∗(a, x)p∗(a, x) + ψ∗(a, x)q∗(a, x)]dadx. (15)

Proposition 2.3 With the assumptions (H1), (H2), (H3) and (H4), the system (14),
(15) has a unique positive solution (p∗, q∗).

Proof of Proposition 2.3. When N∗ is given, equation (14) is equivalent to say that
the system (12) as the eigenvalue λ = 0. To prove that this can be achieved, to a state
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population number N∗, we associate λ(N∗), the first eigenvalue to the problem in (p, q)

λ(N∗)p+
∂ (Γ0p)

∂a
+
∂ (Γ1 (a, x) p)

∂x
= − (L (a, x) + F (a, x) + d1) p (a, x) +G (N∗) q (a, x) ,

λ(N∗)q + (G (N∗) + d2) q (a, x) = L (a, x) p (a, x) ,

p (0, x) =
2

Γ0

∫ +∞

0

∫ +∞

0

f(a, x, y)p (a, y) dady,

On the one hand, we know by (H1), (H2) that λ(0) > 0 and by (H3) and (H4) that
λ(Nlim) < 0. On the other hand, N∗ 7→ λ(N∗) is continuous (by usual perturbation
theory since G is continuous), and it is decreasing since G is decreasing with N∗. To see
this, we can rewrite the system on (p, q) as

λ(N∗)p+
∂ (Γ0p)

∂a
+
∂ (Γ1 (a, x) p)

∂x
= − (F (a, x) + d1) p (a, x)−

L(a, x)
(
λ(N∗) + d2

)
λ(N∗) +G(N∗) + d2

p,

and notice that the function

(λ,G) 7→ λ+
L(a, x)

(
λ+ d2

)
λ+G+ d2

is decreasing in G and increasing in λ.

From the monotonicity property of the function λ(N∗) and its values at 0 and ∞, we
deduce that there is a unique value of N∗ such that λ(N∗) = 0.

It remains to normalise the corresponding eigenvectors (p, q) properly (by multiplica-
tion) to obtain (15) and thus a solution to (14)–(15).

2.3. Analysis for a tumoral tissue
For the tumoral case, the recruitment function from quiescence to proliferation is given

by the function:

G (N) =
α1θ

n + α2N
n

θn +Nn
.

for which G(∞) := lim
t−→+∞

G(t) = α2 > 0, a situation fundamentally different from the

healthy tissue case in which homeostasis requires G(∞) = 0.
Here, we expect that the population shows unlimited growth, and we give conditions

leading to this property.

2.3.1. Exponential growth
The following conditions on the linearised problem enforce exponential growth for the

tumoral tissue case:

(H5) For G̃ = G(∞) = α2, the first eigenvalue, denoted here as λ1 of system (12) and its
adjoint (13), is strictly positive (λ1 > 0).
(H6) For the corresponding solutions to (12) and (13) obtained for G̃ = G(∞) , (p1, q1),
(ϕ1, ψ1), there exists a positive constant C1, such that ϕ∗ ≥ C1ϕ1 and ψ∗ ≥ C1ψ1.
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Proposition 2.4 Under hypotheses (H5) and (H6), there exists a positive constant M
such that:

N(t) ≥Meλ1t.

Proof of Proposition 2.4. Let us define the quantity

S1(t) =

+∞∫
0

+∞∫
0

[ϕ1(a, x)p(t, a, x) + ψ1(a, x)q(t, a, x)]dadx.

We have, since G is decreasing,

dS1

dt
(t) = λ1S1(t) +

λ1 + d2

G(∞)
(G(N(t))−G(∞))

+∞∫
0

+∞∫
0

ψ1(a, x)q(t, a, x)dadx

≥ λ1S1(t).

This implies that S1(t) has exponential growth, i.e., S1(t) ≥ S1(0)eλ1t. Finally, thanks
to (H6) we have N(t) ≥ C1S1(t). We conclude that N(t) ≥ C1S1(0)eλ1t and Proposition
2.4 is proved with M = C1S1(0).

2.3.2. Subpolynomial growth
We are now interested in the case when the total (weighted) cell population density

N(t) has unlimited growth, i.e., lim
t−→+∞

N(t) = +∞, but not exponential growth and we

look for conditions giving polynomial growth. We are not able to prove such a behaviour
but only subpolynomial growth (in the next paragraph we prove unlimited growth). For
this purpose we assume the following hypotheses:

(H7) For G̃ = G(∞) = α2, the first eigenvalue of system (12) and its adjoint (13) is
λ1 = 0.
(H8) For the corresponding solutions to (12) and (13) obtained for G̃ = G(∞) , (p2, q2),
(ϕ2, ψ2), there exists positive constants C2 and C3, such that C3ϕ2 ≤ ϕ∗ ≤ C2ϕ2 and
C3ψ2 ≤ ψ∗ ≤ C2ψ2.

Proposition 2.5 Under hypotheses (H7) and (H8), there exists a positive constant C
such that for large t,

N(t) ≤ Ct1/n.

Proof of Proposition 2.5. As in the proof of Proposition 2.4, we define:

S2(t) =

+∞∫
0

+∞∫
0

[ϕ2(a, x)p(t, a, x) + ψ2(a, x)q(t, a, x)]dadx.

Since by (H7), we have λ1 = 0, then (as in the proof of the previous proposition):

dS2

dt
(t) =

d2

G(∞)
(G(N(t))−G(∞))

+∞∫
0

+∞∫
0

ψ2(a, x)q(t, a, x)dadx,
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which proves in the first place, since G is decreasing, that

dS2

dt
(t) ≤ d2

G(∞)
(G(N(t))−G(∞))S2(t).

But since

G(N)−G(∞) =
(α1 − α2)θ

n

θn +Nn
,

and because N(t) ≥ C3S2(t) thanks to (H8), we obtain

dS2

dt
(t) ≤ d2

G(∞)

(α1 − α2)θ
nS2(t)

θn + (C3S2(t))n
. (16)

On the other hand, let us consider the function Σ(t) = a(t+ t0)
1/n with t0 > 0:

For
an

n
≥ d2

G(∞)

(α1 − α2)θ
n

Cn
3

, Σ(t) is a supersolution to (16) because

dΣ

dt
(t) =

a

n
(t+ t0)

1/n−1

=
an

n
[Σ(t)]1−n

≥ d2

G(∞)

(α1 − α2)θ
nΣ(t)

θn + (C3Σ(t))n
.

Henceforth, for t0 large enough to ensure Σ(0) ≥ S2(0), we have by the comparison
principle

S2(t) ≤ Σ(t).

¿From this inequality, using (H8), we obtain,

N(t) ≤ C2Σ(t),

which proves the proposition.

Remark 2.6 A motivation for (H7) is that one cannot exclude that actual tumours grow
neither exponentially nor with saturation behaviour. Indeed, experimental observations
[9] and numerical simulations with spatial models [15] show cases when N(t) ≈ t3. In
these cases we can infer that a reasonable choice for parameter n, in the recruitment

function G defined through (6), is n =
1

3
. The interpretation of this unlimited polynomial

behaviour is then simple for tumour spheroids (in which average cell number is assumed to
be proportional to the tumour volume): from the differential inequality for S2(t) we have

dS2

dt
(t) ' S

2
3
2 (t), (17)

which may account for an effect of surfacic pressure on the tumour volume, i.e., a growth
limit that is proportional to the outer rim cell population of the spheroid.
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2.3.3. Unlimited growth
We are now interested in the case when λ1, the first eigenvalue corresponding toN = ∞,

vanishes as in (H7). Then we can still prove a result implying unlimited growth. We use
the assumption

(H9) for all N < ∞, the eigenvalue λ(N) corresponding to G̃ = G(N) in system (12)
and its adjoint (13) satisfies λ(N) > 0
(H10) there is a ’uniform’ constant Cu such that any of the solutions (ϕN , ψN) to the
adjoint problem satisfy ϕ∗ ≥ CuϕN , ψ∗ ≥ CuψN .

Of course, compatibility with (H7) imposes that λ(N) → 0 as N → ∞ which is the
interesting case. Recall also that λ(N) is a non-increasing function of N .

Proposition 2.7 Under hypotheses (H9)and (H10), we have:

lim
t→∞

N(t) = ∞.

Proof of Proposition 2.7. As a first step, we prove that lim sup
t→∞

N(t) = ∞. Assume

by contradiction that for some ν, lim supN(t) < ν <∞. As usual, we define the auxiliary
quantity

Sν(t) =

+∞∫
0

+∞∫
0

[ϕν(a, x)p(t, a, x) + ψν(a, x)q(t, a, x)]dadx.

It satisfies, as in Proposition 2.4, and for t large enough

dSν

dt
(t) = λ(ν)Sν(t) +

λ(ν) + d2

G(ν)
(G(N(t))−G(ν))

+∞∫
0

+∞∫
0

ψν(a, x)q(t, a, x)dadx

≥ λ(ν)Sν(t).

This proves that Sν(t) →∞ as t→∞ (because λ(ν) > 0 by (H9)). But from (H10), we
have N(t) ≥ CuSν(t) which contradicts the existence of such a ν and concludes the first
step.

In the second step, we prove that lim
t→∞

N(t) = ∞. To do that we choose ν = ∞ in the

previous step and obtain, because λ(∞) = λ1 = 0,

dS∞
dt

(t) =
λ(∞) + d2

G(∞)
(G(N(t))−G(∞))

+∞∫
0

+∞∫
0

ψν(a, x)q(t, a, x)dadx > 0.

Therefore S∞(t) is increasing. But its limit as t→∞ can only be infinity because by the
first step, its limsup is infinity. Finally, using again (H10), we have N(t) ≥ CuS∞(t) and
the result is proved.
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3. Numerical scheme

We now present the numerical simulation of the molecular structured population model
(1). For the transport equation, it is natural to use a finite volume discretisation. The
main advantage is that, at the discrete level, we can keep the basic local conservation law
expressed by the divergence nature of the differential terms. The finite volume method
relies on well established theories and properties that one can find, for instance, in the
textbooks [10,16,17,24].

Before we present the numerical scheme, we need to introduce some notations. We use
a rectangular grid in age a and cyclin content x, and we set

• ∆a, ∆x are the uniform mesh sizes, ∆t is the time step,
• tk = k∆t,
• ai = (i− 1

2
)∆a, ai+ 1

2
= (i− 1)∆a, 1 ≤ i ≤ IM , with IM∆a the maximum numer-

ical age encountered,
• xj = (j − 1

2
)∆x, xj+ 1

2
= (j − 1)∆x, 1 ≤ j ≤ JM , with JM∆x ≈ xmax,

• Ci,j is the cell [ai− 1
2
, ai+ 1

2
]× [xj− 1

2
, xj+ 1

2
].

The motivation of these notations for the grid points ai+ 1
2

and xj+ 1
2

comes from the
principle of the finite volume method which is to approximate the averaged quantities

pk
i,j =

1

∆x ∆a

∫
Ci,j

p(tk, a, x)da dx, qk
i,j =

1

∆x ∆a

∫
Ci,j

q(tk, a, x)da dx.

These quantities satisfy a discrete version of the continuous equations (1) which allow us
to compute recursively the states at time tk+1 from the state at time tk:

pk+1
i,j − pk

i,j + ∆t
∆a

[
Fk

i+ 1
2
,j
−Fk

i− 1
2
,j

]
+ ∆t

∆x

[
Gk

i,j+ 1
2

− Gk
i,j− 1

2

]
= ∆t Gkqk

i,j −∆t [Li,j + Fi,j + d1]p
k
i,j,

qk+1
i,j − qk

i,j = ∆t Li,j p
k
i,j −∆t [Gk + d2]q

k
i,j.

(18)

The various coefficients arising in this system have to be approximated and we use a first
order scheme. We begin with the source terms; the coefficient Li,j can be chosen as the
point values at (ai, xj) of the functions L, and we take

Gk = G(Nk), Nk = ∆x ∆a
∑
i,j

[
ϕ∗i,jp

k
i,j + ψ∗i,jq

k
i,j

]
. (19)

The last coefficients, Fi,j, are related to the boundary fluxes and are given below.
Regarding the fluxes F , G we choose standard upwind schemes which are particularly

easy because the ’velocities’ have a positive sign, for 1 ≤ i ≤ IM , 1 ≤ j ≤ jM , we set

Fk
i+ 1

2
,j

= Γ0 p
k
i−1,j, Gk

i,j+ 1
2

= Γ1(ai, xj+ 1
2
) pk

i,j−1. (20)
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The missing fluxes (labels i = 1 and j = 1, fluxes on the left and down) correspond to
the cell division boundary conditions,

Fk
1
2
,j

= 2∆x ∆a
∑
i,k

fi,j,k p
k
i,k, Gk

i, 1
2

= 0, (21)

where we have denoted again by fi,j,k the point value of the renewal function f(a, x, y) at
the points ai, xi, and xk. Therefore, we can derive also the coefficients, Fi,j:

Fi,j = ∆x ∆a
∑
i,k

fi,k,j. (22)

We recall that these schemes have been widely studied in the references mentioned
above and that, as always for explicit schemes, their stability is subject to a limitation on
the time step ∆t, called CFL (Courant, Friedrichs, Levy) condition (here all the “max”
are taken over 1 ≤ i ≤ IM and 1 ≤ j ≤ JM)

∆t

[
Γ0

∆a
+

max Γ1(ai, xj+ 1
2
)

∆x
+ max(Li,j + Fi,j) + d2

]
≤ 1,

∆t [Gk + d2] ≤ 1.

(23)

In practice, some terms can be discretised with an implicit scheme, a method which
improves the time steps thanks to a better CFL condition. In the numerical results pre-
sented below, we have used a fully implicit scheme for the apoptosis, demobilisation, gain
and boundary terms.

Another fundamental property of this finite volume method is that it reproduces at the
discrete level the balance laws expressed by the continuous equation. Namely, we have

∑
i,j

[pk+1
i,j + qk+1

i,j ] =
∑
i,j

[pk
i,j + qk

i,j] +
∆t

2

∑
i

Fk
1
2
,j
−∆t

∑
i,j

[d1p
k
i,j + d2q

k
i,j]

This follows from the addition of the two equalities in (18), from the cancellations between
terms arising in the equations on pk+1 and qk+1, and from the cancellations between the
flux term Fk

1
2
,j
, in (21), and the term Fi,jp

k
i,j, thanks to definition (22).

4. Numerical validation
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Parameters Values Parameters Values
c1 0.1 A∗ 23 (hours)
c2 0.075 A1 4 (hour−1)
c3 1.2 A2 2
c4 0.4 (hour−1) γ2 5

w1 1.95 A 18 (hours)
Γ0 1 α1 8 (hour−1)
k1 1.2 (hour−1) θ 1
k2 1.5 α2 .4797 (hour−1)
d1 0 γ1 5
d2 .02 (hour−1) n (usual case) 1/3

Table 1. Parameters and values used in simulations.

Some of the model parameters are known for specific cells in other settings for func-
tions used in a similar context, [27,40,6,43,25,22] and are used in [8]. Here, our aims are
to exhibit the numerical differences between solutions for the two boundary conditions
(8) and (9), and to exhibit the polynomial growth, when λ1 = 0, according to Propo-
sition 2.5. Therefore, we have made realistic choices of a range of values within which
our numerical simulations exhibit a behaviour illustrating the theoretical properties of
the model demonstrated under the various assumptions (H1) to (H10), but we have not
chosen the parameters among the above literature because we do not aim at covering a
specific organ. These are given in Table 1. Notice that the parameter θ is simply a choice
of the unit for number of cells and can be taken to be 1 without lose of generality. Our
parameters also lead to xmax = 3 which fixes a unit for x. They are given for the boundary
condition (8) of uniform repartition of x at birth. In our numerical simulations we have
used ϕ∗ = ψ∗ ≡ 1, i.e., we have assumed that all cells are eligible for recruitment control
(by cell density inhibition, growth or antigrowth factors) in phase G1. We have used 60
grid points for the x variable and 80 for the age variable.

Figure 1 shows the trend to a steady state as stated in Proposition 2.3 and Figure 2
shows the distribution of cells according to their age and cyclin D/(CDK4 or 6) concen-
trations in the proliferative phase in the case of uniform cyclin complex after division,
i.e., the function f given by (8). Figure 3 presents the same result for the case of equal
repartition (9). We have also verified that assumptions (H1) and (H3) hold true for a
healthy tissue. The so-called power algorithm [17] allows us to obtain numerically the
first eigenvalue of system (12). In order to perform the computation of Figure 5, a high
accuracy on the approximation λ1 = 0 is needed, this has led us to compute more digits
on α2 = .47972513897.

The time evolution of the total number of quiescent and proliferative cells is shown in
figure 4 in the case of a polynomial growth when λ1 = 0 with n = 1/3 in a normal scale
where it is difficult to guarantee a polynomial growth. Therefore we show, in Figure 5
(left), different cases where the Malthus coefficient λ1 is zero, with n = 1, n = 1

2
, n = 1

3

in the recruitment function G defined by (6). We can see on this log-log scale plot of the
total cell number N(t) as a function of time t that for large t, N(t) ≈ t1/n, i.e., the tumour
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Figure 1. Evolution of the total cell population for a healthy tissue. Left: total quiescent
cells

∫ +∞
0

∫ +∞
0

q(t, a, x)dadx; right: total proliferating cells
∫ +∞

0

∫ +∞
0

p(t, a, x)dadx.

shows unlimited polynomial growth depending upon n as it is foreseen by Proposition 2.5.
On the right we have depicted the exponential growth (in a log scale) when λ1 > 0. Then
the value of n does not determine the exponential growth, in accordance with Proposition
2.4.
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Figure 5. Evolution of the total cell population
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p(t, a, x)dadx for a tumoral tissue with different values of n = 1 (lower curves),
n = 1/2 (medium), n = 1/3 (upper ). Left: with polynomial growth, λ1 = 0, and a
Log-Log scale (this shows the different power laws). Right: with exponential growth,
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